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ABSTRACT
A popular approach for modeling and inference in spatial statistics is to represent Gaussian random fields
as solutions to stochastic partial differential equations (SPDEs) of the form Lβ u = W , whereW is Gaussian
white noise, L is a second-order differential operator, and β > 0 is a parameter that determines the
smoothness of u. However, this approach has been limited to the case 2β ∈ N, which excludes several
important models and makes it necessary to keep β fixed during inference. We propose a new method, the
rational SPDE approach, which in spatial dimension d ∈ N is applicable for any β > d/4, and thus remedies
the mentioned limitation. The presented scheme combines a finite element discretization with a rational
approximation of the function x−β to approximate u. For the resulting approximation, an explicit rate of
convergence to u in mean-square sense is derived. Furthermore, we show that our method has the same
computational benefits as in the restricted case 2β ∈ N. Several numerical experiments and a statistical
application are used to illustrate the accuracy of the method, and to show that it facilitates likelihood-based
inference for all model parameters including β . Supplementary materials for this article are available online.
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1. Introduction

One of the main challenges in spatial statistics is to handle large
datasets. A reason for this is that the computational cost for
likelihood evaluation and spatial prediction is in general cubic
in the number N of observations of a Gaussian random field.
A tremendous amount of research has been devoted to coping
with this problem and various methods have been suggested (see
Heaton et al. 2019, for a recent review).

A common approach is to define an approximation uh of
a Gaussian random field u on a spatial domain D via a basis
expansion,

uh(s) =
n∑

j=1
uj ϕj(s), s ∈ D, (1.1)

where ϕj : D → R are fixed basis functions and the vector
u = (u1, . . . , un)� ∼ N(0, �u) are stochastic weights. The
computational effort can then be reduced by choosing n � N.
However, methods based on such low-rank approximations
tend to remove fine-scale variations of the process. For this
reason, methods which instead exploit sparsity for reducing
the computational cost have gained popularity in recent years.
One can construct sparse approximations either of the covari-
ance matrix of the measurements (Furrer, Genton, and Nychka
2006), or of the inverse of the covariance matrix (Datta et al.
2016). Alternatively, one can let the precision matrix �−1

u of the
weights in (1.1) be sparse, as in the stochastic partial differential
equation (SPDE) approach by Lindgren, Rue, and Lindström
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(2011), where usually n ≈ N. To increase the accuracy further,
several combinations of the methods mentioned above have
been considered (e.g., Sang and Huang 2012) and multiresolu-
tion approximations of the process have been exploited (Nychka
et al. 2015; Katzfuss 2017). However, theoretical error bounds
have not been derived for most of these methods, which neces-
sitates tuning these approximations for each specific model.

In this work we propose a new class of approximations,
whose members we refer to as rational SPDE approximations
or rational approximations for short. Our approach is similar
to some of the above methods in the sense that an expansion
(1.1) with compactly supported basis functions is exploited. The
main novelty is that neither the covariance matrix �u nor the
precision matrix �−1

u of the weights u is assumed to be sparse.
The covariance matrix is instead a product �u = PQ−1P�,
where P and Q are sparse matrices and the sparsity pattern of P is
a subset of that of Q. We show that the resulting approximation
facilitates inference and prediction at the same computational
cost as a Markov approximation with �−1

u = Q, and at a higher
accuracy.

For the theoretical framework of our approach, we consider
a Gaussian random field on a bounded domain D ⊂ Rd which
can be represented as the solution u to the SPDE

Lβu = W in D, (1.2)

where W is Gaussian white noise on D, and Lβ is a
fractional power of a second-order differential operator L
which determines the covariance structure of u. Our rational
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approximations are based on two components: (i) a finite ele-
ment method (FEM) with continuous and piecewise polyno-
mial basis functions {ϕj}n

j=1, and (ii) a rational approximation
of the function x−β . We explain how to perform these two
steps in practice to explicitly compute the matrices P and Q.
Furthermore, we derive an upper bound for the strong mean-
square error of the rational approximation. This bound provides
an explicit rate of convergence in terms of the mesh size of
the finite element discretization, which facilitates tuning the
approximation without empirical tests for each specific model.

Examples of random fields which can be expressed as solu-
tions to SPDEs of the form (1.2) include approximations of
Gaussian Matérn fields (Matérn 1960). Specifically, if D := Rd

a zero-mean Gaussian Matérn field can be viewed as a solution
u to

(κ2 − �)β (τu) = W , (1.3)

where � denotes the Laplacian (Whittle 1963). The constant
parameters κ , τ > 0 determine the practical correlation range
and the variance of u. The exponent β defines the smoothness
parameter ν of the Matérn covariance function via the relation
2β = ν + d/2 and, thus, the differentiability of the field.
For applications, variance, range and differentiability typically
are the most important properties of a Gaussian field. For this
reason, the Matérn model is highly popular in spatial statistics
and has become the standard choice for Gaussian process priors
in machine learning (Rasmussen and Williams 2006). Since
(1.3) is a special case of (1.2) we believe that the outcomes of this
work will be of great relevance for many statistical applications,
see also Section 7.

In contrast to covariance-based models, the SPDE approach
additionally has the advantage that it allows for a number of
generalizations of stationary Matérn fields including (i) nonsta-
tionary fields generated by nonstationary differential operators
(e.g., Fuglstad et al. 2015), (ii) fields on more general domains
such as the sphere (e.g., Lindgren, Rue, and Lindström 2011),
and (iii) non-Gaussian models (e.g., Wallin and Bolin 2015).

Lindgren, Rue, and Lindström (2011) showed that, in the
case that 2β ∈ N, one can construct accurate approximations of
the form (1.1) for Gaussian Matérn fields on bounded domains
D � Rd, such that �−1

u is sparse. To this end, (1.3) is considered
on D and the differential operator κ2 − � is augmented with
appropriate boundary conditions. The resulting SPDE is then
solved approximately by means of a FEM. Due to the implemen-
tation in the R-INLA software, this approach has become widely
used, see Bakka et al. (2018) for a comprehensive list of recent
applications.

However, the restriction 2β ∈ N implies a significant
limitation for the flexibility of the method. In particular, it is
therefore not directly applicable to the important special case
of exponential covariance (ν = 1/2) on R2, where β = 3/4.
In addition, restricting the value of β complicates estimating
the smoothness of the process from data. In fact, β typically is
fixed when the method is used in practice, since identifying the
value of 2β ∈ N with the highest likelihood requires a separate
estimation of all the other parameters in the model for each
value of β . A common justification for fixing β is to argue that it
is not practicable to estimate the smoothness of a random field

from data. However, there are certainly applications for which it
is feasible to estimate the smoothness. We provide an example
of this in Section 7. Furthermore, having the correct smooth-
ness of the model is particularly important for interpolation,
and the fact that the Matérn model allows for estimating the
smoothness from data was the main reason for why Stein (1999)
recommended the model.

The rational SPDE approach presented in this work facilitates
an estimation of β from data by providing an approximation of
u which is computable for all fractional powers β > d/4 (i.e.,
ν > 0), where d ∈ N is the dimension of the spatial domain
D ⊂ Rd. It thus enables to include this parameter in likelihood-
based (or Bayesian) parameter estimation for both stationary
and nonstationary models. Although the SPDE approach has
been considered in the nonfractional case also for nonstationary
models, Lindgren, Rue, and Lindström (2011) showed conver-
gence of the approximation only for the stationary model (1.3).
Our analysis in Section 3 closes this gap since we consider the
general model (1.2) which covers the nonstationary case and
several other previously proposed generalizations of the Matérn
model.

The structure of this article is as follows: We briefly review
existing methods for the SPDE approach in the fractional case
in Section 2. In Section 3, the rational SPDE approximation
is introduced and a result on its strong convergence is stated.
The procedure of applying the rational SPDE approach to sta-
tistical inference is addressed in Section 4. Section 5 contains
numerical experiments which illustrate the accuracy of the
proposed method. The identifiability of the parameters in the
Matérn SPDE model (1.3) is discussed in Section 6, where we
derive necessary and sufficient conditions for equivalence of
the induced Gaussian measures. In Section 7, we present an
application to climate data, where we consider fractional and
nonfractional models for both stationary and nonstationary
covariances. We conclude with a discussion in Section 8. Finally,
the supplementary materials contain four appendices provid-
ing details about (A) the finite element discretization, (B) the
convergence analysis, (C) a comparison with the quadrature
method by Bolin, Kirchner, and Kovács (2018a), and (D) the
equivalence of Gaussian measures. The method developed in
this work has been implemented in the R (R Core Team 2017)
package rSPDE (Bolin 2019).

2. The SPDE Approach in the Fractional Case Until
Now

A reason for why the approach by Lindgren, Rue, and Lindström
(2011) only works for integer values of 2β is given by Rozanov
(1977), who showed that a Gaussian random field on Rd is
Markov if and only if its spectral density can be written as the
reciprocal of a polynomial, S̃(k) = (2π)−d(

∑m
j=0 bj‖k‖2j)−1.

Since the spectrum of a Gaussian Matérn field is

S(k) = 1
(2π)d

1
(κ2 + ‖k‖2)2β

, k ∈ Rd, (2.1)

the precision matrix Q will not be sparse unless 2β ∈ N.
For 2β /∈ N, Lindgren, Rue, and Lindström (2011) suggested
to compute a Markov approximation by choosing m = 
2β�
and selecting the coefficients b = (b1, . . . , bm)� so that the
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deviation between the spectral densities∫
Rd

w(k)(S(k) − S̃(k))2 dk

is minimized. For this measure of deviation, w is some suitable
weight function which should be chosen to get a good approxi-
mation of the covariance function. For the method to be useful
in practice, the coefficients bj should be given explicitly in terms
of the parameters κ and ν. Because of this, Lindgren, Rue, and
Lindström (2011) proposed a weight function that enables an
analytical evaluation of the integral,∫ ∞

κ2

[
z2β −

m∑
j=0

bj(z − κ2)j
]2

z−2m−1−θ dz,

where θ > 0 is a tuning parameter. By differentiating this inte-
gral with respect to the parameters and setting the differentials
equal to zero, a system of linear equations is obtained, which
can be solved to find the coefficients b. The resulting approx-
imation depends strongly on θ , and one could use numerical
optimization to find a good value of θ for a specific value of β ,
or use the choice θ = 2β − 2β�, which approximately min-
imizes the maximal distance between the covariance functions
(Lindgren, Rue, and Lindström 2011). This method was used
for the comparison in Heaton et al. (2019), and we will use it as
a baseline method when analyzing the accuracy of the rational
SPDE approximations in later sections.

Another Markov approximation based on the spectral den-
sity was proposed by Roininen et al. (2018). These Markov
approximations may be sufficient in certain applications; how-
ever, any approach based on the spectral density or the covari-
ance function is difficult to generalize to models on more gen-
eral domains than Rd, nonstationary models, or non-Gaussian
models. Thus, such methods cannot be used if the full potential
of the SPDE approach should be kept for fractional values of β .

There is a rich literature on methods for solving deter-
ministic fractional PDEs (e.g., Gavrilyuk, Hackbusch, and
Khoromskij 2004; Bonito and Pasciak 2015; Jin et al. 2015;
Nochetto, Otárola, and Salgado 2015), and some of the meth-
ods that have been proposed could be used to compute
approximations of the solution to the SPDE (1.3). However,
any deterministic problem becomes more sophisticated when
randomness is included. Even methods developed specifi-
cally for sampling solutions to SPDEs like (1.3) may be dif-
ficult to use directly for statistical applications, when like-
lihood evaluations, spatial predictions or posterior sampling
are needed. For instance, it has been unclear if the sampling
approach by Bolin, Kirchner, and Kovács (2018a), which is
based on a quadrature approximation for an integral repre-
sentation of the fractional inverse L−β , could be used for
statistical inference. In Appendix C, we show that it can
be viewed as a (computationally less efficient) version of
the rational SPDE approximations developed in this work.
Consequently, the results in Section 4 on how to use the
rational SPDE approach for inference apply also to that
method. In Section 5.1, we compare the performance of the
two methods in practice within the scope of a numerical
experiment.

3. Rational Approximations for Fractional SPDEs

In this section, we propose an explicit scheme for approximating
solutions to a class of SPDEs including (1.3). Specifically, in Sec-
tions 3.1 and 3.2, we introduce the fractional order equation of
interest as well as its finite element discretization. In Section 3.3,
we propose a nonfractional equation, whose solution after spec-
ification of certain coefficients approximates the random field
of interest. For this approximation, we provide a rigorous error
bound in Section 3.4. Finally, in Section 3.5, we address the
computation of the coefficients in the rational approximation.

3.1. The Fractional Order Equation

With the objective of allowing for more general Gaussian ran-
dom fields than the Matérn class, we consider the fractional
order Equation (1.2), where D ⊂ Rd, d ∈ {1, 2, 3}, is an open,
bounded, convex polytope, with closure D, and W is Gaussian
white noise in L2(D). Here and below, L2(D) is the Lebesgue
space of square-integrable real-valued functions, which is
equipped with the inner product (w, v)L2(D) := ∫

D w(s)v(s) ds.
The Sobolev space of order k ∈ N is denoted by Hk(D) :=
{w ∈ L2(D) : Dγ w ∈ L2(D) ∀ |γ | ≤ k} and H1

0(D) is the sub-
space of H1(D) containing functions with vanishing trace.

We assume that the operator L : D(L) ⊂ L2(D) → L2(D) is
a linear second-order differential operator in divergence form,

Lu = −∇ · (H∇u) + κ2u, (3.1)

whose domain of definition D(L) depends on the choice of
boundary conditions on ∂D. Specifically, we impose homo-
geneous Dirichlet or Neumann boundary conditions and set
V = H1

0(D) or V = H1(D), respectively. Furthermore, we let
the functions H and κ in (3.1) satisfy the following assumptions:

I. H : D → Rd×d is symmetric, Lipschitz continuous on the
closure D, that is,

∃CLip > 0 : |Hij(s) − Hij(s′)| ≤ CLip‖s − s′‖
∀s, s′ ∈ D, ∀i, j ∈ {1, . . . , d},

and uniformly positive definite, that is,

∃C0 > 0 : ess inf
s∈D ξ�H(s)ξ ≥ C0‖ξ‖2 ∀ξ ∈ Rd;

II. κ : D → R is essentially bounded, κ ∈ L∞(D). Further-
more, if Neumann boundary conditions are imposed, then
ess inf s∈D κ(s) ≥ κ0 > 0 holds.

If I.–II. are satisfied, the differential operator L in (3.1) induces
a symmetric, continuous and coercive bilinear form aL on V ,

aL(u, v) := (H∇u, ∇v)L2(D) + (κ2u, v)L2(D), u, v ∈ V , (3.2)

and its domain is given by D(L) = H2(D) ∩ V . Furthermore,
Weyl’s law (see, e.g., Davies 1995, Theorem 6.3.1) shows that the
eigenvalues {λj}j∈N of the elliptic differential operator L in (3.1),
in nondecreasing order, satisfy the spectral asymptotics

λj � j2/d as j → ∞. (3.3)

Thus, existence and uniqueness of the solution u to (1.2) readily
follow from Lemma 2.1 and Proposition 2.3 of Bolin, Kirchner,
and Kovács (2018a). We formulate this as a proposition.
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Proposition 3.1. Let L be given by (3.1) where H and κ satisfy
the assumptions I.–II. above and assume β > d/4. Then (1.2)
has a unique solution u in L2(; L2(D)).

The assumptions I.–II. on the differential operator L are
satisfied, for example, by the Matérn operator L = κ2 − �, in
which case the condition β > d/4 on the fractional exponent
in (1.2) corresponds to a positive smoothness parameter ν,
that is, to a nondegenerate field. Moreover, Equation (1.2) as
considered in our work includes several previously proposed
nonfractional nonstationary models as special cases, such as the
nonstationary Matérn models by Lindgren, Rue, and Lindström
(2011), the models with locally varying anisotropy by Fuglstad
et al. (2015), and the barrier models by Bakka et al. (2019). Thus,
Proposition 3.1 shows existence and uniqueness of the fractional
versions of all these models, which can be treated in practice by
using the results of the following sections.

3.2. The Discrete Model

To discretize the problem, we assume that Vh ⊂ V is a finite
element space with continuous piecewise linear basis func-
tions {ϕj}nh

j=1 defined with respect to a triangulation Th of the
domain D indexed by the mesh width h := maxT∈Th hT , where
hT := diam(T) is the diameter of the element T ∈ Th.
Furthermore, the family (Th)h∈(0,1) of triangulations inducing
the finite-dimensional subspaces (Vh)h∈(0,1) of V is supposed to
be quasi-uniform, that is, there exist constants C1, C2 > 0 such
that ρT ≥ C1hT and hT ≥ C2h for all T ∈ Th and h ∈ (0, 1).
Here, ρT > 0 is radius of largest ball inscribed in T ∈ Th.

The discrete operator Lh : Vh → Vh is defined in terms of
the bilinear form aL in (3.2) via the relation (Lhφh, ψh)L2(D) =
aL(φh, ψh) which holds for all φh, ψh ∈ Vh. We then consider
the following SPDE on the finite-dimensional state space Vh,

Lβ

h uh = Wh in D, (3.4)

where Wh is Gaussian white noise in Vh, that is, Wh =∑nh
j=1 ξjej,h for a basis {ej,h}nh

j=1 of Vh which is orthonormal in
L2(D) and ξj ∼ N(0, 1) iid for j = 1, . . . , nh.

We note that the assumptions I.–II. from Section 3.1 on the
functions H and κ combined with the convexity of D imply that
the operator L in (3.1) is H2(D)-regular, that is, for a right-
hand side f ∈ L2(D), the weak solution u ∈ V to Lu = f
satisfies u ∈ H2(D) ∩ V , see, for example, Grisvard (2011, The-
orem 3.2.1.2) for the case of Dirichlet boundary conditions. By
combining this observation with the spectral asymptotics (3.3)
we see that the assumptions in Lemmas 3.1 and 3.2 of Bolin,
Kirchner, and Kovács (2018a) are satisfied (since then, in their
notation, r = s = q = 2 and α = 2/d) and we obtain an error
estimate for the finite element approximation uh = L−β

h Wh
in (3.4) for all β ∈ (d/4, 1). Furthermore, since their derivation
requires only that β > d/4, we can formulate this result for all
such values of β in the following proposition.

Proposition 3.2. Suppose that β > d/4 and that L is given by
(3.1) where H and κ satisfy the assumptions I.–II. from Sec-
tion 3.1. Let u, uh be the solutions to (1.2) and (3.4), respectively.
Then, there exists a constant C > 0 such that, for sufficiently

small h,

‖u − uh‖L2(;L2(D)) ≤ Chmin{2β−d/2, 2}.

3.3. The Rational Approximation

Proposition 3.2 shows that the mean-square error between u and
uh in L2(D) converges to zero as h → 0. It remains to describe
how an approximation of the random field uh with values in the
finite-dimensional state space Vh can be constructed.

For β ∈ N one can use, for example, the iterated finite
element method presented in Appendix A to compute uh in (3.4)
directly. In the following, we construct approximations of uh if
β �∈ N is a fractional exponent. For this purpose, we aim at
finding a nonfractional equation

P�,huR
h,m = Pr,hWh in D, (3.5)

such that uR
h,m is a good approximation of uh, and where the

operator Pj,h := pj(Lh) is defined in terms of a polynomial pj
of degree mj ∈ N0, for j ∈ {�, r}. Since the so-defined operators
P�,h, Pr,h commute, this will lead to a nested SPDE model of the
form

P�,hxh,m = Wh in D,
uR

h,m = Pr,hxh,m in D,
(3.6)

which facilitates efficient computations, see Section 4 and
Appendix A.

Comparing the initial Equation (1.2) with

P�uR
m = PrW in D, (3.7)

where Pj := pj(L), j ∈ {�, r}, motivates the choice m� − mr ≈ β

to obtain a similar smoothness of uR
m = (P−1

r P�)
−1W and u =

L−βW in (1.2). In practice, we first choose a degree m ∈ N and
then set

mr := m and m� := m + mβ , where
mβ := max{1, β�}.

(3.8)

In this case, the solution uR
m of (3.7) has the same smoothness

as the solution v of the nonfractional equation Lβ�v = W , if
β ≥ 1, and as v in Lv = W , if β < 1. Furthermore, for fixed h,
the degree m controls the accuracy of the approximation uR

h,m.
We now turn to the problem of defining the nonfractional

operators P�,h and Pr,h in (3.5). To compute uh in (3.4) directly,
one would have to apply the discrete fractional inverse L−β

h to
the noise term Wh on the right-hand side. Therefore, a first idea
would be to approximate the function x−β on the spectrum of Lh
by a rational function r̃ and to use r̃(Lh)Wh as an approximation
of uh. This is, in essence, the approach proposed by Harizanov
et al. (2018) to find optimal solvers for the problem Lβx = f ,
where L is a sparse symmetric positive definite matrix. However,
the spectra of L and of Lh as h → 0 (considered as operators
on L2(D)) are unbounded and, thus, it would be necessary to
normalize the spectrum of Lh for every h, since it is not feasible
to construct the rational approximation r̃ on an unbounded
interval. We aim at an approximation L−β

h ≈ p�(Lh)
−1pr(Lh),

where in practice the choice of p� and pr can be made indepen-
dent of Lh and h. Thus, we pursue another idea.
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In contrast to the differential operator L in (3.1), its inverse
L−1 : L2(D) → L2(D) is compact and, thus, the spectra of L−1

and of L−1
h are bounded subsets of the intervals J := [

0, λ−1
1

]
and Jh := [

λ−1
nh,h, λ−1

1,h
] ⊂ J, respectively, where λ1,h, λnh,h > 0

are the smallest and the largest eigenvalue of Lh. This motivates
a rational approximation r of the function f (x) := xβ on J
and to deduce the nonfractional Equation (3.5) from uR

h,m =
r(L−1

h )Wh.
To achieve our envisaged choice (3.8) of different polynomial

degrees m� and mr , we decompose f via f (x) = f̂ (x)xmβ , where
f̂ (x) := xβ−mβ . We approximate f̂ ≈ r̂ := q1

q2
on Jh, where

q1(x) := ∑m
i=0 cixi and q2(x) := ∑m+1

j=0 bjxj are polynomials of
degree m and m + 1, respectively, and use r(x) := r̂(x)xmβ as an
approximation for f . This construction leads (after expanding
the fraction with xm) to a rational approximation pr

p�
of x−β ,

x−β = f (x−1) ≈ r̂(x−1)x−mβ = q1(x−1)

q2(x−1)xmβ

=
∑m

i=0 cixm−i∑m+1
j=0 bjxm+mβ−j ,

(3.9)

where the polynomials pr(x) := ∑m
i=0 cixm−i and p�(x) :=∑m+1

j=0 bjxm+mβ−j are of degree m and m+mβ , respectively, that
is, (3.8) is satisfied.

The operators P�,h, Pr,h in (3.5) are defined accordingly,

P�,h := p�(Lh) =
m+1∑
j=0

bjL
m+mβ−j
h ,

Pr,h := pr(Lh) =
m∑

i=0
ciLm−i

h .

(3.10)

Their continuous counterparts in (3.7) are P� := p�(L) and
Pr := pr(L). We note that, for (3.8) to hold, any choice m2 ∈
{0, 1, . . . , m + mβ} would have been permissible for the poly-
nomial degree of q2, if m is the degree of q1. The reason for
setting m2 = m + 1 is that this is the maximal choice which
is universally applicable for all values of β > d/4.

In the following we refer to uR
h,m in (3.5) with P�,h, Pr,h defined

by (3.10) as the rational SPDE approximation of degree m. We
emphasize that this approximation relies (besides the finite ele-
ment discretization) only on the rational approximation of the
function f̂ . In particular, no information about the operator L
except for a lower bound of the eigenvalues is needed. In the
Matérn case, we have L = κ2 − � (with certain boundary
conditions) and an obvious lower bound of the eigenvalues is
therefore given by κ2.

3.4. An Error Bound for the Rational Approximation

In this subsection, we justify the approach proposed in Sec-
tions 3.2 and 3.3 by providing an upper bound for the strong
mean-square error ‖u−uR

h,m‖L2(;L2(D)). Here u and uR
h,m are the

solutions of (1.2) and (3.5) and the rational approximation uR
h,m

is constructed as described in Section 3.3, assuming that r̂ = r̂h
is the L∞-best rational approximation of f̂ (x) = xβ−mβ on the
interval Jh for each h. This means that r̂h minimizes the error in

the supremum norm on Jh among all rational approximations of
the chosen degrees in numerator and denominator. How such
approximations can be computed is discussed in Section 3.5.

The theoretical analysis presented in Appendix B results
in the following theorem, showing strong convergence of the
rational approximation uR

h,m to the exact solution u.

Theorem 3.1. Suppose that β > d/4 and that L is given by (3.1)
where H and κ satisfy the assumptions I.–II. from Section 3.1.
Let u, uR

h,m be the solutions to (1.2) and (3.5), respectively. Then,
there is a constant C > 0, independent of h, m, such that, for
sufficiently small h,

‖u − uR
h,m‖L2(;L2(D))

≤ C
(

hmin{2β−d/2, 2} + 1β /∈Nhmin{2(β−1),0}−d/2e−2π
√|β−mβ |m)

.

Remark 3.1. To calibrate the accuracy of the rational approx-
imation with the finite element error, one can choose m ∈ N

such that e−2π
√|β−mβ |m ∝ h2 max{β , 1}. The strong rate of mean-

square convergence is then min{2β − d/2, 2}.

Remark 3.2. If the functions H and κ in (3.1) are smooth,
H ∈ C∞(D)d×d and κ ∈ C∞(D) (as, e.g., in the Matérn case)
and if the domain D has a smooth boundary, the higher-order
strong mean-square convergence rate min{2β − d/2, p + 1}
can be proven for a finite element method with continuous basis
functions which are piecewise polynomial of degree at most
p ∈ N. Thus, for β > 1, finite elements with p > 1 may be
meaningful.

3.5. Computing the Coefficients of the Rational
Approximation

As explained in Section 3.3, the coefficients {ci}m
i=0 and {bj}m+1

j=0
needed for defining the operators P�,h, Pr,h in (3.10) are obtained
from a rational approximation r̂ = r̂h of f̂ (x) = xβ−mβ

on Jh. For each h, this approximation can, for example, be
computed with the second Remez algorithm (Remez 1934),
which generates the coefficients of the L∞-best approximation.
The error analysis for the resulting approximation uR

h,m in (3.5)
was performed in Section 3.4. Despite the theoretical benefit of
generating the L∞-best approximation, the Remez algorithm is
often unstable in computations and, therefore, we use a different
method in our simulations. However, versions of the Remez
scheme were used, for example, by Harizanov et al. (2018).

A simpler and computationally more stable way of choosing
the rational approximation is, for instance, the Clenshaw–Lord
Chebyshev–Padé algorithm (Baker and Graves-Morris 1996).
To further improve the stability of the method, we will rescale
the operator L so that its eigenvalues are bounded from below
by one, which for the Matérn case corresponds to reformulating
the SPDE (1.3) as (Id − κ−2�)β(̃τu) = W and using L = Id −
κ−2�, where Id denotes the identity on L2(D) and τ̃ := κ2βτ .

To avoid computing a different rational approximation r̂ for
each finite element mesh width h, in practice we compute the
approximation r̂ only once on the interval J∗ := [δ, 1], where
δ ∈ (0, 1) should ideally be chosen such that Jh ⊂ J∗ for
all considered mesh sizes h. For the numerical experiments
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Table 1. Coefficients of the rational approximation for β = 3/4 (exponential covariance on R
2) for m = 1, 2, 3, normalized so that cm = 1.

m b0 c0 b1 c1 b2 c2 b3 c3 b4

1 1.69e−2 7.69e−2 8.06e−1 1 2.57e−1
2 8.08e−4 5.30e−3 1.98e−1 4.05e−1 1.07 1 1.41e−1
3 3.72e−5 3.27e−4 3.03e−2 8.57e−2 6.84e−1 1.00 1.28 1 9.17e−2

later, we will use δ = 10−(5+m)/2 when computing rational
approximations of order m, which gives acceptable results for all
values of β . As an example, the coefficients computed with the
Clenshaw–Lord Chebyshev–Padé algorithm on J∗ for the case
of exponential covariance on R2 are shown in Table 1.

4. Computational Aspects of the Rational
Approximation

In the nonfractional case, the sparsity of the precision matrix
for the weights u in (1.1) facilitates fast computation of samples,
likelihoods, and other quantities of interest for statistical infer-
ence. The purpose of this section is to show that the rational
SPDE approximation proposed in Section 3 preserves these
good computational properties.

The representation (3.6) shows that uR
h,m can be seen as a

Markov random field xh,m, transformed by the operator Pr,h.
Solving this latent model as explained in Appendix A, yields
an approximation of the form (1.1), where �u = PrQ−1P�

r .
Here P�, Pr ∈ Rnh×nh correspond to the discrete operators P�,h
and Pr,h in (3.10), respectively. The matrix Q := P�

� C−1P� is
sparse if the mass matrix C with respect to the finite element
basis {ϕj}nh

j=1 is replaced by the diagonal lumped mass matrix C̃,
see Appendix A. By defining x ∼ N(0, Q−1), we have u = Prx,
which is a transformed Gaussian Markov random field (GMRF).
Choosing x as a latent variable instead of u thus enables us to use
all computational methods, which are available for GMRFs (see
Rue and Held 2005), also for the rational SPDE approximation.

As an illustration, we consider the following hierarchical
model, with a latent field u which is a rational approximation
of (1.2),

yi = u(si) + εi, i = 1, . . . , N,
P�u = PrW in D,

(4.1)

where u is observed under iid Gaussian measurement noise
εi ∼ N(0, σ 2). Given that one can treat this case, one can easily
adapt the method to be used for inference in combination with
MCMC or INLA (Rue, Martino, and Chopin 2009) for models
with more sophisticated likelihoods.

Defining the matrix A with elements Aij = ϕj(si) and the
vector y = (y1, . . . , yN)� gives us the discretized model

y|x ∼ N(APrx, σ 2I),
x ∼ N(0, Q−1).

(4.2)

In this way, the problem has been reduced to a standard latent
GMRF model and a sparse Cholesky factorization of Q can be
used for sampling x from N(0, Q−1) as well as to evaluate its
log-density log πx(x). Samples of u can then be obtained from
samples of x via u = Prx. For evaluating the log-density of
u, log πu(u), the relation log πu(u) = log πx(P−1

r u) can be

exploited. Furthermore, the posterior distribution of x is given
by x|y ∼ N

(
μx|y, Q−1

x|y
)
, where μx|y = σ−2Q−1

x|yP�
r A�y and

Qx|y = Q+σ−2P�
r A�APr is a sparse matrix. Thus, simulations

from the distribution of x|y, and evaluations of the correspond-
ing log-density log πx|y(x), can be performed efficiently via a
sparse Cholesky factorization of Qx|y. Finally, the marginal data
log-likelihood is proportional to

log |P�| − 1
2

log |Qx|y| − N log σ

− 1
2

(
μ�

x|yQ μx|y + σ−2 ∥∥y − APrμx|y
∥∥2

)
.

We therefore conclude that all computations needed for sta-
tistical inference can be facilitated by sparse Cholesky factoriza-
tions of P� and Qx|y.

Remark 4.1. From the specific form of the matrices P� and
Pr addressed in Appendix A, we can infer that the number of
nonzero elements in Qx|y for a rational SPDE approximation of
degree m will be the same as the number of nonzero elements in
Qx|y for the standard (nonfractional) SPDE approach with β =
m + mβ . Thus, also the computational cost will be comparable
for these two cases.

Remark 4.2. The matrix Qx|y can be ill-conditioned for m > 1
if a FEM approximation with piecewise linear basis functions is
used. The numerical stability for large values of m can likely be
improved by increasing the polynomial degree of the FEM basis
functions, see also Remark 3.2.

5. Numerical Experiments

5.1. The Matérn Covariance on R2

As a first test, we investigate the performance of the rational
SPDE approach for Gaussian Matérn fields, without including
the finite element discretization in space.

The spectral density S of the solution to (1.3) on R2 is given
by (2.1), whereas the spectral density for the non-discretized
rational SPDE approximation uR

m in (3.7) is

SR(k) ∝ κ4β

( ∑m
i=1 ci(1 + κ−2‖k‖2)m−i∑m+1

j=1 bj(1 + κ−2‖k‖2)m+mβ−j

)2

. (5.1)

We compute the coefficients as described in Section 3.5. To
this end, we apply an implementation of the Clenshaw–Lord
Chebyshev–Padé algorithm provided by the Matlab package
Chebfun (Driscoll, Hale, and Trefethen 2014). By performing
a partial fraction decomposition of (5.1), expanding the square,
transforming to polar coordinates, and using the equality∫ ∞

0

ωJ0(ωh)

(ω2 + a2)(ω2 + b2)
dω = 1

(b2 − a2)
(K0(ah) − K0(bh)),
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we are able to compute the corresponding covariance function
CR(h) analytically. Here, J0 is a Bessel function of the first
kind and K0 is a modified Bessel function of the second kind.
To measure the accuracy of the approximation, we compare
CR(h) to the true Matérn covariance function C(h) for different
values of ν, where κ = √

8ν is chosen such that the practical
correlation range r = √

8ν/κ equals one in all cases.
To put the accuracy of the rational approximation in context,

the Markov approximation by Lindgren, Rue, and Lindström
(2011) and the quadrature method by Bolin, Kirchner, and
Kovács (2018a) are also shown. For the quadrature method, K =
12 quadrature nodes are used, which results in an approximation
with the same computational cost as a rational approximation of
degree m = 11, see Appendix C. Figure 1 shows the normalized
error in the L2-norm and the error with respect to L∞-norm for
different values of ν, both with respect to the interval [0, 2] of
length twice the practical correlation range, that is,(∫ 2

0 (C(h) − Ca(h))2 dh∫ 2
0 C(h)2 dh

)1/2

and sup
h∈[0,2]

|C(h) − Ca(h)|.

Here, Ca is the covariance function obtained by the respective
approximation method.

Already for m = 3, the rational approximation performs
better than both the Markov approximation and the quadrature
approximation for all values of ν. It also decreases the error
for the case of an exponential covariance by several orders of
magnitude.

All methods are exact when ν = 1, since this is the non-
fractional case. The Markov and rational methods show errors
decreasing to zero as ν = 1, whereas the error of the quadrature
method has a singularity at ν = 1. The performance of the
quadrature method can be improved (although not the behavior
near ν = 1) by increasing the number of quadrature nodes, see
Appendix C. This is reasonable if the method is needed only
for sampling from the model, but implementing this method
for statistical applications, which require kriging or likelihood
evaluations, is not feasible since the computational costs then
are comparable to the standard SPDE approach with β = K.

Finally, it should be noted that the Markov method also is
exact at ν = 2 (β = 1.5) since the spectrum of the process then
is the reciprocal of a polynomial. The rational and quadrature

methods cannot exploit this fact, since these approximations are
based on the corresponding differential operator instead of the
spectral density. This is the prize that has to be paid to formulate
a method which works not only for the stationary Matérn fields
but also for nonstationary and non-Gaussian models.

5.2. Computational Cost and the Finite Element Error

From the study in the previous subsection, we infer that the
rational SPDE approach performs well for Matérn fields with
arbitrary smoothness. However, as for the standard SPDE
approach, we need to discretize the problem to be able to use
the method in practice, for example, for inference. This induces
an additional error source, which means that one should bal-
ance the two errors by choosing the degree m of the rational
approximation appropriately with respect to the FEM error. A
calibration based on the theoretical results has been suggested
in Remark 3.1. In this section, we address this issue in practice
and investigate the computational cost of the rational SPDE
approximation.

As a test case, we compute approximations of a Gaussian
Matérn field with unit variance and practical correlation range
r = 0.1 on the unit square in R2. We assume homogeneous
Neumann boundary conditions for the Matérn operator κ2 −�

in (1.3). For the discretization, we use a FEM with a nodal basis
of continuous piecewise linear functions with respect to a mesh
induced by a Delaunay triangulation of a regular lattice on the
domain, with a total of nh nodes. We consider three different
meshes with nh = 572, 852, 1152, which corresponds to the
mesh sizes h ≈ r/4, r/6, r/8.

To measure the accuracy, we compute the covariances
between the midpoint of the domain s̃∗ and all other nodes in
the lattice {s̃j}nh

j=1 for the Matérn field and the rational SPDE
approximations and calculate the error similarly to the L2-error
in Section 5.1,(∑nh

j=1(C(‖s̃∗ − s̃j‖) − �u
j,∗)2∑nh

j=1 C(‖s̃∗ − s̃j‖)2

)1/2

,

where �u = PrP−1
� CP−�

� P�
r is the covariance matrix of u, see

Appendix A. As a consequence of imposing boundary condi-
tions, the error of the covariance is larger close to the boundary

Figure 1. The L2- and L∞-errors of the covariance functions for different values of ν for the different approximation methods. When ν = 1, all methods are exact.
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Table 2. Covariance errors (×100) and computing times in seconds (×100) for sam-
pling from the rational SPDE approximation u (with β = 3/4) and, in parentheses,
for evaluating log |Qx|y|.

Rational SPDE approximation Standard SPDE approach

n m = 1 m = 2 m = 3 β = 2 β = 3 β = 4

572 Error 1.849 1.339 1.415 2.259 2.173 2.147
Time 1.5 (3.2) 1.8 (5.2) 2.7 (8.7) 1.7 (2.6) 1.7 (3.9) 2.2 (6.3)

852 Error 1.720 0.757 0.807 0.953 0.928 0.921
Time 3.1 (8.4) 5.0 (14) 7.6 (25) 3.0 (8.2) 5.8 (13) 7.9 (22)

1152 Error 1.559 0.526 0.501 0.509 0.498 0.494
Time 7.6 (22) 11 (34) 18 (57) 6.3 (18) 11 (35) 18 (53)

NOTE: These values are also given for the standard SPDE approach with β = 2, 3, 4.

of the domain. However, we compare this error to the error of
the nonfractional SPDE approach, which has the same bound-
ary effects. As measures of the computational cost, we consider
the time it takes to sample u and to evaluate log |Qx|y| for the
model (4.2) with σ = 1, when y is a vector of noisy observations
of the latent field at 1000 locations, drawn at random in the
domain (a similar computation time is needed to evaluate μx|y).

The results for rational SPDE approximations of different
degrees for the case β = 3/4 (exponential covariance) are
shown in Table 2. Furthermore, we perform the same exper-
iment when the standard (nonfractional) SPDE approach is
used for β = 2, 3, 4. As previously mentioned in Remark 4.1,
the computational cost of the rational SPDE approximation of
degree m should be comparable to the standard SPDE approach
with β = m + 1. Table 2 validates this claim. One can also note
that the errors of the rational SPDE approximations are similar
to those of the standard SPDE approach, and that the reduction
in error when increasing from m = 2 to m = 3 is small
for all cases, indicating that the error induced by the rational
approximation is small compared to the FEM error, even for a
low degree m. This is also the reason for why, in particular in
the pre-asymptotic region, one can in practice choose the degree
m smaller than the value suggested in Remark 3.1, which gives
m ≈ 6, 7, 8 for β = 3/4 and the three considered finite element
meshes.

6. Likelihood-Based Inference of Matérn Parameters

The computationally efficient evaluation of the likelihood of
the rational SPDE approximation facilitates likelihood-based
inference for all parameters of the Matérn model, including ν

which until now had to be fixed when using the SPDE approach.
In this section, we first discuss the identifiability of the model
parameters and then investigate the accuracy of this approach
within the scope of a simulation study.

6.1. Parameter Identifiability

A common reason for fixing the smoothness in Gaussian Matérn
models is the result by Zhang (2004) which shows that all three
Matérn parameters cannot be estimated consistently under infill
asymptotics. More precisely, for a fixed smoothness parame-
ter ν, one cannot estimate both the variance of the field, φ2,
and the scale parameter, κ , consistently. However, the quantity
φ2κ2ν can be estimated consistently. The derivation of this result

relies on the equivalence of Gaussian measures corresponding
to Matérn fields (Zhang 2004, Theorem 2). The following the-
orem provides the analogous result for the Gaussian measures
induced by the class of random fields specified via (1.3) on a
bounded domain.

Theorem 6.1. Let D ⊂ Rd, d ∈ {1, 2, 3}, be bounded, open,
and connected. For i ∈ {1, 2}, let βi > d/4, κi, τi > 0, and
consider the Gaussian measure μi := N(mi,Q−1

i ) on L2(D)

with mean mi := 0 and precision operator Qi := τ 2
i L2βi

i , where,
for i ∈ {1, 2}, the operators Li := κ2

i − � are augmented
with the same homogeneous Neumann or Dirichlet boundary
conditions. Then, μ1 and μ2 are equivalent if and only if
β1 = β2 and τ1 = τ2.

The proof can be found in Appendix D. Note that, for
D := Rd, the parameter τ is related to the variance of the
Gaussian random field via φ2 = �(ν)(τ 2�(2β)(4π)d/2κ2ν)−1.
Thus, τ−2 ∝ φ2κ2ν , which means that Theorem 6.1 is in
accordance with the result by Zhang (2004). Since the Gaussian
measures induced by the operators L1 = τ(κ1 + �)β and L2 =
τ(κ2 + �)β are equivalent, we will not be able to consistently
estimate κ under infill asymptotics. Yet, Theorem 6.1 suggests
that it is possible to estimate τ and β consistently. In fact,
with Theorem 6.1 available, it is straightforward to show that
τ can be estimated consistently for a fixed ν by exploiting the
same arguments as in the proof of (Zhang 2004, Theorem 3).
However, it is beyond the scope of this article to show that both
ν and τ can be estimated consistently which would also extend
the results by Zhang (2004).

6.2. Simulation Study

To numerically investigate the accuracy of likelihood-based
parameter estimation using the rational SPDE approach, we
again assume homogeneous Neumann boundary conditions for
the Matérn operator in (1.3) and consider the standard latent
model (4.1) from Section 4. We take the unit square as the
domain of interest, set σ 2 = 0.1, ν = 0.5 and choose κ and τ so
that the latent field has variance φ2 = 1 and practical correlation
range r = 0.2. For the FEM, we take a mesh based on a regular
lattice on the domain, extended by twice the correlation range in
each direction to reduce boundary effects, yielding a mesh with
approximately 3500 nodes.

As a first test case, we use simulated data from the discretized
model. We simulate 50 replicates of the latent field, each with
corresponding noisy observations at 1000 measurement loca-
tions drawn at random in the domain. This results in a total of
50,000 observations, which we use to estimate the parameters of
the model. We draw initial values for the parameters at random
and then numerically optimize the likelihood of the model with
the function fminunc in Matlab. This procedure is repeated
100 times, each time with a new simulated dataset.

As a second test case, we repeat the simulation study, but
this time we simulate the data from a Gaussian Matérn field
with an exponential covariance function instead of from the
discretized model. For the estimation, we compute the rational
SPDE approximation for the same finite element mesh as in the
first test case. To investigate the effect of the mesh resolution
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Table 3. Results of the parameter estimation.

Rational samples Matérn samples

Truth Estimate Coarse mesh Fine mesh

κ 10 10.026 (0.5661) 10.966 (1.8060) 10.864 (0.4414)
φ2 1.0 1.0014 (0.0228) 1.1089 (0.6155) 0.9743 (0.0210)
σ 2 0.1 0.1001 (0.0009) 0.3016 (0.0036) 0.2320 (0.0044)
ν 0.5 0.5011 (0.0168) 0.5554 (0.0991) 0.5462 (0.0138)

NOTE: For each parameter estimate, the mean of 100 different estimates is shown,
with the corresponding standard deviation in parentheses.

on the parameter estimates, we also estimate the parameters
using a uniformly refined mesh with twice as many nodes.
The average computation time for evaluating the likelihood is
approximately 0.16 sec for the coarse mesh and 0.4 sec for the
fine mesh. This computation time is affine with respect to the
number of replicates, and with only one replicate it is 0.09 sec
for the coarse mesh and 0.2 sec for the fine mesh.

The results of the parameter estimation can be seen in
Table 3, where the true parameter values are shown together
with the mean and standard deviations of the 100 estimates
for each case. Notably, we are able to estimate all parameters
accurately in the first case. For the second case, the finite ele-
ment discretization seems to induce a small bias, especially
for the nugget estimate (σ 2) that depends on the resolution
of the mesh. The bias in the nugget estimate is not surprising
since the increased nugget compensates for the FEM error.
The bias could be decreased by choosing the mesh more care-
fully, also taking the measurement locations into account. In
practice, however, this bias will not be of great importance,
since the optimal nugget for the discretized model should be
used.

It should be noted that there are several other methods for
decreasing the computational cost of likelihood-based infer-
ence for stationary Matérn models. The major advantage of the
rational SPDE approach is that it is directly applicable to more
complicated nonstationary models, which we will use in the next
section when analyzing real data.

7. Application

In this section, we illustrate for the example of a climate reanal-
ysis dataset how the rational SPDE approach can be used for
spatial modeling.

Climate reanalysis data are generated by combining a climate
model with observations to obtain a description of the recent
climate. We use reanalysis data generated with the Experimental
Climate Prediction Center Regional Spectral Model (ECPC-
RSM) which was originally prepared for the North American
Regional Climate Change Assessment Program (NARCCAP) by
means of NCEP/DOE Reanalysis (Mearns et al. 2009, 2014).
As variable we consider average summer precipitation over the
conterminous United States for a 26-year period from 1979 to
2004. The average value for each grid cell and year is computed
as the average of the corresponding daily values for the days in
June, July, and August. To obtain data which can be modeled by a
Gaussian distribution, we follow Genton and Kleiber (2015) and
transform the data by taking the cube root. We then subtract
the mean over the 26 years from each grid cell so that we can
assume that the data has zero mean and focus on the correlation
structure of the residuals. The resulting residuals for the year
1979 are shown in Figure 2.

The 4112 observed residuals for each year are modeled as
independent realizations of a zero-mean Gaussian random field
with a nugget effect. That is, the measurement Yij at spatial
location si for year j is modeled as Yij = uj(si) + εij, where
εij ∼ N(0, σ 2) are independent, and {uj(s)}j are independent
realizations of a zero-mean Gaussian random field u(s). The
analysis of Genton and Kleiber (2015) revealed that an expo-
nential covariance model is suitable for a subset of this dataset.
Because of this, a natural first choice is to use a stationary Matérn
model (1.3), either with β = 0.75 (exponential covariance) or
with a general β which we estimate from the data. However,
since we have data for a larger spatial region than Genton and
Kleiber (2015), one would suspect that a nonstationary model
for u(s) might be needed. The standard nonstationary model
for the SPDE approach, as first suggested by Lindgren, Rue, and

Figure 2. Average summer precipitation residuals (in cm) for 1979 and the FEM mesh.
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Lindström (2011) and used in many applications since then, is

(κ(s)2 − �)β (τ(s)u(s)) = W(s), s ∈ D, (7.1)

where β = 1 is fixed. Until now, it has not been possible to
use the model (7.1) with fractional smoothness. Therefore, our
main question is now: What is more important for this data—
the fractional smoothness β or the nonstationary parameters?
We thus consider four different SPDE models for u(s). Two of
them are nonfractional models, where β = 1 is fixed, and for
the other two (fractional) models, we estimate the fractional
order β jointly with the other parameters from the data. For both
cases, we consider stationary Matérn and nonstationary models,
where the latter are formulated via (7.1) with

log κ(s) = κ0 + κaψa(s) +
2∑

i,j=1

2∑
k,�=1

κk�
ij ψk

i (s̃1) ψ�
j (s̃2),

and the same model is used for τ(s). Here, ψ1
j (s̃) := sin(jπ s̃),

ψ2
j (s̃) := cos(jπ s̃), ψa(s) is the altitude at location s, and

s̃ = (s̃1, s̃2) denotes the spatial coordinate after rescaling so
that the observational domain is mapped to the unit square.
Thus, log κ(s) and log τ(s) are modeled by the altitude covari-
ate and 16 additional Fourier basis functions to capture large-
scale trends in the parameters. The altitude covariate and the
eight Fourier basis functions

{
ψk

1 (s̃1)ψ
�
j (s̃2) : j, k, � = 1, 2

}
are

shown in Figure 3.
We discretize each model with respect to the finite element

mesh shown in Figure 2, assuming homogeneous Neumann
boundary conditions. The mesh has 5021 nodes and was com-
puted using R-INLA (Lindgren and Rue 2015). For the frac-
tional models, we set m = 1 in the rational approximation
and, for each model, the model parameters are estimated by
numerical optimization of the log-likelihood as described in
Section 4.

The log-likelihood values for the four models can be seen
in Table 4. The parameter estimates for the stationary nonfrac-
tional (β = ν = 1) model are κ = 0.67, τ = 5.44, and
σ = 0.014, which implies a standard deviation φ = 0.077
and a practical range ρ = 4.21. The estimates for the fractional
model are κ = 0.20, τ = 10.58, σ = 0.012, and β = 0.72,
corresponding to φ = 0.081, ρ = 9.21, and a smoothness

Table 4. Model-dependent results for (i) the log-likelihood, (ii) the pseudo cross-
validation scores (RMSE, CRPS, LS, each ×100) averaged over ten replicates, and
(iii) the computational time for one evaluation of the likelihood averaged over 100
computations.

Log-likelihood RMSE CRPS LS Time

Stationary β = 1 219773 4.206 2.295 177.2 0.125
Stationary fractional 220255 4.167 2.274 178.2 0.412
Nonstationary β = 1 225969 4.194 2.266 182.1 0.121
Nonstationary fractional 226095 4.170 2.254 182.4 0.416

parameter ν = 0.44. We note that the fractional model has a
longer correlation range. This is likely to be caused by the non-
fractional model underestimating the range ρ to compensate for
the wrong local behavior of the covariance function induced by
the smoothness parameter ν = 1.

Figure 4 shows the estimated marginal standard deviation
φ(s) for the two nonstationary models (computed using the
estimates of the parameters for κ(s) and τ(s)) and 0.7 contours
of the correlation function for selected locations in the domain.
The estimate of β for the nonstationary fractional model is
0.723. Also for the nonstationary models, we observe a slightly
longer practical correlation range ρ(s) for the fractional model.

To investigate the predictive accuracy of the models, a pseudo
cross-validation study is performed. We choose 10% of the spa-
tial observation locations at random, and use the corresponding
observations for each year to predict the values at the remaining
locations. The accuracy of the four models is measured by the
root mean square error (RMSE), the average continuous ranked
probability score (CRPS), and the average log-score (LS). This
procedure is repeated ten times, where in each iteration new
locations are chosen at random to base the predictions on. The
average scores for the ten iterations are shown in Table 4. Recall
that low RMSE and CRPS values, respectively, high LS values
correspond to good scores.

We observe that the predictive performance of the nonsta-
tionary nonfractional (β = 1) model is similar to the sta-
tionary fractional model in terms of CRPS, and actually worse
in terms of RMSE. This clearly indicates that the data should
be analyzed by a fractional model. Although the nonstationary
fractional model has a better performance in terms of CRPS and
LS than the stationary fractional model, the difference is quite
small given that the nonstationary model has 38 parameters,

Figure 3. Nine basis functions modeling the parameters for the nonstationary models.
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Figure 4. Estimated marginal standard deviations (top row) and contours of 0.7 correlation of the correlation function for selected locations (bottom row), for the fractional
(left column) and β = 1 (right column) models.

compared to 4 for the stationary model. Thus, the fractional
smoothness seems to be the most important aspect for this data.
The fact that the rational SPDE approach allows us to make these
comparisons and to verify the smoothness parameter, for sta-
tionary and nonstationary models, is one of its most important
features.

8. Discussion

We have introduced the rational SPDE approach providing a
new type of computationally efficient approximations for a class
of Gaussian random fields. These are based on an extension of
the SPDE approach by Lindgren, Rue, and Lindström (2011)
to models with general second-order differential operators of
arbitrary order β > d/4. For these approximations, explicit
rates of strong convergence have been derived and we have
shown how to calibrate the degree of the rational approximation
with the mesh size of the FEM to achieve these rates. The results
can also be combined with the results in Bolin et al. (2018b)
to obtain explicit rates of weak convergence (convergence of
functionals of the random field).

Our approach can, for example, be used to approximate
stationary Matérn fields with general smoothness, and it is also
directly applicable to more complicated nonstationary models,
where the covariance function may be unknown. A general
fractional order of the differential operator opens up for new
applications of the SPDE approach, such as to Gaussian fields
with exponential covariances on R2. For the Matérn model
and its extensions, it furthermore facilitates likelihood-based (or
Bayesian) inference of all model parameters. The specific struc-
ture of the approximation then in turn enables a combination
with INLA or MCMC in situations where the Gaussian model is
a part of a more complicated non-Gaussian hierarchical model.

We have illustrated the rational SPDE approach for stationary
and nonstationary Matérn models. A topic for future research is
to apply the approach to other random field models in statistics
which are difficult to approximate by GMRFs, such as to models
with long-range dependence (Lilly et al. 2017) based on the
fractional Brownian motion. Another topic for future research is
to modify the fractional SPDE approach by replacing the FEM

basis by a multiresolution basis and to compare this approach
to other multiresolution approaches such as (Katzfuss 2017).
Finally, it is also of interest to extend the method to non-
Gaussian versions of the SPDE-based Matérn models (Wallin
and Bolin 2015), since the Markov approximation considered by
Wallin and Bolin (2015) is only computable under the restrictive
requirement β ∈ N.

Supplementary Materials

Appendices: The four appendices of the manuscript. (supplementary.pdf)
R code: Code for replicating the results of the application considered in

Section 7. (code.zip)
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