Math Active Learning Lab: Math 103 College Algebra Notebook

Gwennie Byron
University of North Dakota
Department of Mathematics, University of North Dakota

Follow this and additional works at: https://commons.und.edu/oers
Part of the Algebra Commons

Recommended Citation

Byron, Gwennie and Department of Mathematics, University of North Dakota, "Math Active Learning Lab: Math 103 College Algebra Notebook" (2020). Open Educational Resources. 23.
https://commons.und.edu/oers/23

This Course Material is brought to you for free and open access by UND Scholarly Commons. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

$\sqrt{\text { MALL }}$ Math 103 College Algebra Notebook

University of North Dakota

Revised August 2020
© 2019
Department of Mathematics
University of North Dakota

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Welcome to the MALL

Welcome to UND's Math Active Learning Lab (MALL)! The MALL is a research-based approach designed to support student engagement with math. The premise of the MALL is that the best way to learn math is by doing math, not by watching someone else do math. This means that most of your time in this course will be spent doing math with the MALL instructors and tutors available to support your learning. The philosophy of the MALL is well described by H. A. Simon's quote
"Learning results from what the student does and thinks and ONLY from what the student does and thinks. The teacher can advance learning only by influencing what the student does to learn."

For many of you, this is your first college math course. Quite possibly, this course and our expectations may be different from your high school mathematics experiences. We cannot stress strongly enough your role in ensuring your success in this class. More than anything else, your choices will determine your success in this course. Our data shows that students who are successful do the following.

- Attend class (focus group) regularly.
- Work in ALEKS and this Notebook at least 3 days each week.
- Study for written and ALEKS exams.
- Seek help when you need it.

We will be asking you to use the ALEKS resources and to work in your notebooks before coming to class. In your weekly focus group, your instructor will support your learning by facilitating small-group assignments and providing mini-lectures on the more challenging topics.

Instead of sitting in a lecture class for hours each week AND then being expected to do practice problems outside of class, part of your "class time" is spent doing homework in ALEKS. This provides instant feedback and links you to resources as needed. Using ALEKS allows us to individualize the student learning path. Students can move quickly through topics they are familiar with and take the time they need to learn more challenging topics. To help you get the most out of ALEKS, we have created this notebook. If ALEKS and the notebook are still leaving you confused about a topic, we expect you to ask an instructor or tutor for help.

MALL Staff

Contents

How to use ALEKS 10
\square Working in ALEKS with the Notebook 10
The Learning Carousel 10
\square Hamburger Menu 11
Technical Support 12
Syllabus 13
Time Management 19
Test Analysis 22
Module 1 25
Evaluating an expression with a negative exponent: Positive fraction base 26
\square Evaluating an expression with a negative exponent: Negative integer base 26
Rewriting an algebraic expression without a negative exponent 27
Power and quotient rules with negative exponents: Problem type 1 27
Converting between radical form and exponent form 28
Rational exponents: Unit fraction exponents and bases involving signs 29
Rational exponents: Non-unit fraction exponent with a whole number base 30
Rational exponents: Negative exponents and fractional bases 31
Simplifying the square root of a whole number greater than 100 31
Factoring a product of a quadratic trinomial and a monomial 32
Restriction on a variable in a denominator: Linear 32
Estimating a square root 33
Solving a linear equation with several occurrences of the variable: Variables on both sides and twodistributions33
Solving a linear equation with several occurrences of the variable: Variables on both sides and fractional coefficients 34
Solving a linear equation with several occurrences of the variable: Fractional forms with bino- mial numerators 35
Solving a proportion of the form $\frac{a}{x+b}=\frac{c}{x}$ 36
Solving for a variable in terms of other variables in a rational equation: Problem type 2 36
\square Solving for a variable in terms of other variables in a linear equation with fractions 36
Solving a rational equation that simplifies to linear: Denominators a, x or $a x$ 37
Solving a rational equation that simplifies to linear: Denominators $a x$ and $b x$ 38
Solving a rational equation that simplifies to linear: Unlike binomial denominators 38
Module 2 41
Using i to rewrite square roots of negative numbers 42
Solving an equation written in factored form 42
\square Finding the roots of a quadratic equation of the from $a x^{2}+b x=0$ 43
\square Finding the roots of a quadratic equation with leading coefficient 1 43
\square Solving a quadratic equation needing simplification 44
Finding the roots of a quadratic equation with leading coefficient greater than 1 45
Writing a quadratic equation given the roots and the leading coefficient 46
Restriction on a variable in a denominator: Quadratic 46
Solving a quadratic equation using the square root property: Exact answers, advanced 47
Applying the quadratic formula: Exact answers 48
\square Solving a quadratic equation with complex roots 49
\square Solving a word problem using a quadratic equation with rational roots 50
\square Solving a word problem using a quadratic equation with irrational roots 51
\square Solving a rational equation that simplifies to quadratic: Binomial denominators, constant numerators 52
Solving a rational equation that simplifies to quadratic: Binomial denominators and numerators 53
Solving a rational equation that simplifies to quadratic: Proportional form, advanced 54
\square Finding a solution to a linear equation in two variables 55
\square Completing the square 55
\square Solving a quadratic equation by completing the square: Exact answers 56
Module 3 59
\square Finding the x and y intercepts of the graph of a nonlinear equation 60
Finding the x and y intercepts of a line given the equation: Advanced 61
\square Finding slope given two points on the line 62
\square Finding the slope of horizontal and vertical lines 63
\square Writing an equation in slope-intercept form given the slope and a point 64
\square Writing the equation of the line through two given points 65
Writing the equations of vertical and horizontal lines through a given point 65
Identifying parallel and perpendicular lines from equations 66
\square Writing equations of lines parallel and perpendicular to a given line through a point 67
Graphing a line given its equation in slope-intercept form: Fractional slope 68
\square Graphing a line given its equation in standard form 69
\square Graphing a line by first finding its slope and y-intercept 69
\square Graphing a line through a given point with a given slope 70
\square Graphing a line by first finding its x and y-intercepts 71
\square Writing and evaluating a function that models a real-world situation: Advanced 72
\square Writing an equation and drawing its graph to model a real-world situation: Advanced 73
\square Interpreting the parameters of a linear function that models a real-world situation 73
\square Solving a system of linear equations using substitution 74
\square Solving a system of linear equations using elimination with multiplication and addition 75
\square Solving a word problem using a system of linear equations of the form $A x+B y=C$ 77
Module 4-Review 79
Module 5 80
\square Solving a linear inequality with multiple occurrences of the variable: Type 1 81
\square Solving a linear inequality with multiple occurrences of the variable: Type 3 81
\square Introduction to solving an absolute value equation 82
\square Solving an absolute value equation: Problem type 2 84
Solving an absolute value equation: Problem type 4 85
Writing an inequality for a real-world situation 86
Set builder and interval notation 87
Union and intersection of intervals 88
Solving a radical equation that simplifies to a linear equation: One radical, advanced 89
\square Solving a radical equation that simplifies to a quadratic equation: One radical, advanced 90
Word problem involving radical equations: Advanced 91
Solving an equation with exponent $\frac{1}{a}$: Problem type 1 92
Solving an equation using the odd-root property: Problem type 2 93
Identifying functions from relations 93
Vertical line test 94
Evaluating a rational function: Problem type 2 95
Evaluating a function: Absolute value, rational, radical 96
\square Evaluating a piecewise-defined function 96
\square Evaluating a cube root function 97
Table for a square root function 97
\square Finding the total cost including tax or markup 98
\square Finding the original price given the sale price and percent discount 99
Module 6 101
Determining whether an equation defines a function: Basic 102
Variable expressions as inputs of functions: Problem type 1 102
\square Variable expressions as inputs of functions: Problem type 2 103
Domain and range from ordered pairs 103
Domain of a rational function: Excluded values 104
Domain of a rational function: Interval notation 104
Domain of a square root function: Advanced 105
Finding the domain of a fractional function involving radicals 106
\square Domain and range of a linear function that models a real-world situation 106
Domain and range from the graph of a continuous function 107
\square Domain and range from the graph of a piecewise function 108
Finding domain and range from a linear graph in context 109
Finding inputs and outputs of a function from its graph 109
\square Finding inputs and outputs of a two-step function that models a real-world situation: Function notation 110
Finding the average rate of change of a function 111
\square Finding the average rate of change of a function given its graph 112
Finding the initial amount and rate of change given a graph of a linear function 112
\square Finding the initial amount and rate of change given a table for a linear function 113
\square Word problem involving average rate of change 114
Module 7 116
Choosing a graph to fit a narrative: Basic 117
Choosing a graph to fit a narrative: Advanced 118
Graphing an absolute value equation of the form $y=A|x|$ 119
Graphing an absolute value equation in the plane: Advanced 119
Graphing a square root function: Problem type 1 120
Graphing a square root function: Problem type 2 121
Graphing a cubic function of the form $y=a x^{3}$ 122
Graphing a parabola of the form $y=a x^{2}+c$ 123
Graphing a parabola of the form $y=(x-h)^{2}+k$ 124
Matching parent graphs with their equations 125
\square How the leading coefficient affects the graph of a parabola 126
\square Translating the graph of a function: One step 126
Translating the graph of a function: Two steps 127
\square Translating the graph of an absolute value function: Two steps 127
Transforming the graph of a function using more than one transformation 128
Transforming the graph of a function by shrinking or stretching 129
\square Transforming the graph of a function by reflecting over an axis 131
Transforming the graph of a quadratic, cubic, square root, or absolute value function 132
Writing an equation for a function after a vertical and horizontal translation 133
Domain and range from the graph of a quadratic function 133
Module 8-Review 136
Module 9 137
Determining if graphs have symmetry with respect to the x-axis, y-axis, or origin 138
\square Testing an equation for symmetry about the axes and origin 139
Finding local maxima and minima of a function given the graph 140
Finding where a function is increasing, decreasing, or constant given the graph: Interval notation142
Finding the absolute maximum and minimum of a function given the graph 143
Finding values and intervals where the graph of a function is zero, positive, or negative 144
Finding a difference quotient for a linear or quadratic function 144
\square Graphing a piecewise-defined function: Problem type 1 145
\square Graphing a piecewise-defined function: Problem type 2 146
\square Graphing a piecewise-defined function: Problem type 3 146
\square Sum, difference, and product of two functions 147
\square Quotient of two functions: Basic 148
\square Combining functions: Advanced 148
Combining functions to write a new function that models a real-world situation 149
\square Introduction to the composition of two functions 149
\square Composition of two functions: Basic 150
\square Composition of two functions: Advanced 150
\square Composition of a function with itself 151
Expressing a function as a composition of two functions 152
Word problem involving composition of two functions 153
Module 10 155
\square Constructing a scatter plot 156
\square Scatter plots and correlation 156
Classifying linear and nonlinear relationships from scatter plots 157
\square Identifying outliers and clustering in scatter plots 158
Sketching the line of best fit 158
Predictions from the line of best fit 158
\square Approximating the equation of a line of best fit and making predictions 159
Interpreting the graphs of two functions 160
Computing residuals 160
\square Interpreting residual plots 161
Linear relationship and the correlation coefficient 162
Finding outliers in a data set 163
Choosing a quadratic model and using it to make a prediction 163
Finding the zeros of a quadratic function given its equation 163
Finding the vertex, intercepts, and axis of symmetry from the graph of a parabola 164
\square Finding the maximum or minimum of a quadratic function 165
\square Graphing a parabola of the form $y=a(x-h)^{2}+k$ 166
\square Writing the equation of a quadratic function given its graph 167
\square Word problem involving the maximum or minimum of a quadratic function 168
\square Word problem involving optimizing area by using a quadratic function 169
Solving a quadratic inequality written in factored form 170
\square Solving a quadratic inequality 170
Module 11 174
\square Finding the zeros of a quadrtic function given its equation 175
\square Finding a polynomial of a given degree with given zeros: Real zeros 175
\square Identifying polynomial functions 176
\square Finding zeros of a polynomial function written in factored form 177
\square Finding zeros and their multiplicities given a polynomial function written in factored form 178
\square Finding x and y intercepts given a polynomial function 178
\square Determining the end behavior of the graph of a polynomial function 180
\square Determining end behavior and intercepts to graph a polynomial function 181
\square Matching graphs with polynomial functions 181
\square Inferring properties of a polynomial function from its graph 182
\square Polynomial long division: Problem type 2 183
The Factor Theorem 184
Synthetic division 185
Using a given zero to write a polynomial as a product of linear factors: Real zeros 185
Finding the intercepts, asymptotes, domain, and range from the graph of a rational function 186
\square Finding the asymptotes of a rational function: Constant over linear 187
\square Finding the asymptotes of a rational function: Linear over linear 188
\square Finding horizontal and vertical asymptotes of a rational function: Quadratic numerator or de- nominator 189
Graphing a rational function: Constant over linear 190
Graphing a rational function: Linear over linear 191
\square Matching graphs with rational functions: Two vertical asymptotes 192
Module 12-Review 194
Module 13 195
Horizontal line test 196
Graphing the inverse of a function given its graph 196
Determining whether two functions are inverses of each other 197
Inverse functions: Linear, discrete 198
Inverse functions: Quadratic, square root 200
\square Inverse functions: Cubic, cube root 201
\square Finding, evaluating, and interpreting an inverse function for a given linear relationship 202
Table for an exponential function 202
Graphing an exponential function and its asymptote: $f(x)=b^{x}$ 203
\square Translating the graph of an exponential function 203
The graph, domain, and range of an exponential function 204
\square Transforming the graph of a natural exponential function 205
Evaluating an exponential function with base e that models a real-world situation 206
\square Evaluating an exponential function that models a real-world situation 207
Converting between logarithmic and exponential equations 208
Converting between natural logarithmic and exponential equations 209
Evaluating logarithmic expressions 210\square Graphing a logarithmic function: Basic210
The graph, domain, and range of a logarithmic function 211
Domain of a logarithmic function: Advanced 212
Module 14 214
Basic properties of logarithms 215
\square Using properties of logarithms to evaluate expressions216Expanding a logarithmic expression: Problem type 1217
\square Expanding a logarithmic expression: Problem type 2 218
Writing an expression as a single logarithm 218
Solving an equation of the form $\log _{b} a=c$ 219
Solving a multi-step equation involving a single logarithm: Problem type 1 220
Solving a multi-step equation involving a single logarithm: Problem type 2 221
Solving a multi-step equation involving natural logarithms 222Solving an equation involving logarithms on both sides: Problem type 1222
Solving an equation involving logarithms on both sides: Problem type 2 223
Solving an exponential equation by finding common bases: Linear exponents 224
Solving an exponential equation by using logarithms: Exact answers in logarithmic form 225Finding the time given an exponential function with base e that models a real-world situation226
Finding the initial amount and rate of change given an exponential function227
Module 15-Final Review 229
Solutions 230
Index 234
Common Properties, Graphs \& Formulas 238

How to use ALEKS

Working in ALEKS with the Notebook

- Every ALEKS topic is in the Notebook.
- Not every topic in the Notebook will be in YOUR Learning Carousel.
- If you have already mastered a topic, you will not see the topic in your Learning Carousel.
- You do NOT need to complete the Notebook for a topic you have already mastered.
- How to work through ALEKS topics

1. ALEKS presents you with a topic.
2. Use the table of contents to find the topic in the Notebook.
3. You will find one of the following icons to help direct your learning.

- The notes come from the indicated video. You may be asked to select a different video than the first video to pop up.
- 圆 The notes come from the e-book.
* You may need to scrolll down to find the appropriate topic.
* Notebook entries are made to look EXACTLY like the e-book material
- Ao Open the dictionary to show definitions of terms.
- ปR Directs you to resources your instructor has added.
- Leaming page The notes come directly from the Learning Page, which is the first page presented to you for each topic.

The Learning Carousel

- To bring down the Learning Carousel, click the \quad on the upper left side of the ALEKS Learning page.
- \quad indicates a goal topic for the current module
- A indicates a locked topic. Click the icon to see what topics must be worked to unlock it.
- No icon means it is a prerequisite topic. Use the Index to find the topic in your Notebook.
- When the Learning Carousel is pulled down, you can
- Click the Filers ∇ for options to filter topics.
- The Filter menu is shown below.

Search for topic You can type in the name of a topic to find it.
TAGS Click in the boxes to show only the topics that are

* goal topics,
* unlocked,
* have videos.

Hamburger Menu

- The Hamburger Menu $\overline{\text { E }}$ is in the upper left of your ALEKS screen.
- The options in the Hamburger Menu are shown below.

Home	
Learn	
Review	
Assignments	
Worksheet	
Calendar	
Gradebook	
Reports	
Message Center	
Instructor Resources	
Textbook	
Dictionary	
Manage My Classes	

Home Takes you back to the home screen.

Learn Opens the next topic ALEKS has ready for you to learn.

Review Opens topics you have learned or mastered for you to review.

Calendar Opens a calendar view of deadlines for weekly modules and exams.

Gradebook Shows your grades for ALEKS modules and exams. The complete and official gradebook is in Blackboard.

Reports Opens a menu of reports that provide additional information about your progress in ALEKS. We encourage you to take a look at these pages.

Technical Support

ALEKS Technical Support is available at https://www.aleks.com/support/contact_support or by phone at (800) 258-2374. Call Technical support if you need help with

- accessing your account.
- locating a video.
- questions diplaying correctly.
- other technical issues not related to math content.
\qquad

Instructor: \qquad
Phone: \qquad

Email: \qquad
Office: \qquad

Focus Group:

Required Course Materials: ALEKS 18-week access and the \qquad Course Notebook

All email correspondence will go to your official UND email address.
Course prerequisites and content: Topics covered will include: equations and inequalities; graphs of equations and functions; linear, quadratic, polynomial, and rational functions; exponential and logarithmic functions; systems of equations; applications and graphs. Prerequisite: Appropriate score in the Placement Testing Program or MATH 93.

The Math Active Learning Lab (MALL): Research shows that \qquad , not by listening to someone talk about or present the subject. The primary reason many students do not succeed in traditional math courses is that they do not do the problems or spend enough time engaged with the material.

The MALL is a research-based approach designed to support student engagement with math. Most of your time in this course will be spent doing math, and your instructor will support your learning by facilitating in-class assignments and providing mini-lectures on the more challenging topics. Instructors and tutors are available during the required MALL time to provide just-in-time support.

In a traditional math class, all students are expected to learn at the same pace. In the MALL, the ALEKS learning system allows you to work at you own pace, skip topics you have already mastered, and provides feedback as you are working.

COVID-19: All members of the University community have a role in creating and maintaining a COVID-19 resilient campus. There are several expectations that all community members, including students, are asked to follow for the safety of all:

- maintain physical \qquad of at least 6 feet while in UND facilities,
- wear \qquad coverings during interactions with others and in the classroom,
- wash their hands often and use hand sanitizer,
- properly clean spaces that they utilize, and
- if experiencing any symptoms, \qquad and call their health care provider.
- Students electing not to comply with any of the COVID related requirements will not be permitted in the \qquad , and may be subject to disciplinary action.

All members of the University community are expected to model positive \qquad both on- and off-campus. Information regarding the pandemic and UND's efforts to create a COVID resilient campus is available on the COVID-19 blog (http://blogs.und.edu/coronavirus/). Please subscribe to stay up to date on COVID related information.

Students who test positive for COVID-19 or are identified as a close contact are expected to self-isolate/quarantine. If you have tested positive for COVID-19 or have been placed in quarantine due to being identified as a close contact or travel we strongly recommend that you report the information to the Office of Student Rights and Responsibilities at 701.777 .2664 or online at https://veoci.com/veoci/p/w/ss2x4cq9238u. Doing so will ensure students have the support they need to continue with their academic goals and to protect others.

Due to the evolving circumstances of the COVID-19 pandemic, all information in this syllabus may need to be \qquad to meet the needs of remote instruction. Every effort will be made to operate in a manner consistent with the expectations outlined in this document.

Course Components

Focus Group

- Assignments given during the Focus Group meetings will be completed in small groups.
- On-time attendance is \qquad to earn full-credit on the assignment.
- Unless required for the Focus Group activity, cell-phone or computer use will result in a zero for the day.
- Students who do not attend the \qquad meeting, or contact the instructor the first week, will be DROPPED FROM THE COURSE.
- Students who do not \qquad their Initial Knowledge Check within two full days of their first class meeting will be DROPPED FROM THE COURSE.
- Once a week you will meet in class, the other day you will work in ALEKS in the MALL or remotely.
- Focus Group Absences
- If due to a serious emergency, absences will usually be excused. Documentation
- University sanctioned absences must be documented prior to the absence.
- Travel plans \qquad cause for an excused absence.
- All focus group assignments have a to account for any unexcused absences.
- Absences will be addressed on a case-by-case basis.

ALEKS

- Weekly module to be completed by ___ at 11:59 pm.
- Can work anywhere you have internet access.
- Deadlines \qquad be extended because of home computer or home internet issues.

MALL Time

- Spend at least 2.5 hours in the MALL working in ALEKS from \qquad
- MALL time must be completed in O'Kelly 33 (face-to-face) or virutally through Zoom.
- MALL time is class time, you should be working only on \qquad -
- Credit for MALL time is based \qquad on front desk check-in/out.
- Check-in with your UND ID when entering and check-out when exiting the MALL.
- Failure to check-in/out results in __ minutes recorded.
- Check-in/out with another student's ID is academic dishonesty.
- Minutes \qquad from one week to another.
- Focus Group time \qquad toward your MALL time.
- Food is NOT allowed in the MALL.
- The MALL is the place to get your math questions answered!
- MALL staff are there \qquad .

Notebook

- Graded \qquad in Focus Group.
\bullet \qquad for MALL time and Focus Group.

Topic Goal Extra Credit

- Complete 10 topics in ALEKS by \qquad at $11: 59 \mathrm{pm}$.
- Earn a Focus Group bonus point.

Exams

- There will be \qquad exams.
- Each exam will have 125 pts
- ALEKS exam: 100 pts
* Must be completed in the MALL exam area
* Must be completed by 9:00 pm the \qquad the written exam.
* UND ID is required to take your ALEKS exam.
* All scratch work must be submitted to \qquad as a PDF within 30 min of test completion.
* You may not leave your table during an exam without permission.
* Cell phones must be placed face \qquad on the table.
- Written exam: 25 pts
* will be given during the Focus Group meeting.

Exam 1: \qquad Exam 2: \qquad Exam 3: \qquad

Final Exam

- The final exam will be a comprehensive ALEKS exam.
- All scratch work must be submitted to Blackboard within 30 min of test completion.
- The final ALEKS exam must be completed by Wednesday, December 16 at 7:30 pm.

Grading

- Your course grade will be a weighted average of the following:

Exams	$\%$
Final Exam	$\boxed{\%}$
MALL Time	10%
Focus Group Activities	10%
Module Completion	15%

- Grading Scale: $\mathrm{A}=90 \%$ \& above, $\mathrm{B}=80-89 \%, \mathrm{C}=70-79 \%, \mathrm{D}=60-69 \%$.

Try Score

- Your Try Score reflects your effort in this course.
- The Try Score is composed of:
- focus group participation,
- notebook completion,
- MALL time and
- module completion.
- This is \qquad included in your course grade, but will be shared with your academic advisor.

Finishing the Course Early

- Given the individualized nature of this course it is possible to complete the course \qquad .
- Each time an exam is given, \qquad students have the option to take the final in place of the scheduled exam.
- To qualify to take the final early
- the week before the written exam, arrange with the MALL office to take a proctored Knowledge Check
- \qquad at least 90% of the in the course on this proctored ALEKS Knowledge Check

Academic Honesty

- All students in attendance at the University of North Dakota are expected to be honorable and to observe standards of conduct appropriate to a community of scholars.
- Academic misconduct includes
- all acts of dishonesty in any academically related matter.
- any knowing or intentional help or attempt to help, or conspiracy to help, another student.
- use of \qquad , books, calculators, \qquad or any electronic devices on exams.
- A student who attempts to obtain credit for work that is not their own (whether that be on a homework assignment, exam, etc.) will receive \qquad for that item of work, and at the professor's discretion, may also receive a failing grade in the course.
- For more information read the Code of Student Life at https://und.policystat.com/ policy/6747183/latest/.

Accommodations

- Disability
- Contact me to request disability accommodations, discuss medical information, or plan for an emergency evacuation.
- To get confidential guidance and support for disability accommodation requests, students are expected to register with DSS at http://und.edu/disability-services/, 190 McCannel Hall, or 701.777.3425.
- COVID-19
- Due to COVID-19 students may need to request course adjustments, flexibility in delivery of content, and increased absenteeism.
- Students with concerns regarding physically attending class during COVID-19 are encouraged to do the following:
* Talk with your \qquad to determine appropriate accommodations, as soon as possible
* Students with a known disability should contact Disability Student Services (DSS).

Starfish

- Important information is available to you through Starfish, which is an online system used to help students be successful.
- When an instructor observes student behaviors or concerns that may impede academic success, the instructor may raise a flag that notifies the student of the concern and/or refer the student to their academic advisor or UND resource.
- Please pay attention to these emails and take the recommended actions. They are sent to help you be successful!
- Starfish also allows you to
- schedule appointments with various offices and individuals across campus.
- request help on a variety of topics
- search and locate information on offices and services at UND
- You can log into Starfish by clicking on Logins on the UND homepage and then selecting Starfish. A link to Starfish is also available in Blackboard once you have signed in.

Essential Studies: This course addresses the Essential Studies Learning Goal of Quantitative Reasoning. Quantitative reasoning is competency and comfort in working with numerical data, using it to reason and solve quantitative problems from a wide array of authentic contexts and everyday life situations, and to create and clearly communicate sophisticated arguments supported by quantitative evidence, such as by using words, tables, graphs, mathematical equations, etc., as appropriate. You should expect to focus on these intellectual skills as part of this course.

This is an Essential Studies Math, Science, \& Technology course. Mathematics is a body of knowledge based on patterns, abstraction and logical reasoning, often involving quantity, structure, space, or change. Mathematics uses formal reasoning to investigate relationships between abstract patterns.

- Many courses in mathematics involve numerical skills and quantitative reasoning.
- ES courses in mathematics should give students some experience in abstract reasoning as well as the use of such reasoning to reach conclusions about the world.

Notice of Nondiscrimination

- It is the policy of the University of North Dakota that no person shall be discriminated against because of race, religion, age, color, gender, disability, national origin, creed, sexual orientation, gender identity, genetic information, marital status, veteran's status, or political belief or affiliation and the equal opportunity and access to facilities shall be available to all.
- Concerns regarding Title IX, Title VI, Title VII, ADA, and Section 504 may be addressed to:
- Donna Smith, Director of Equal Employment Opportunity/Affirmative Action and Title IX Coordinator, 401 Twamley Hall, 701.777.4171
- UND.affirmativeactionoffice@UND.edu
- Office for Civil Rights, U.S. Dept. of Education, 500 West Madison, Suite 1475, Chicago, IL 60611

Resolution of Problems

Should a problem occur, you should speak to your instructor first. If the problem is not resolved, meet with Dr. Michele Iiams, MALL Director. If the problem continues to be unresolved, go to Dr. Gerri Dunnigan, Mathematics Department Chair, and next to the college Dean. Should the problem persist, you have the right to go to the Provost next, and then to the President.

How to Seek Help When in Distress

- We know that while college is a wonderful time for most students, some students may struggle.
- You may experience students in distress on campus, in your classroom, in your home, and within residence halls.
- Distressed students may initially seek assistance from faculty, staff members, their parents, and other students.
- In addition to the support we can provide to each other, there are also professional support services available to students through the Dean of Students and University Counseling Center.
- Both staffs are available to consult with you about getting help or providing a friend with the help that he or she may need.
- For more additional information, please visit the UND Cares program Webpage at https://und.edu/student-life/student-rights-responsibilities/.

Time Management

Good time management, good study skills and good organization will help you be successful in this course (and all of your classes). Answer the following questions.

1. To motivate yourself to complete a course, it is helpful to have clear reasons for taking the course. List your goals for taking this course.
2. Taking 12-15 credit-hours is the equivalent of a full-time job. Often students try to work too many hours while taking classes.

NOTE: Students need to work to pay tuition, rent, buy food, etc., but working too many extra hours for things that are not needed can really impact their success. There is a balance between working to earn money now and having to spend more money later to retake courses.
(a) Write down the number of of credit-hours you are taking this term and the number of hours you work per week.

- Number of credit-hours \qquad
- Number of hours worked per week \qquad
(b) The table gives the recommended limit to the number of hours you should work for the number of credit-hours you are taking.
- How do your numbers from part (a) compare to those in the table?

Number of Credit-Hours	Maximum Number of Hours of Work per Week
3	40
6	30
9	20
12	10
15	0

(c) Keep in mind that other responsibilities in your life, such as your family, might also make it necessary to limit your hours at work even more. What other responsibilities do you have?
(d) It is often suggested that you devote 2 hours of study and homework time outside of class for each credit-hour you take. For example:

12	credit-hours	15	credit-hours
24	study hours	30	study hours
36	total hours	45	total hours

- Based on the number of credit-hours you are taking, how many study hours should you plan for?
\qquad credit hours $\mathrm{X} 2=$ \qquad study hours
- What is the total number of hours (class time plus study time) that you should devote to school?
\qquad credit hours + \qquad study hours = \qquad total hours
- Your MALL course is a 3-credit course. This means you might need to spend up to 9 hours each week in class, working in ALEKS, or studying.
- At least 2 of these hours should be completed in the MALL.

On the next page, write down the times each day (for the next week) that you

- have scheduled classes,
- are scheduled to work
- other non-negotiable commitments (family, organization meetings, etc.)
- times that you plan to work in the MALL
- times that you plan to study outside of the MALL

Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
8:00-8:30							
8:30-9:00							
9:00-9:30							
9:30-10:00							
10:00-10:30							
10:30-11:00							
11:00-11:30							
11:30-12:00							
12:00-12:30							
12:30-1:00							
1:00-1:30							
1:30-2:00							
2:00-1:30							
2:30-3:00							
3:00-3:30							
3:30-4:00							
4:00-4:30							
4:30-5:00							
5:00-5:30							
5:30-6:00							
6:00-6:30							
6:30-7:00							
7:00-7:30							
7:30-8:00							
8:00-8:30							
8:30-9:00							
9:00-9:30							
9:30-10:00							
10:00-10:30							
10:30-11:00							

Test Analysis

Have you ever thought of your graded test as a learning experience? There is a lot you can learn about yourself, your study habits, and your test-taking skills by examining your graded test after you get it back.

- Did you do as well as you thought you could?
- Or is there room for improvement?

You may think, "the test was too hard" or "the teacher didn't give us enough time", but, chances are, your instructor has been giving a similar test under similar conditions to many students before you. So let's see what YOU can do to earn a higher score on your next test.

Look at your graded test and analyze if each point loss was due to your having been unprepared for that problem, a concept error, or a careless error .

- Being underprepared for a problem means you didn't know how to do the problem because you hadn't done the homework that would have prepared you for it. Often an error made is considered an underprepared error if you look at the problem and have no idea where to begin.
- A concept error is one where you really didn't understand the concept behind the problem. No matter how much time was available for a problem like this, you wouldn't have been able to do it correctly because you have no conceptual understanding of the problem. This is not a procedural error: you can apply a procedure and still not understand the concept. Students demonstrate conceptual understanding in mathematics when they provide evidence that they can recognize, label, and generate examples of concepts; use and interrelate models, diagrams, manipulatives, and varied representations of concepts; identify and apply principles; know and apply facts and definitions; compare, contrast, and integrate related concepts and principles; recognize, interpret, and apply the signs, symbols, and terms used to represent concepts. Conceptual understanding reflects a student's ability to reason in settings involving the careful application of concept definitions, relations, or representations of either.
- A careless error is one where you understood the problem and knew how to solve it, but you made a mistake that could have been avoided. Maybe you copied the problem or your handwriting incorrectly, made a relatively minor mistake in calculation, or some similar error.

1. In the chart below, put the number of points you missed on each problem under the correct heading. Then find the total in each column.

Problem	unprepared	concept error	careless error
			Total points

2. In which column did you have the most missed points? What does that tell you about yourself?
3. What can you learn from this exercise?

Being Unprepared

Consider the points you lost because you were unprepared. Why did you take a test without being fully prepared? Often, activities and responsibilities in life interfere with good intentions about being diligent in attending class, completing the notebook, completing MALL time, and completing the module. It may be time to:

- re-examine your weekly schedule and make sure you are devoting a sufficient amount of time to this class. Lay out a time management grid of your schedule making sure to schedule your MALL time and math study time throughout the week.
- re-commit yourself to succeeding in this class. Think about your college and career goals and remind yourself of how this course helps you get one step closer to achieving them.

4. List two steps you will take to remedy being unprepared.

Concept Errors

Now consider the concept errors point loss. A high total in this column tells you that you didn't understand the concepts very well. You may understand a math concept for the hour you're working on problems, but forget it by the next day; possibly because you didn't do enough homework.

- Take Knowledge Checks when they appear. Knowledge Checks (KCs) are the way ALEKS helps you identify topics you are not retaining. Take each KC as if it were a QUIZ (no notebooks, calculators, friends, other websites, etc.) AND to the BEST OF YOUR ABILITY. Topics that you need to revisit will appear again in later modules as they are needed.
- Get the help you need immediately! Math concepts build on each other. Each new idea is based on many previous concepts. Make sure you get the help you need immediately, as soon as you find yourself beginning to feel lost, so that the confusion doesn't compound itself - otherwise it can become like a snowball, getting bigger and bigger as it roles through the snow.

If your total loss due to concept errors is fairly large, find out where you can get the help you need. A high concept error total is cause for concern and must be addressed immediately for you to succeed.
5. Which of the following can help you when you are struggling with math?
(a) your instructor
(b) MALL tutors
(c) Reworking and asking questions about previous Focus Group assignments
(d) Completing your Notebook pages
(e) All of the above

Careless Errors

Next look at careless error point loss. Careless errors are often caused by hurrying during a test or by lack of concentration due to test-anxiety or over-confidence. Here are some strategies that have worked for other students:

- Do the easiest problems first. When you first start a test, look it over and note which problems will be easiest for you. Do all those problems first to ensure you don't leave an easy problem blank just because it is at the end of the test. Finishing problems you find easy will help build your confidence! Then go through the rest of the test from beginning to end.
- Work carefully and neatly. As you do each problem, try to focus on one step at a time.
- Review each problem to look for careless errors when you finish the test. Find and correct common careless errors like arithmetic mistakes and sign errors before you turn in your test.
- Whenever possible, check your answer.

A lot of points can be gained by slowing down and being careful.
6. What are things you will do next time to prevent careless errors?
7. Now take half of your careless errors point total and add it back to your test total. What could your test grade have been? Would it have changed the letter grade?

Module 1

Contents

Evaluating an expression with a negative exponent: Positive fraction base 26
Evaluating an expression with a negative exponent: Negative integer base 26
Rewriting an algebraic expression without a negative exponent 27
Power and quotient rules with negative exponents: Problem type 1 27
Converting between radical form and exponent form 28
Rational exponents: Unit fraction exponents and bases involving signs 29
Rational exponents: Non-unit fraction exponent with a whole number base 30
Rational exponents: Negative exponents and fractional bases 31
Simplifying the square root of a whole number greater than 100 31
Factoring a product of a quadratic trinomial and a monomial 32
Restriction on a variable in a denominator: Linear 32
Estimating a square root 33
Solving a linear equation with several occurrences of the variable: Variables on both sides andtwo distributions33
Solving a linear equation with several occurrences of the variable: Variables on both sides and fractional coefficients 34
Solving a linear equation with several occurrences of the variable: Fractional forms with bino- mial numerators 35
Solving a proportion of the form $\frac{a}{x+b}=\frac{c}{x}$ 36
Solving for a variable in terms of other variables in a rational equation: Problem type 2 36
\square Solving for a variable in terms of other variables in a linear equation with fractions 36
Solving a rational equation that simplifies to linear: Denominators a, x or $a x$ 37
Solving a rational equation that simplifies to linear: Denominators $a x$ and $b x$ 38
Solving a rational equation that simplifies to linear: Unlike binomial denominators 38

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 3 days a week.
Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.
\square Earn extra credit: Complete 10 topics by \qquad

Evaluating an expression with a negative exponent: Positive fraction base

Learning Page

For any \qquad rational number \qquad and any \qquad n, we have the following.

$$
\left(\frac{a}{b}\right)^{-n}=
$$

\qquad

Simplify and write the answer with positive exponents.

EXAMPLE:

$$
\begin{aligned}
\left(\frac{-2}{3}\right)^{-4} & =\left(\frac{3}{-2}\right)^{4} \\
& =\frac{3^{4}}{(-2)^{4}} \\
& =\frac{81}{16}
\end{aligned}
$$

YOU TRY IT:

1. $\left(\frac{5}{-2}\right)^{-3}=$

Evaluating an expression with a negative exponent: Negative integer base

Learning Page

For any \qquad number \qquad and any \qquad n, we have the following.

$$
a^{-n}=
$$

\qquad

Rewrite the following without an exponent.
EXAMPLE:

$$
\begin{aligned}
(-4)^{-3} & =\frac{1}{(-4)^{3}} \\
& =\frac{1}{-64} \\
& =-\frac{1}{64}
\end{aligned}
$$

YOU TRY IT:

2. $(-5)^{-2}=$

Rewriting an algebraic expression without a negative exponent

Learning Page

For any \qquad number a and any \qquad n, we have the following.

Rule 1: $a^{-n}=$ \qquad

Move \qquad to the \qquad and make the \qquad .

Rule 2: $\frac{1}{a^{-n}}=$ \qquad

Move \qquad to the \qquad and make the \qquad -.

YOU TRY IT: Write the following expressions with positive exponents.
3. $4 x^{-5}$
4. $\frac{3}{x^{-7}}$

Power and quotient rules with negative exponents: Problem type 1

Watch the video Simplifying an Exponential Expression by Using the Power Properties of Exponents to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Simplify.

YOU TRY IT:

5. Simplify $\left(\frac{3 x^{3}}{x^{7}}\right)^{-3}$

Converting between radical form and exponent form

Watch the video Converting Between Radical Notation and Rational Exponents to complete the following.

Convert each expression to radical notation. Assume all variables represent positive real numbers.
1.
2.
3.

Convert each expression to an expression with rational exponents. Assume that all variables represent positive real numbers.
4.

$$
5 .
$$

YOU TRY IT:

6. Convert $x^{7 / 2}$ to radical notation.
7. Convert $\sqrt[3]{x^{4}}$ to an expression with rational exponents.

Rational exponents: Unit fraction exponents and bases involving signs

\square Watch the video Definition of " a " to the $1 / n$ Power to complete the following.

Definition of $a^{1 / n}$

Let $n>1$ be an integer. Then, $a^{1 / n}=$ \qquad provided that $\sqrt[n]{a}$ is a \qquad number.

Verbal Interpretation	Algebraic Example
$a^{1 / n}$ equals the_of	
a, provided that the $n^{\text {th }}$-root	
of a is a number.	

Simplify if possible.
a.
b.
c.

YOU TRY IT: Simplify the following.
8. $16^{1 / 4}=$
9. $8^{1 / 3}=$

Rational exponents: Non-unit fraction exponent with a whole number base

\square Watch the video Definition of " a " to the m / n Power to complete the following.

Definition of $a^{m / n}$

Let m and n be positive integers such that m / n is in lowest terms and $n>1$. Then $\sqrt[n]{a}$ is a
\qquad number,
$\quad a^{m / n}=$
Simplify if possible.
a.
b.
c.
d.
e.
f.
10. $8^{2 / 3}=$
11. $81^{3 / 4}=$

Rational exponents: Negative exponents and fractional bases

If you have not already watched the video \square Definition of " a " to the m / n Power from the previous topic Rational exponents: Non-unit fraction exponent with a whole number base, do so now. You may watch the video again for a review.

YOU TRY IT: Simplify. Write your answers without exponents.
12. $\left(\frac{1}{16}\right)^{-3 / 2}$
13. $27^{-2 / 3}$

Simplifying the square root of a whole number greater than 100

Learning Page One of the properties of square roots is the \qquad property.
$\sqrt{a \times b}=$ \qquad for any \qquad numbers a and b.

We want to find the greatest factors that are perfect squares.
More In the space below, write twelve perfect squares.

EXAMPLE: Simplify $\sqrt{252}$

YOU TRY IT: Simplify.

$$
\begin{aligned}
\sqrt{252} & =\sqrt{4} \cdot \sqrt{63} \\
& =\sqrt{4} \cdot \sqrt{9} \cdot \sqrt{7} \\
& =2 \cdot 3 \cdot \sqrt{7} \\
& =6 \sqrt{7}
\end{aligned}
$$

14. $\sqrt{294}$

Factoring a product of a quadratic trinomial and a monomial

\square Watch the video Factoring Out the Greatest Common Factor to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Factor out the greatest common factor.
1.
2.

Restriction on a variable in a denominator: Linear

Learning Page

Division by \qquad is \qquad defined, so the expression is \qquad when its
\qquad is \qquad $-$

We must find all values for which the expression is \qquad .

So we set the \qquad equal to \qquad and solve.

Find all excluded values for the expression.
EXAMPLE: $\frac{2 x+8}{5 x+15}$

$$
\begin{array}{r}
5 x+15 \neq 0 \\
5 x \neq-15 \\
x \neq-3
\end{array}
$$

YOU TRY IT:

15. $\frac{4 x+1}{3-9 x}$

Estimating a square root

Learning Page Complete the following table of square roots.

Solving a linear equation with several occurrences of the variable: Variables on both sides and two distributions

Watch the video Solving a Linear Equation in One Variable to complete the following.

If you have not already done so, complete the definition box, Solving a Linear Equation in One Variable, on the next page under the topic "Solving a linear equation with several occurrences of the variable: Variables on both sides and fractional coefficients".

Solve.

EXAMPLE:

Solve the equation $3(x+4)-13=2(3 x+4)+6$.

$$
3(x+4)-13=2(3 x+4)+6
$$

Distribute the 3 and 2
$3 x+12-13=6 x+8+6$
Combine like terms on each side

$$
3 x-1=6 x+14
$$

Move x 's to one side, constant to other

$$
-3 x=15
$$

Divide by - 3

$$
x=-5
$$

YOU TRY IT:
16. Solve the equation $5(7+3 x)=4(x-1)$

Solving a linear equation with several occurrences of the variable: Variables on both sides and fractional coefficients

Open the e-book to complete the following.

Solving a Linear Equation in One Variable

Step 1: \qquad both sides of the equation.

- Use the \qquad property to clear \qquad .
- Combine \qquad .
- Consider clearing \qquad or \qquad by \qquad both sides of
the equation by the \qquad of all terms.

Step 2: Use the addition property of equality to collect the \qquad on
\qquad of the equation and the \qquad terms on the other side.

Step 3: Use the multiplication property of equality to make the \qquad of the variable term equal to \qquad _.

Step 4: \qquad the potential solution in the \qquad equation.

Step 5: Write the \qquad set.

YOU TRY IT:

17. Solve. $\frac{2}{3} y-\frac{5}{6}-3=\frac{1}{2} y-5$

Solving a linear equation with several occurrences of the variable: Fractional forms with binomial numerators

\square Watch the video Solving a Linear Equation in One Variable Containing Fractions to complete the following.

Solve.

EXAMPLE:

Solve the equation.

$$
\frac{x+1}{2}=\frac{x-4}{6}
$$

Multiply both sides of the equation by the LCD.

$$
\begin{aligned}
& 6 \cdot \frac{x+1}{2}=6 \cdot \frac{x-4}{6} \\
& \text { Simplify. } \\
& 3(x+1)=x-4
\end{aligned}
$$

Distribute the 3 .

$$
3 x+3=x-4
$$

Combine like terms.

$$
\begin{aligned}
2 x & =-7 \\
x & =-\frac{7}{2}
\end{aligned}
$$

Module 1

Solving a proportion of the form $\frac{a}{x+b}=\frac{c}{x}$
Learning Page We use the method of cross products. State the method of cross products.

EXAMPLE:
Solve $\frac{3}{x+4}=-\frac{5}{x-1}$ for x.

$$
\begin{aligned}
\frac{3}{x+4} & =\frac{-5}{x-1} \\
3(x-1) & =-5(x+4) \\
3 x-3 & =-5 x-20 \\
8 x & =-17 \\
x & =-\frac{17}{8}
\end{aligned}
$$

YOU TRY IT:

19. Solve $\frac{2}{x-1}=\frac{1}{x+6}$ for x.

Solving for a variable in terms of other variables in a rational equation: Problem type 2

EXAMPLE: Solve for P.

$$
A=P+P r t
$$

Factor out P on right.

$$
A=P(1+r t)
$$

Divide both sides by $1+r t$.

$$
\frac{A}{1+r t}=P
$$

YOU TRY IT: Solve for d.
20. $S=\frac{n}{2}(a+d)$

Solving for a variable in terms of other variables in a linear equation with fractions

EXAMPLE: Solve for F.

$$
C=\frac{5}{9}(F-32)
$$

Multiply both sides by $\frac{9}{5}$

$$
\begin{aligned}
\frac{9}{5} C & =\frac{9}{5} \cdot \frac{5}{9}(F-32) \\
\frac{9}{5} C & =F-32 \\
\frac{9}{5} C+32 & =F
\end{aligned}
$$

YOU TRY IT: Solve for c.
21. $A=\frac{1}{3}(a-b+c)$

Solving a rational equation that simplifies to linear: Denominators a, x or $a x$

Open the e-book to complete the following.
Read EXAMPLE 5: Solving a Rational Equation to complete the following steps.
Solve the equation and check the solution. \qquad

Solution:

$$
\begin{aligned}
& \frac{12}{x}=\frac{6}{2 x}+3 \\
& x \text { so that } \\
& \left(\frac{12}{x}\right)=\square\left(\frac{6}{2 x}+3\right) \\
& \text { Clear } \\
& \text { by } \\
& \text { Since } x \neq 0 \text {, this will produce an } \\
& \text { equivalent equation. } \\
& \frac{2 x}{1}\left(\frac{12}{x}\right)=\frac{2 x}{1}\left(\frac{6}{2 x}\right)+\frac{2 x}{1}\left(\frac{3}{1}\right) \\
& \text { Apply the } \\
& \text { property. } \\
& 24= \\
& \text { Simplify. } \\
& \text { Subtract } 6 \text { from } \\
& \text { sides. } \\
& =x \\
& \text { Check: } \frac{12}{3} \stackrel{?}{=} \frac{6}{2(3)}+\frac{3}{1} \\
& 4 \stackrel{?}{=} 1+3 \checkmark \text { true }
\end{aligned}
$$ both sides by the

YOU TRY IT:

22. Solve $\frac{2}{3 y}+\frac{1}{4}=\frac{11}{6 y}-\frac{1}{3}$.

Solving a rational equation that simplifies to linear: Denominators $a x$ and $b x$

EXAMPLE: Solve the equation.

$$
\frac{1}{15}+\frac{4}{3 y}=\frac{11}{5 y}
$$

We first note that y cannot be 0 .
Multiply both sides of the equation by the LCD.

$$
\begin{aligned}
15 y \cdot\left(\frac{1}{15}+\frac{4}{3 y}\right) & =15 y \cdot \frac{11}{5 y} \\
15 y \cdot \frac{1}{15}+15 y \cdot \frac{4}{3 y} & =3 \cdot 11 \\
y+20 & =33 \\
y & =13
\end{aligned}
$$

The only restricted value is $y=0$ so our solution is $y=13$.

YOU TRY IT:

Solve the equation.
23. $\frac{1}{3}-\frac{4}{3 w}=\frac{7}{w}$

Solving a rational equation that simplifies to linear: Unlike binomial denominators

Watch the video Solving a Rational Equation to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Solve.

EXAMPLE: Solve the equation.

$$
\frac{x}{x-3}=\frac{3}{x-3}-\frac{3}{4}
$$

We first note that x cannot be 3 .
Multiply both sides of equation by the LCD.

$$
\begin{aligned}
& 4(x-3) \cdot \frac{x}{x-3}=4(x-3) \cdot \frac{3}{x-3}-4(x-3) \cdot \frac{3}{4} \\
& \text { Simplify. } \\
& 4(x-3) \cdot \frac{x}{x-3}=4(x-3) \cdot \frac{3}{x-3}-4(x-3) \cdot \frac{3}{4} \\
& 4 x=12-3(x-3) \\
& 4 x=12-3 x+9 \\
& 7 x=21 \\
& x=3
\end{aligned}
$$

$x=3$ is a restricted value so there is no solution.

YOU TRY IT: Solve the equation.
24. $\frac{3}{4 t+4}+1=\frac{2 t-5}{t+1}$

Notes from Focus Group:

Notes from Focus Group:

Module 2

Contents

Using i to rewrite square roots of negative numbers 42
Solving an equation written in factored form 42
Finding the roots of a quadratic equation of the from $a x^{2}+b x=0$ 43
\square Finding the roots of a quadratic equation with leading coefficient 1 43
Solving a quadratic equation needing simplification 44
Finding the roots of a quadratic equation with leading coefficient greater than 1 45
Writing a quadratic equation given the roots and the leading coefficient 46
Restriction on a variable in a denominator: Quadratic 46
Solving a quadratic equation using the square root property: Exact answers, advanced 47
Applying the quadratic formula: Exact answers 48
\square Solving a quadratic equation with complex roots 49
Solving a word problem using a quadratic equation with rational roots 50
\square Solving a word problem using a quadratic equation with irrational roots 51
Solving a rational equation that simplifies to quadratic: Binomial denominators, constant numer- ators 52
Solving a rational equation that simplifies to quadratic: Binomial denominators and numerators 53 Solving a rational equation that simplifies to quadratic: Proportional form, advanced 54
Finding a solution to a linear equation in two variables 55
Completing the square 55
\square Solving a quadratic equation by completing the square: Exact answers 56

Weekly Checklist

Complete MALL time.
Work in ALEKS and Notebook at least 3 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.
Earn extra credit: Complete 10 topics by

Module 2

Using i to rewrite square roots of negative numbers

Open the e-book to complete the following.
The Imaginary Number i

- $i=$ \qquad and $i^{2}=$
- If b is a positive real number, then $\sqrt{-b}=$

EXAMPLE: Simplify the following.
YOU TRY IT: Simplify the following.
a) $\sqrt{-36}$

$$
\sqrt{-36}=i \sqrt{36}=6 i
$$

25. $\sqrt{-49}$
b) $\sqrt{-28}$

$$
\sqrt{-28}=i \sqrt{28}=i \sqrt{2^{2} \cdot 7}=2 i \sqrt{7}
$$

26. $\sqrt{-48}$

Solving an equation written in factored form

(1)
Open the e-book to complete the following.

Zero Product Property

If \qquad , then \qquad or \qquad .

To solve a quadratic equation using the zero product property, set one \qquad of the equal to \qquad and \qquad the other side.

EXAMPLE: Solve for x.

$$
(x-4)(2 x+5)=0
$$

YOU TRY IT: Solve for x.
27. $(3 x-2)(x+7)=0$

Use the Zero Product Property
Set each factor equal to 0 .

$$
\begin{aligned}
& x-4=0 \quad 2 x+5=0 \\
& x=4 \\
& 2 x=-5 \\
& x=-\frac{5}{2} \\
& x=4,-\frac{5}{2}
\end{aligned}
$$

Finding the roots of a quadratic equation of the from $a x^{2}+b x=0$

EXAMPLE: Solve for x.

$$
2 x^{2}+16 x=0
$$

Factor out a $2 x$.

$$
2 x(x+8)=0
$$

Set each factor equal to 0 .

$$
2 x=0 \quad x+8=0
$$

Solve each equation.

$$
\begin{array}{ll}
x=0 & x=-8 \\
x=0,-8 &
\end{array}
$$

YOU TRY IT: Solve for y.
28. $3 y^{2}-27 y=0$

Finding the roots of a quadratic equation with leading coefficient 1

Watch the video Introduction to Quadratic Equations and the Zero Product Property to complete the following.

Definition of a Quadratic Equation

Let a, b, and c represent real numbers where $a \neq 0$. A quadratic equation in the variable x is an equation of the form

Zero Product Property

If \qquad then \qquad or \qquad

Solve by applying the zero product property.

EXAMPLE: Solve for y.

$$
\begin{aligned}
y^{2}+4 y-21 & =0 \\
(y+7)(y-3) & =0 \\
y & =-7,3
\end{aligned}
$$

YOU TRY IT: Solve for x.
29. $x^{2}-8 x+15=0$

Solving a quadratic equation needing simplification

EXAMPLE: Solve for x.

$$
2 x^{2}-x-3=(x+1)^{2}
$$

First rewrite so one side is 0 .

$$
\begin{aligned}
& 2 x^{2}-x-3-(x+1)^{2}=0 \\
& \text { Simplify the }(x+1)^{2} \\
& 2 x^{2}-x-3-\left(x^{2}+2 x+1\right)=0
\end{aligned}
$$

Distribute negative.

$$
2 x^{2}-x-3-x^{2}-2 x-1=0
$$

Combine like terms.

$$
\begin{aligned}
x^{2}-3 x-4 & =0 \\
\text { Factor. } & \\
(x-4)(x+1) & =0 \\
x & =4,-1
\end{aligned}
$$

YOU TRY IT: Solve for x.
30. $2 x^{2}+x=(x-2)^{2}-10$

Finding the roots of a quadratic equation with leading coefficient greater than 1

Watch the video Summary of Techniques to Solve a Quadratic Equation to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

1. Factor and use the zero product rule.

Example:
Example:
2. Use the square root property. Complete the square if necessary.

- Good choice if the equation is in the form $x^{2}+b x+c$ where b is even.

Example:

- Good choice if the equation is in the form $a x^{2}+c=0$ (middle term is zero).

Example:
3. Apply the quadratic formula.

Example:

EXAMPLE: Solve for x.

$$
8 x^{2}+22 x=-5
$$

First rewrite so one side is 0 .

$$
8 x^{2}+22 x+5=0
$$

Now factor.

$$
(4 x+1)(2 x+5)=0
$$

Set each factor equal to 0 .

$$
x=-\frac{1}{4},-\frac{5}{2}
$$

YOU TRY IT: Solve for y.
31. $10 y^{2}+y=21$

Writing a quadratic equation given the roots and the leading coefficient

Learning Page
We use the \qquad , which states that if \qquad is a root of the polynomial
$P(x)=0$, then \qquad is a factor of the polynomial $P(x)$.

EXAMPLE: Write the quadratic equation whose roots are -2 and 3 , and whose leading coefficient is 7 .
-2 is a root so $x+2$ is a factor and 3 is a root so $x-3$ is a factor.

$$
\begin{aligned}
7(x+2)(x-3) & =0 \\
7\left(x^{2}-3 x+2 x-6\right) & =0 \\
7\left(x^{2}-x-6\right) & =0 \\
7 x^{2}-7 x-42 & =0
\end{aligned}
$$

YOU TRY IT:

32. Write the quadratic equation whose roots are 5 and -2 , and whose leading coefficient is 3 .

Restriction on a variable in a denominator: Quadratic

Learning Page
Division by \qquad is not \qquad So the expression is undefined when its

EXAMPLE: Find all excluded values for $\frac{y+2}{y^{2}-9}$.
We must exclude values when the denominator is 0 . That is when $y^{2}-9=0$.

$$
\begin{aligned}
y^{2}-9 & =0 \\
y^{2} & =9 \\
y & =3,-3
\end{aligned}
$$

$\frac{y+2}{y^{2}-9}$ is undefined when $y=3$ or $y=-3$.

Solving a quadratic equation using the square root property: Exact answers, advanced

(Watch the video Introduction to the Square Root Property to complete the following.

Square Root Property

If $x^{2}=k$, then \qquad
The solution set is \qquad or more concisely \qquad
Solve by applying the square root property.
a.
b.
c.

EXAMPLE: Solve for x.

$$
2(x+1)^{2}=16
$$

Solve for the squared term.

$$
(x+1)^{2}=8
$$

Apply the square root property.

$$
\begin{aligned}
x+1 & = \pm \sqrt{8} \\
x & =-1 \pm 2 \sqrt{2}
\end{aligned}
$$

YOU TRY IT:

34. Solve: $\frac{1}{2}(x-2)^{2}-5=0$

Applying the quadratic formula: Exact answers

\square Watch the video Introduction to the Quadratic Formula to complete the following.

1. Factor and apply the zero product rule.

This method works if the \qquad expression is \qquad
2. Complete the square and apply the square root property.

This method works in \qquad
3. Apply the quadratic formula.

This method works in \qquad State the quadratic formula.

Solve.

EXAMPLE: Solve $2 x^{2}+6 x-3=0$ using the quadratic formula.

$$
2 x^{2}+6 x-3=0
$$

$$
\begin{aligned}
& x=\frac{-(6) \pm \sqrt{(6)^{2}-4(2)(-3)}}{2(2)} \\
& x=\frac{-6 \pm \sqrt{36+24}}{4} \\
& x=\frac{-6 \pm \sqrt{60}}{4} \\
& x=\frac{-6 \pm 2 \sqrt{15}}{4} \\
& x=\frac{-3 \pm \sqrt{15}}{2}
\end{aligned}
$$

Solving a quadratic equation with complex roots

Open the e-book to complete EXAMPLE 7: Using the Quadratic Formula.
Solve the equation by applying the quadratic formula.

Solution:

$$
\begin{aligned}
& \frac{3}{10} x^{2}-\frac{2}{5} x+\frac{7}{10}=0 \quad \text { The equation is in the form } \\
& \left(\frac{3}{10} x^{2}-\frac{2}{5} x+\frac{7}{10}\right)=0 \\
& 3 x^{2}-4 x+7=0 \\
& a=\quad, b=\quad, c= \\
& x= \\
& x= \\
& \text { Multiply by } \\
& \text { to clear } \\
& \text { Identify the } \\
& \text { of } a, b \text {, and } c \text {. } \\
& x= \\
& \text { Apply the quadratic formula. } \\
& x= \\
& x= \\
& \text { Simplify. } \\
& x= \\
& \text { Simplify the } \\
& x= \\
& \text { Factor the } \\
& \text { and the } \\
& x= \\
& \text { Simplify the } \\
& \text {. } \\
& x=\frac{2}{3} \pm \frac{\sqrt{17}}{3} i \\
& \text { Write the solutions in standard form, } a+b i \text {. }
\end{aligned}
$$

\qquad

EXAMPLE:

Solve $5 x^{2}-4 x+1=0$ using the quadratic formula.

$$
\begin{aligned}
5 x^{2}-4 x+1 & =0 \\
x & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(5)(1)}}{2(5)} \\
x & =\frac{4 \pm \sqrt{-4}}{10} \\
x & =\frac{4 \pm 2 i}{10} \\
x & =\frac{2}{5} \pm \frac{1}{5} i
\end{aligned}
$$

YOU TRY IT: Solving using the quadratic formula.
36. $3 x^{2}+2 x+1=0$

Solving a word problem using a quadratic equation with rational roots

\square Watch the video Using a Quadratic Equation in an Application Involving Area to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Sketch the graph from the video and show all work.

YOU TRY IT:

37. The front face of a shed is in the shape shown below. The length of the rectangular region is 3 times the height of the truss. The height of the rectangle is 2 ft more than the height of the truss. If the total area of the front face of the shed is $336 \mathrm{ft}^{2}$, determine the length and width of the rectangular region. Let x be the height of the truss.

Solving a word problem using a quadratic equation with irrational roots

2 Open the Instructor Added Resource which will direct you to a video to complete the following.

The population P of a culture of bacteria is given by \qquad , where t is the time in hours since the culture was started. Determine the time(s) at which the population was \qquad _. Round to the nearest hour.

EXAMPLE:

If football is kicked straight up with an initial velocity of $128 \mathrm{ft} / \mathrm{sec}$ from a height of 5 ft , then its height, h, above the earth is a given by $h=-16 t^{2}+128 t+5$. When will the football hit the ground?

The football hits the ground when the height is 0 , so we set $h=0$ and solve for t.
$-16 t^{2}+128 t+5=0$
Multiply each by -1 .
$16 t^{2}-128 t-5=0$
Use the quadratic formula.

$$
\begin{aligned}
& x=\frac{128 \pm \sqrt{128^{2}-4(16)(-5)}}{2(16)} \\
& x=\frac{128+\sqrt{16704}}{32}, \frac{128-\sqrt{16704}}{32}
\end{aligned}
$$

There will only be one solution
because cannot have a negative time.

$$
x=\frac{128+\sqrt{16704}}{32} \approx 8.04 \mathrm{sec}
$$

YOU TRY IT:

38. If football is kicked straight up with an initial velocity of $128 \mathrm{ft} / \mathrm{sec}$ from a height of 5 ft , then its height, h, above the earth is a given by $h=-16 t^{2}+128 t+5$. When will the football be at 37 feet?

Solving a rational equation that simplifies to quadratic: Binomial denominators, constant numerators

ใด Open the Instructor Added Resource which will direct you to a video to complete the following.

Solve for x.
$x \neq$

YOU TRY IT: Solve for x.
39. $\frac{1}{x}+\frac{1}{x-1}=\frac{3}{2}$

Solving a rational equation that simplifies to quadratic: Binomial denominators and numerators

Watch the video Solving a Rational Equation that Reduces to a Quadratic and complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Solve the equation.

EXAMPLE: Solve for x.

$$
\frac{x-3}{x-1}=\frac{x-2}{x-4}-1
$$

YOU TRY IT: Solve for x.
40. $\frac{3 x+1}{x+5}=\frac{x-1}{x+1}+2$
$x=1$ and $x=4$ are excluded from the solution.
Multiply both sides by the LCD.

$$
(x-1)(x-4) \frac{x-3}{x-1}=\left(\frac{x-2}{x-4}-1\right)(x-1)(x-4)
$$

Simplify.

$$
\begin{aligned}
(x-1)(x-4) \frac{x-3}{x-1} & =\frac{(x-2)(x-1)(x-4)}{x-4}-1(x-1)(x-4) \\
(x-3)(x-4) & =(x-2)(x-1)-\left(x^{2}-5 x+4\right) \\
x^{2}-7 x+12 & =x^{2}-3 x+2-x^{2}+5 x-4 \\
x^{2}-9 x+14 & =0 \\
(x-7)(x-2) & =0 \\
x & =2,7
\end{aligned}
$$

Solving a rational equation that simplifies to quadratic: Proportional form, advanced

Open the Instructor Added Resource which will direct you to a video to complete the following.

Solve for x.

EXAMPLE: Solve for x.

$$
\frac{18}{x^{2}-8 x+12}=\frac{-2 x}{x-2}
$$

YOU TRY IT: Solve for y.
41. $\frac{2 y}{y-6}=\frac{12}{y^{2}-7 y+6}$

Factor the denominator.

$$
\frac{18}{(x-2)(x-6)}=\frac{-2 x}{x-2}
$$

$x=2$ and $x=6$ are excluded from the solution.
Multiply both sides by the LCD.

$$
(x-2)(x-6) \frac{18}{(x-2)(x-6)}=\frac{-2 x}{x-2}(x-2)(x-6)
$$

Simplify.

$$
(x-2)(x-6) \frac{18}{(x-2)(x-6)}=\frac{-2 x}{x-2}(x-2)(x-6)
$$

$$
18=-2 x(x-6)
$$

$$
18=-2 x^{2}+12 x
$$

$$
2 x^{2}-12 x+18=0
$$

$$
2\left(x^{2}-6 x+9\right)=0
$$

$$
2(x-3)^{2}=0
$$

$$
x=3
$$

Finding a solution to a linear equation in two variables

\qquad ordered pairs \qquad that are solutions to
$A x+B y=C$. To find one, we can choose a value for \qquad of the variables and \qquad
for the \qquad variable.

EXAMPLE:

Find an ordered pair that is a solution to $3 x+4 y=8$.

There are infinitely many solutions. We choose a value for either x or y, then solve for the other. Several examples are:

- $(0,2)$
- $\left(\frac{8}{3}, 0\right)$
- $(4,-1)$

YOU TRY IT:

42. Find an ordered pair that is a solution to $6 x-3 y=15$.

Completing the square

To complete the square of a quadratic expression $x^{2}+b x$:

1. Find $\frac{1}{2}$ of the coefficient of x.
$\frac{1}{2} \cdot b$
2. Square the result from 1 .
$\left(\frac{b}{2}\right)^{2}$
3. Add the result from 2 . to the expression and factor.
$x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$
Note: To complete the square, the leading coefficient must be equal to one.
Watch the video Introduction to Completing the Square and complete the following.

Determine the value of n that makes the polynomial a perfect square trinomial. Then factor as the square of a binomial.
a.
b.
c.

Solving a quadratic equation by completing the square: Exact answers

\square Watch the video Solving a Quadratic Equation With Leading Coefficient 1 by Completing the Square and complete the following.

Solve by completing the square and applying the square root property.

EXAMPLE:

Solve $x^{2}-12 x+33=0$ by completing the square.

$$
\begin{aligned}
& \begin{array}{l}
x^{2}-12 x+33=0 \\
\quad x^{2}-12 x=-33
\end{array} \\
& \text { Add }\left(\frac{12}{2}\right)^{2} \text { to each side } \\
& x^{2}-12 x+36=-33+36
\end{aligned}
$$

Factor the left side.

$$
\begin{aligned}
(x-6)^{2} & =3 \\
x-6 & = \pm \sqrt{3}
\end{aligned}
$$

Apply the square root property.

$$
x=6 \pm \sqrt{3}
$$

YOU TRY IT:

43. Solve $x^{2}+2 x+5=0$ by completing the square.

Notes from Focus Group:

Notes from Focus Group:

Module 3

Contents

\qquad Finding the x and y intercepts of the graph of a nonlinear equation60Finding the x and y intercepts of a line given the equation: Advanced61Finding slope given two points on the line62
\square Finding the slope of horizontal and vertical lines 63
Writing an equation in slope-intercept form given the slope and a point 64
Writing the equation of the line through two given points 65
Writing the equations of vertical and horizontal lines through a given point 65
Identifying parallel and perpendicular lines from equations 66
\square Writing equations of lines parallel and perpendicular to a given line through a point 67
Graphing a line given its equation in slope-intercept form: Fractional slope 68
Graphing a line given its equation in standard form 69
Graphing a line by first finding its slope and y-intercept 69
Graphing a line through a given point with a given slope 70
Graphing a line by first finding its x and y-intercepts 71
Writing and evaluating a function that models a real-world situation: Advanced 72
Writing an equation and drawing its graph to model a real-world situation: Advanced 73
Interpreting the parameters of a linear function that models a real-world situation 73
Solving a system of linear equations using substitution 74
Solving a system of linear equations using elimination with multiplication and addition 75
Solving a word problem using a system of linear equations of the form $A x+B y=C$ 77

Weekly Checklist

Complete MALL time.
\square Work in ALEKS and Notebook at least 3 days a week.
Complete the weekly Module and Notebook pages by the due date.
\square Attend Focus Group.Actively participate in Focus Group.
Earn extra credit: Complete 10 topics by

Finding the x and y intercepts of the graph of a nonlinear equation

\square Watch the video Identifying x - and y-intercepts to complete the following.

Determine the x - and y-intercepts of the graph of the equation.
x-intercept(s): $\quad \underline{y \text {-intercept(s): }}$

EXAMPLE:

Find the x and y-intercepts of $16 x^{2}+25 y^{2}=400$.

- Find the x-intercepts.

$$
\begin{aligned}
16 x^{2}+25 \cdot 0^{2} & =400 \\
16 x^{2} & =400 \\
x^{2} & =25 \\
x & =5,-5
\end{aligned}
$$

The x-intercepts are $(5,0)$ and $(-5,0)$.

- Find the y-intercepts.

$$
\begin{aligned}
16 \cdot 0^{2}+25 y^{2} & =400 \\
25 y^{2} & =400 \\
y^{2} & =16 \\
y & =4,-4
\end{aligned}
$$

The y-intercepts are $(0,4)$ and $(0,-4)$.

YOU TRY IT:

44. Find the x and y-intercepts of $7 x^{2}+5 y^{2}=35$.

Finding slope given two points on the line

\square Watch the video Determining the Slope of a Line to complete the following.
slope $=$ \qquad = \qquad
$m=$ \qquad

Determine the slope of the line containing the points \qquad and \qquad

EXAMPLE:

Find the slope of the line through $(-3,5)$ and $(5,-7)$.

$$
\begin{aligned}
m & =\frac{5-(-7)}{-3-5} \\
& =\frac{5+7}{-8} \\
& =\frac{12}{-8} \\
& =-\frac{3}{2}
\end{aligned}
$$

YOU TRY IT:

46. Find the slope of the line through $(-3,5)$ and $(6,-1)$.

Finding the slope of horizontal and vertical lines

\square Watch the video Investigating Slopes of Horizontal and Vertical Lines to complete the following.

Sketch in the graphs of the two lines shown in the video.

$m=$ \qquad
\qquad
\qquad
\qquad

EXAMPLE:

a) Find the slope of the line through $(3,-5)$ and $(3,1)$.

$$
\begin{aligned}
\text { slope } & =\frac{-5-1}{3-3} \\
& =-\frac{6}{0}
\end{aligned}
$$

YOU TRY IT:

47. Find the slope of the line through $(4,-7)$ and $(2,-7)$.

The slope is undefined.
b) Find the slope of the line through $(3,1)$ and $(-2,1)$.

$$
\begin{aligned}
\text { slope } & =\frac{1-1}{3-(-2)} \\
& =\frac{0}{5}=0
\end{aligned}
$$

The slope is 0 .

Writing an equation in slope-intercept form given the slope and a point

\square Watch the video Using Slope-Intercept Form to Write an Equation of a Line and complete the following.

1. Use the slope-intercept form to write an equation of the line that passes through with slope $m=$ \qquad
2. Write the equation using function notation where $y=f(x)$.

YOU TRY IT:

48. Write the equation of the line with slope $m=\frac{3}{4}$ that passes through $(2,-3)$.

Writing the equation of the line through two given points

Watch the video Writing an Equation of the Line Passing Through Two Given Points and complete the following.

Write an equation of the line that passes through the points \qquad and \qquad Write the answer in slope-intercept form.

YOU TRY IT:

49. Write the equation of the line through $(2,-4)$ and $(-1,3)$.

Writing the equations of vertical and horizontal lines through a given point

(1) Open the e-book to complete the following.

Linear Equations and Slopes of Lines

$A x+B y=C$
$y=k$
Slanted line

Horizontal line

$$
x=k
$$

Vertical line

slope
slope \qquad slope \qquad

YOU TRY IT:

50. Write the equation of the vertical line through $(-4,3)$
51. Write the equation of the horizontal line through $(7,-12)$

Identifying parallel and perpendicular lines from equations

Learning Page Here are some facts about parallel and perpendicular lines.

Parallel Lines:

- Two \qquad lines are parallel if and only if they have the \qquad
- All \qquad lines are parallel to \qquad
Vertical lines are parallel only to other \qquad -.

Perpendicular Lines:

- Two nonvertical lines are perpendicular if and only if the \qquad is \qquad
- All vertical lines are perpendicular to all \qquad lines and vice versa.

Vertical lines are \qquad to horizontal lines and vice versa.

EXAMPLE:

Determine if the lines below are parallel, perpendicular, or neither.

$$
\begin{aligned}
5 y & =2 x+3 \\
-5 y & =3 x+2
\end{aligned}
$$

We first write the lines in slope-intercept form.

$$
\begin{aligned}
& y=\frac{2}{5} x+\frac{3}{5} \\
& y=-\frac{3}{5} x+\frac{2}{5}
\end{aligned}
$$

The slope of the first line is $\frac{2}{5}$ and the slope of the second line is $-\frac{3}{5}$. They are not equal so the lines are NOT parallel. $\frac{2}{5} \cdot-\frac{3}{5} \neq-1$ so the lines are NOT perpendicular.

YOU TRY IT:

52. Determine if the lines below are parallel, perpendicular, or neither.

$$
\begin{aligned}
6 y & =2 x+3 \\
-2 y & =6 x+2
\end{aligned}
$$

Writing equations of lines parallel and perpendicular to a given line through a point

Watch the video Writing an Equation of a Line Parallel to Another Line and complete the following.

Write an equation of the line passing through \qquad and parallel to the line \qquad
II Pause the video and try graphing the given line and the parallel line yourself.

Play the video and check your answers.

Watch the video Writing an Equation of a Line Perpendicular to Another Line and complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Write an equation of the line passing through \qquad and perpendicular to the line \qquad $-$

II Pause the video and try graphing the given line and the perpendicular line yourself.

Play the video and check your answers.

YOU TRY IT: Consider the line $4 x+3 y=-6$. Find the equation of a line that is:
53. perpendicular to $4 x+3 y=-6$ and contains $(4,-2)$.
54. parallel to $4 x+3 y=-6$ and contains $(4,-2)$.

Graphing a line given its equation in slope-intercept form: Fractional slope

Watch the video Introduction to Linear Equation in Two Variables and complete the following.
Linear Equation in Two Variables

Let A, B, and C represent real numbers such that A and B are not both zero. A \qquad in the variables x and y is an \qquad that can be written in the form:

Graph the equation.
a. \qquad

b. \qquad

YOU TRY IT: Sketch the graph of $y=\frac{2}{3} x+4$.
55.

Graphing a line given its equation in standard form

First, solve the equation for \qquad Then, choose some \qquad values and evaluate.

EXAMPLE: Sketch the graph of $3 x+4 y=8$.
Solve for y.

$$
\begin{aligned}
4 y & =8-3 x \\
y & =2-\frac{3}{4} x
\end{aligned}
$$

Find points that lie on the graph.

x	y
0	2
2	$\frac{1}{2}$
4	-1

YOU TRY IT:

56. Sketch the graph of $2 x-3 y=6$.

Graphing a line by first finding its slope and y-intercept

Learning Page State the slope-intercept equation of a line. \qquad .

The slope is \qquad .

The y-intercept is \qquad

EXAMPLE: Find the slope and y-intercept of $3 x+2 y=8$ and sketch the graph.

First write the equation in slope-intercept form.

$$
\begin{aligned}
3 x+2 y & =8 \\
2 y & =-3 x+8 \\
y & =-\frac{3}{2} x+4
\end{aligned}
$$

The slope is $-\frac{3}{2}$ and the y-intercept is $(0,4)$.

YOU TRY IT: Find the slope and the y-intercept of $2 x-3 y=9$ and sketch the graph.
57.

Graphing a line through a given point with a given slope

EXAMPLE: Graph the line through $(-2,1)$ with slope -2 .

- First plot the point $(-2,1)$.
- The slope gives us the change in y over the change in x so we
- plot the point down 2 and right 1 from $(-2,1)$.
- Note that we could have also plotted the point up two and left 1 from $(-2,1)$.
- Connect the dots to graph the line.

YOU TRY IT:

58. Graph the line through $(1,2)$ with slope $-\frac{1}{3}$.

Graphing a line by first finding its x and y-intercepts

? Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of \qquad by first finding the x and y-intercepts.
x-intercept:
y-intercept:

YOU TRY IT: Consider the line $3 x-4 y=12$.
59. Find the x-intercept.
60. Find the y-intercept.
61. Sketch the graph.

Writing and evaluating a function that models a real-world situation: Advanced

\square Watch the video Writing Linear Cost, Revenue, and Profit Functions and complete the following.

A lawn service company charges \qquad for each lawn maintenance call. The fixed monthly cost of \qquad includes telephone service and depreciation of equipment. The variable costs include labor, gasoline, and taxes. These amount to \qquad per lawn.
a. Write a linear cost function representing the monthly $\operatorname{cost} C(x)$ for x maintenance calls.
$(\quad)=($
$)+($
)
b. Write a linear revenue function representing the monthly revenue $R(x)$ for x maintenance calls.
c. Write a linear profit function representing the monthly profit $P(x)$ for x maintenance calls.
d. Determine the number of calls needed per month for the company to make money.
e. If 42 calls are made for a given month, how much money will the lawn service earn or lose?

Writing an equation and drawing its graph to model a real-world situation: Advanced

YOU TRY IT:

62. American Crystal Sugar is going to transport its sugar to market. It will cost $\$ 4350$ to rent trucks, and it will cost an additional $\$ 150$ for each ton of sugar transported. Let C represent the total cost (in dollars), and let S represent the amount of sugar (in tons) transported. Write an equation relating C to S, and then graph the equation.

Interpreting the parameters of a linear function that models a real-world situation

ใิ Open the Instructor Added Resource which will direct you to a video to complete the following.

Jose is driving to Chicago. Let y represent his distance from Chicago (in miles). Let x represent the time he has been driving (in hours). Suppose that x and y are related by the equation \qquad -.
a. How far was Jose from Chicago when he began his drive?
b. What is the change in Jose's distance from Chicago for each hour he drives?

This is given by the \qquad of the \qquad .

The slope of \qquad is \qquad .

This means that for \qquad that Jose drives, his \qquad to

Chicago will \qquad by \qquad miles.

YOU TRY IT:

Let y represent the total cost of producing a toy. Let x represent the number of toys produced. Suppose that x and y are related by the equation $1100+15 x=y$.
63. What is the change in the total cost for each toy made?
64. What is the cost to get started before any toys are made?

Solving a system of linear equations using substitution

\square Watch the video Solving a System of Equations by the Substitution Method to complete the following.

Solve the system of equations by using the substitution method.

EXAMPLE:

Solve the system of equations using substitution.

$$
\begin{aligned}
3 x-y & =6 \\
6 x+5 y & =-23
\end{aligned}
$$

In the first equation, solve for y.

$$
\begin{aligned}
-y & =-3 x+6 \\
y & =3 x-6
\end{aligned}
$$

Substitute this expression for y into the other equation.

$$
\begin{aligned}
6 x+5(3 x-6) & =-23 \\
6 x+15 x-30 & =-23 \\
21 x & =7 \\
x & =\frac{1}{3}
\end{aligned}
$$

We must now find the y value. Either equation may be used.

$$
\left.y=3\left(\frac{1}{3}\right)-6\right)=1-6=-5
$$

The solution is the ordered pair $\left(\frac{1}{3},-5\right)$.

YOU TRY IT:

65. Solve the system of equations using substitution.

$$
\begin{aligned}
2 x-3 y & =-4 \\
2 x+y & =4
\end{aligned}
$$

EXAMPLE:

Solve the system of equations using elimination.

$$
\begin{aligned}
& 2 x-3 y=-2 \\
& 3 x-2 y=12
\end{aligned}
$$

Multiply the first equation by -3 and the second equation by 2 .

$$
\begin{aligned}
-3(2 x-3 y) & =-2(-3) \\
2(3 x-2 y) & =12(2)
\end{aligned}
$$

Simplify the equations. Note that we have a $6 x$ in one equation and a $-6 x$ in the other.

$$
\begin{aligned}
-6 x+9 y & =6 \\
6 x-4 y & =24
\end{aligned}
$$

Add the two equations together and solve for y.

$$
\begin{aligned}
-6 x+9 y & =6 \\
6 x-4 y & =24 \\
\hline 5 y & =30 \\
y & =6
\end{aligned}
$$

Use one of the equations to solve for x.

$$
\begin{aligned}
2 x-3(6) & =-2 \\
2 x & =16 \\
x & =8
\end{aligned}
$$

The solution is the ordered pair $(8,6)$.

YOU TRY IT:

66. Solve the system of equations using elimination.

$$
\begin{aligned}
-2 x+5 y & =14 \\
7 x+6 y & =-2
\end{aligned}
$$

Solving a word problem using a system of linear equations of the form $A x+B y=C$

EXAMPLE:

Lisa and Tara each get ice cream. Lisa gets 2 scoops of cherry and 1 scoop of mint for a total of 43 grams of fat. Tara has 1 scoop of cherry and 2 scoops of mint for a total of 47 grams of fat. How many grams of fat does 1 scoop of each type of ice cream have?
Let $c=$ grams of fat in cherry and $m=$ grams of fat in mint.

$$
\begin{aligned}
& 2 c+m=43 \\
& c+2 m=47
\end{aligned}
$$

Multiply the top equation by -2 .

$$
\begin{aligned}
-4 c-2 m & =-86 \\
c+2 m & =47
\end{aligned}
$$

Add the two equations together

$$
\begin{aligned}
-3 c & =-42 \\
c & =14
\end{aligned}
$$

Use c and one of the equations to find m.

$$
\begin{aligned}
2(14)+m & =43 \\
m & =43-28 \\
m & =15
\end{aligned}
$$

A scoop of cherry ice cream has 14 grams of fat and a scoop of mint has 15 grams of fat.

YOU TRY IT:

67. John and Alycia bought school supplies. John spent $\$ 10.65$ on 4 notebooks and 5 pens. Alycia spent $\$ 7.50$ on 3 notebooks and 3 pens. What is the cost of 1 notebook and what is the cost of 1 pen?

Notes from Focus Group:

Notes from Focus Group:

Module 4-Review

To help you review for your upcoming exam, this module contains all of the topics from the modules since the last exam. Topics that you have already mastered will not appear in your carousel.

Complete this module before you take the ALEKS exam.
Each exam has two parts.

- The ALEKS exam (100 pts)
- The ALEKS exam must be taken in the MALL.
- The ALEKS exam is a Comprehensive Knowledge Check.
- Your score is the number of topics you have mastered out of the number of topics you should have mastered by this point.
- If you lose topics on your ALEKS exam, your Review Module completion grade will not change.
- Your scratch work for the ALEKS exam must be numbered and turned in through Blackboard.
- The Written exam (25 pts)
- Take your written exam in class the day of your focus group.
- To study for the written exam:
- Rework your old Focus Group assignments.
- Rework any topics in ALEKS you may have lost on the ALEKS exam.

	Score
ALEKS Exam	
Written Exam	

Module 5

Contents
Solving a linear inequality with multiple occurrences of the variable: Type 1 81
Solving a linear inequality with multiple occurrences of the variable: Type 3 81
\square Introduction to solving an absolute value equation 82
Solving an absolute value equation: Problem type 2 84
\square Solving an absolute value equation: Problem type 4 85
Writing an inequality for a real-world situation 86\square Set builder and interval notation87
Union and intersection of intervals 88
Solving a radical equation that simplifies to a linear equation: One radical, advanced 89
Solving a radical equation that simplifies to a quadratic equation: One radical, advanced 90
Word problem involving radical equations: Advanced 91
Solving an equation with exponent $\frac{1}{a}$: Problem type 1 92
Solving an equation using the odd-root property: Problem type 2 93
Identifying functions from relations93
Vertical line test 94
Evaluating a rational function: Problem type 2 95
Evaluating a function: Absolute value, rational, radical 96
\square Evaluating a piecewise-defined function 96
Evaluating a cube root function 97
Table for a square root function 97
Finding the total cost including tax or markup98
\square Finding the original price given the sale price and percent discount 99

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 3 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by \qquad

Solving a linear inequality with multiple occurrences of the variable: Type 1

Open the e-book to complete the following.

Properties of Inequality

Let a, b, and c represent real numbers.
1.
2.
3.
4.
5.
6.

These statements are also true expressed with the symbols \qquad , and \qquad

Solving a linear inequality with multiple occurrences of the variable: Type 3

Watch the video Solving a Linear Inequality Involving Fractions to complete the following.

Solve.

EXAMPLE: Solve for y.

$$
\frac{4}{3} y-\frac{1}{6} \geq \frac{1}{2} y+3
$$

Multiply by the LCD.

$$
\begin{aligned}
6\left(\frac{4}{3} y-\frac{1}{6}\right) & \geq 6\left(\frac{1}{2} y+3\right) \\
8 y-1 & \geq 3 y+18 \\
5 y & \geq 19 \\
y & \geq \frac{19}{5}
\end{aligned}
$$

YOU TRY IT: Solve for x.
68. $\frac{1}{2} x+2-\frac{1}{5} x-\frac{3}{5}<-\frac{1}{10} x$

Introduction to solving an absolute value equation

\square Watch the video Introduction to Absolute Value Equations to complete the following.
$|u|=$ \qquad
$|u|=\square$ \qquad
$|u|=$ \qquad
\qquad
$|x+1|=3$ Let k represent a real number.

1. If $k>0,|u|=k$ is equivalent to \qquad or \qquad .
2. If $k=0,|u|=k$ is equivalent to \qquad -
3. If $k<0,|u|=k$ has \qquad .

Continued on the next page

Open the Instructor Added Resource which will direct you to a video to complete the following.

- How does absolute value relate to distance? \qquad
- Is the \qquad between -2 and 6 \qquad the distance between 6
and -2 ? \qquad Sketch the graph from the video.

- The distance between -2 and 6 can be written as \qquad
The distance between 6 and -2 can be written as \qquad _.
- These are both equal to \qquad so we can say \qquad
- In general, \qquad

Absolute Value as Distance

$$
|x-a|=b
$$

means that the \qquad between \qquad and \qquad is \qquad .

Solve \qquad . \Longrightarrow \qquad
The \qquad between \qquad and \qquad is equal to \qquad So $x=$ \qquad

YOU TRY IT:

69. Solve $|x|=7$

Solving an absolute value equation: Problem type 2

\square Watch the video Solving Absolute Value Equations to complete the following.

Solve the equations.
a.
b.
c.

Let k represent a real number.

1. If \qquad $|u|=k$ is equivalent to \qquad or \qquad
2. If \qquad ,$|u|=k$ is equivalent to \qquad -.
3. If \qquad ,$|u|=k$ has \qquad

YOU TRY IT: Solve for x.
70. $|x+7|=3$

Solving an absolute value equation: Problem type 4

\square Watch the video Solving an Absolute Value Equation to complete the following.

Solve the equation.

EXAMPLE:

Solve the following equations.
a) $2|x+5|-10=0$

First isolate $|x+5|$.

$$
\begin{aligned}
2|x+5|-10 & =0 \\
2|x+5| & =10 \\
|x+5| & =5
\end{aligned}
$$

Write the equivalent statements without absolute value.

$$
\begin{aligned}
x+5 & =5 & \text { or } & x+5
\end{aligned}=-5 \text { 72. }-3|x-7|+5=-1
$$

So $x=0,-10$
b) $6+4|x+3|=2$

$$
\begin{aligned}
4|x+3| & =-4 \\
|x+3| & =-1
\end{aligned}
$$

No solution.

YOU TRY IT:

Solve the following equations.
71. $-7|x-5|+4=9$

Writing an inequality for a real-world situation

Learning Page Here is how some English sentences can be written as inequalities.

English sentence	Inequality
A is less than B	
A is less than or equal to B	
A is at most B	
A is no more than B	
A is more than B	
A is more than or equal to B	
A is at least B	
A is no less than B	

EXAMPLE: Write an inequality to represent the situation.

The distance to the nearest bathroom is less than 25 yards.

We will use d to represent distance (in yards). The words "less than" indicate we should use the $<$ symbol.

$$
d<25
$$

YOU TRY IT: Write an inequality to represent the situation.
73. The maximum capacity of the scale is no more than 500 pounds.

Set builder and interval notation

Learning Page The set $\left\{x \mid _\right\}$is \qquad
This set is an \qquad It is written using \qquad -.

We can specify an interval using \qquad , a \qquad or \qquad as shown below. Complete the chart.

Set Builder Notation	Graph	Interval Notation
$\{x \mid a \leq x \leq b\}$		
		(a, b)
$\{x \mid a<x \leq b\}$		
$\{x \mid a \leq x<b\}$		$[a, \infty)$
		$(-\infty, a]$
$\{x \mid x>a\}$		
$\{x \mid x<a\}$		

A solid dot shows an endpoint that \qquad .

In interval notation, this is shown using \qquad
A hollow dot shows an endpoint that \qquad .

In interval notation, this is shown using \qquad .

EXAMPLE:

Given the set $\{x \mid-2<x \leq 4\}$, graph the set and write the interval notation.

YOU TRY IT:

74. Given the set $\{x \mid x \geq-3\}$, graph the set and write the interval notation.

$(-2,4]$

Module 5

Union and intersection of intervals

ใ? Open the Instructor Added Resource which will direct you to a video to complete the following.

Union and Intersection of Sets

The union of sets A and B, denoted intersection of sets A and B,
\qquad ,
is the set of elements that belong to set A \qquad to set B \qquad

Shade in $A \cup B$.

denoted \qquad , is the set of elements
\qquad -.

Shade in $A \cap B$.

Given the sets $A=\{x \mid x>-6\}, B=\{x \mid \leq 3\}$, and $C=\{x \mid x \geq 7\}$ find the following. Write your answer in interval notation.

Set A:

Set B:

Set C:

a. $A \cup B=$
b. $A \cap B=$
c. $B \cap C=$
d. $B \cup C=$

EXAMPLE:

Given $A=\{x \mid x>2\}$ and $B=\{x \mid x \geq-3\}$.
Find the following.

YOU TRY IT:

Given $D=\{x \mid x \leq 2\}$ and
$E=\{x \mid x>5\}$. Find the following.
75. $D \cap E$
76. $D \cup E$

We want values in either of the two intervals.
$A \cup B=[-3, \infty)$
b) $A \cap B=(2, \infty)$

We want the overlap of the two intervals.

Solving a radical equation that simplifies to a linear equation: One radical, advanced

Open the e-book to complete the following.

Solving a Radical Equation

Step 1

Step 2

Step 3

Step 4

In solving radical equations, \qquad potentially arise when both sides
of the equation are raised to an even power. Therefore, an equation with only \qquad roots will not have extraneous solutions. However, it is still recommended that all potential solutions \qquad

EXAMPLE: Solve for y.

$$
\sqrt{y+8}+2=4
$$

Isolate the radical.

$$
\sqrt{y+8}=2
$$

Square both sides.

$$
(\sqrt{y+8})^{2}=(2)^{2}
$$

Simplify.

$$
\begin{aligned}
y+8 & =4 \\
y & =-4
\end{aligned}
$$

Check the solution.

$$
\begin{array}{r}
\sqrt{-4+8}+2 \stackrel{?}{=} 4 \\
\sqrt{4}+2 \stackrel{?}{=} 4 \\
4=4
\end{array}
$$

$y=-4$ is a solution.

Solving a radical equation that simplifies to a quadratic equation: One radical, advancedWatch the video Solving a Radical Equation in which Squaring a Binomial is Required to complete the following.

Solve the equation.

EXAMPLE: Solve for y.

$$
\begin{aligned}
\sqrt{y+18}+2 & =y \\
\sqrt{y+18} & =y-2 \\
(\sqrt{y+18})^{2} & =(y-2)^{2} \\
y+18 & =y^{2}-4 y+4 \\
0 & =y^{2}-5 y-14 \\
0 & =(y-7)(y+2) \\
y & =-2,7
\end{aligned}
$$

Check the solutions.

$$
\begin{array}{rrr}
\sqrt{-2+18}+2 & \stackrel{?}{=}-2 & \sqrt{7+18}+2 \stackrel{?}{=} 7 \\
\sqrt{16}+2 \stackrel{?}{=}-2 & \sqrt{25}+2 \stackrel{?}{=} 7 \\
4+2 & \stackrel{?}{=}-2 & 5+2 \stackrel{?}{=} 7 \\
6 & \neq-2 & 7
\end{array}=7
$$

YOU TRY IT: Solve for x.
78. $\sqrt{2 x+29}+3=x$
$y=7$ is a solution.

Word problem involving radical equations: Advanced

EXAMPLE:

The distance d (in miles) that an observer can see on a clear day is approximated by $d=\frac{49}{40} \sqrt{h}$, where h is the height of the observer in feet. If Rita can see 24.5 mi , how far above ground is her eye level?
$d=24.5$ which can also be written as $d=\frac{49}{2}$.
We substitute this into the given equation and solve for h.

$$
\frac{49}{2}=\frac{49}{40} \sqrt{h}
$$

Multiply both sides by $\frac{40}{49}$

$$
\begin{aligned}
\frac{40}{49} \cdot \frac{49}{2} & =\frac{40}{49} \cdot \frac{49}{40} \sqrt{h} \\
20 & =\sqrt{h}
\end{aligned}
$$

Square both sides.
400 feet $=h$

YOU TRY IT:

79. If an object is dropped from a height of h meters, the velocity v (in $\mathrm{m} / \mathrm{sec}$) at impact is given by $v=\sqrt{19.6 h}$. Determine the impact velocity for an object dropped from a height of 10 m .

Solving an equation with exponent $\frac{1}{a}$: Problem type 1

Open the Instructor Added Resource which will direct you to a video to complete the following.
a. $(x+5)^{1 / 3}=-4$
b. $(x-1)^{1 / 4}=3$
c. $(x-2)^{1 / 4}=-5$

Check the solution.
Check the solution.
Check the solution.

EXAMPLE: Solve for x.

$$
\sqrt[3]{2 x-5}=-3
$$

Cube both sides.

$$
\begin{aligned}
(\sqrt[3]{2 x-5})^{3} & =(-3)^{3} \\
\text { Simplify } & \\
2 x-5 & =-27 \\
2 x & =-22 \\
x & =-11
\end{aligned}
$$

Check the solution.

$$
\begin{aligned}
\sqrt[3]{2(-11)-5} & \stackrel{?}{=}-3 \\
\sqrt[3]{-27} & \stackrel{?}{=}-3 \\
-3 & =-3
\end{aligned}
$$

Solving an equation using the odd-root property: Problem type 2

2 Open the Instructor Added Resource which will direct you to a video to complete the following.
Solve for x.

YOU TRY IT: Solve for x.
81. $\frac{1}{2}(x+5)^{3}-64=0$

Identifying functions from relations

Watch the video Determining Whether a Relation Defines y as a Function of x to complete the following.

Definition of a Function
Given a \qquad in x and y, we say that \qquad if for each
\qquad in the domain, there is \qquad value of y in the \qquad -

Determine whether the relation defines y as a function of x.
a.
b.

YOU TRY IT:

For each relation, determine whether or not it is a function.
82. $\{(2,3),(-5,1),(0,3),(5,-4)\}$.
83. $\{(1,-2),(-7,3),(1,5),(0,8)\}$.

Vertical line test

\square Watch the video Introduction to the Vertical Line Test to complete the following.

Using the Vertical Line Test
Consider a relation defined by a set of points (x, y) graphed on a rectangular coordinate system. The
graph defines y as a function of x if \quad vertical line intersects the graph in

Sketch the graphs from the video below and state if the graph defines y as a function of x.

YOU TRY IT: For each relation, determine whether or not it is a function.
84.

85.

Evaluating a rational function: Problem type 2

\square Watch the video Introduction to Function Notation to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.
$y=$ \qquad
\qquad $=$ \qquad
Evaluate the function for the given values of x.
a. $f(-2)$
b. $f(-1)$
c. $f(0)$
d. $f(1)$
e. $f(-1)$

EXAMPLE:

Given $f(x)=\frac{x-5}{x^{2}+x-12}$, evaluate $f(4)$.
We will substitute 4 into our expression for x.

$$
\begin{aligned}
f(4) & =\frac{4-5}{4^{2}+4-12} \\
& =\frac{-1}{16-8} \\
& =-\frac{1}{8}
\end{aligned}
$$

YOU TRY IT:
86. Given $f(x)=\frac{x-2}{x^{2}-2 x-15}$, evaluate $f(-4)$.

Evaluating a function: Absolute value, rational, radical

EXAMPLE:

Given $f(x)=3 x^{2}-4 x+7$ and $g(x)=|1-4 x|$, find the following.

$$
\text { a) } \begin{aligned}
f(-2) & \\
f(-2) & \left.=3(-2)^{2}-4(-2)+7\right) \\
& =3(4)+8+7=27
\end{aligned}
$$

YOU TRY IT:

Given $f(x)=3 x^{2}-4 x+7$ and $g(x)=|1-4 x|$, find the following.
87. $g(-4)$
88. $f(3)$
b) $g(6)$

$$
\begin{aligned}
g(6) & =|1-4(6)| \\
& =|1-24|=|-23|=23
\end{aligned}
$$

Evaluating a piecewise-defined function

\square Watch the video Interpreting a Piecewise-Defined Function to complete the following.

Evaluate the function for the given values of x.

$$
g(x)=\left\{\begin{array}{lll}
\square & \text { for } x \leq-2 & \text { II Pau } \\
& \text { for }-2<x<3 & \text { c. } g(-2)= \\
& \text { for } x \geq 3 & \text { d. } g(0)=
\end{array}\right.
$$

II Pause the video and try these yourself.
a. $g(-3)=$
e. $g(4)=$
b. $g(3)=$

- Play the video and check your answers.

Evaluating a cube root function

Complete the chart below of perfect cubes.

x	x^{3}	x	x^{3}
1		6	
2		7	
3		8	
4		9	
5		10	

EXAMPLE:
Given $f(x)=\sqrt[3]{4 x+7}$ find $f(-2)$.

$$
\begin{aligned}
f(-2) & =\sqrt[3]{4(-2)+7} \\
& =\sqrt[3]{-1}=-1
\end{aligned}
$$

YOU TRY IT:

89. Given $f(x)=\sqrt[3]{4 x+7}$ find $f(5)$.

Table for a square root function

Learning Page

The table gives \qquad x and asks that we find the corresponding \qquad
Compete the table below from the Learning Page.

x	Evaluate $f(x)=$ 	

Finding the total cost including tax or markup

ใ Open the Instructor Added Resource which will direct you to a video to complete the following.

The wholesale price for a paperback book is \qquad A store marks up the wholesale price by
\qquad Find the price of the book in the store.

Sonia went to Target and bought a shirt that cost \qquad including \qquad sales tax. What was the price of the shirt?

YOU TRY IT:

90. A laptop has a listed price of $\$ 499$ before tax. If the sales tax rate is 6.5%, find the total cost of the laptop with sales tax included.

Finding the original price given the sale price and percent discount

2 Open the Instructor Added Resource which will direct you to a video to complete the following.

Today only, a table is being sold for \qquad This is \qquad of its regular price. What was the price yesterday?

EXAMPLE: A chair is on sale this week for $\$ 217$. The sign says this is a 38% discount from the original price. What was the original price?

Solution: Let $x=$ the original price.
Original price - Discount amount $=$ Sale price

$$
\begin{aligned}
x-0.38 x & =217 \\
0.62 x & =217 \\
x & =350
\end{aligned}
$$

The original price was $\$ 350$.

YOU TRY IT:

91. Today only, a phone is being sold at a 76% discount. The sale price is $\$ 158.40$. What was the price yesterday?

Notes from Focus Group:

Notes from Focus Group:

Module 6

Contents

\square Determining whether an equation defines a function: Basic 102Variable expressions as inputs of functions: Problem type 1102
\square Variable expressions as inputs of functions: Problem type 2 103
Domain and range from ordered pairs 103
Domain of a rational function: Excluded values 104\square Domain of a rational function: Interval notation104
Domain of a square root function: Advanced 105
Finding the domain of a fractional function involving radicals 106
Domain and range of a linear function that models a real-world situation 106
Domain and range from the graph of a continuous function 107
\square Domain and range from the graph of a piecewise function 108
Finding domain and range from a linear graph in context 109\square Finding inputs and outputs of a function from its graph109
Finding inputs and outputs of a two-step function that models a real-world situation: Function notation 110
\square Finding the average rate of change of a function 111
Finding the average rate of change of a function given its graph 112
Finding the initial amount and rate of change given a graph of a linear function 112
Finding the initial amount and rate of change given a table for a linear function 113
Word problem involving average rate of change 114

Weekly Checklist

Complete MALL time.
\square Work in ALEKS and Notebook at least 3 days a week.
Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.
Earn extra credit: Complete 10 topics by

Determining whether an equation defines a function: Basic

\square Watch the video Determining if a Relation Defines y as a Function of x to complete the following.

Determine if the equation defines y as a function of x.
a.
b.
c.

Variable expressions as inputs of functions: Problem type 1

Watch the video Evaluating a Function to complete the following.

Given \qquad evaluate \qquad

EXAMPLE:
Given $g(x)=\sqrt{1-4 x^{2}}$, find $g(3 x)$.

$$
\begin{aligned}
g(3 x) & =\sqrt{1-4(3 x)^{2}} \\
& =\sqrt{1-4\left(9 x^{2}\right)} \\
& =\sqrt{1-36 x^{2}}
\end{aligned}
$$

YOU TRY IT:

92. Given $f(x)=3 x^{2}-4 x+7$, find $f(5 x)$.

Variable expressions as inputs of functions: Problem type 2

If you have not already done so, watch the video Evaluating a Function and take notes in the video box for the previous topic Variable expressions as inputs of functions: Problem type 1.

EXAMPLE:

Given $f(x)=3 x^{2}-4 x+7$, find $f(x-2)$.
We substitute $x-2$ into the expression for x.

$$
\begin{aligned}
f(x-2) & =3(x-2)^{2}-4(x-2)+7 \\
& \text { FOIL and distribute. } \\
& =3\left(x^{2}-4 x+4\right)-4 x+8+7 \\
& \text { Distribute and simplify. } \\
& =3 x^{2}-12 x+12-4 x+15 \\
& =3 x^{2}-16 x+27
\end{aligned}
$$

YOU TRY IT:

93. Given $g(x)=\sqrt{1-4 x}$, find $g\left(x^{2}-4\right)$.

Domain and range from ordered pairs

Learning Page

The \qquad of a relation is the set of all \qquad in the ordered pairs.

The \qquad of a relation is the set of all \qquad in the ordered pairs.

YOU TRY IT:

94. Find the domain and range of the relation $S=\{(2,3),(-5,1),(0,3),(5,-4)\}$.

Domain of a rational function: Excluded values

Learning Page
The fraction \qquad have a \qquad of \qquad

YOU TRY IT:

95. Find all values of x that are NOT in the domain of $f(x)=\frac{x+4}{x^{2}-9}$

Domain of a rational function: Interval notation

Learning Page

The domain of any rational function is the set of x for which the \qquad -.

There are \qquad on the domain of a rational function.

EXAMPLE:

Find the domain of $f(x)=\frac{x-5}{x^{2}+x-12}$.
We must determine where the denominator is zero. $x^{2}+x-12=(x+4)(x-3)=0$. So $x=3,-4$. These are the values we want to exclude from the domain.

Domain: $(-\infty,-4) \cup(-4,3) \cup(3, \infty)$

YOU TRY IT:

96. Find the domain of $f(x)=\frac{x-2}{x^{2}-2 x-15}$.

Domain of a square root function: Advanced

Open the e-book to complete the following.

Guidelines to Find Domain of a Function

To determine the implied domain of a function defined by $y=f(x)$,

- Exclude values of x that make the \qquad of a \qquad
- Exclude values of x that make the \qquad within an even-indexed root.

Read EXAMPLE 9 c. to complete the following.
$h(t)=$ \qquad The \qquad is restricted to the \qquad
\qquad make the radicand \qquad or \qquad to
\qquad Divide by \qquad and \qquad the inequality sign.
\qquad numbers that
\qquad

Domain: \qquad

EXAMPLE:

Find the domain of $g(x)=\sqrt{5 x-8}$.
We must determine where $5 x-8$ is greater than or equal to zero.

$$
\begin{aligned}
5 x-8 & \geq 0 \\
5 x & \geq 8 \\
x & \geq \frac{8}{5}
\end{aligned}
$$

So the domain is $\left[\frac{8}{5}, \infty\right)$

Finding the domain of a fractional function involving radicals

Watch the video Determining Domain and Range of a Function from its Equation to complete the following.

Write the domain of the function in interval notation.
a.
b.
c.

EXAMPLE: Find the domain of the function.

$$
f(x)=\frac{\sqrt{3-x}}{x-1}
$$

YOU TRY IT: Find the domain of the function.
98. $g(x)=\frac{4-2 x}{\sqrt{9-7 x}}$

We must consider two parts.

- We may not have a zero in the denominator, so

$$
\begin{array}{r}
x-1 \neq 0 \\
x \neq 1
\end{array}
$$

- We also must have 0 or a positive value under the square root.

$$
\begin{aligned}
3-x & \geq 0 \\
-x & \geq-3 \\
x & \leq 3
\end{aligned}
$$

The domain is the intersection of these two sets. In interval notation: $(-\infty, 1) \cup(1,3]$

Domain and range of a linear function that models a real-world situation

Learning Page

- Description of values for the domain:

The domain of a function is the \qquad .

- Description of values for the range:

The range of a function is the \qquad -.

To find the range, let's look at the \qquad for some values of the \qquad

EXAMPLE:

The Perfect Pickle delivers pickles to its customers. Let C be the total cost to transport the pickles, in dollars. Let P be the amount of pickles transported in pounds. The company can transport up to 30 pounds of pickles. Suppose that $C=130 \mathrm{P}+1500$ gives C as a function of P. Describe the domain and range in words and determine the domain and range.

Domain: The domain will be the amount of pickles transported in pounds.
The domain is $[0,30]$.

- The amount of pickles cannot be negative so the domain must be greater than or equal to 0 .
- The company cannot transport more than 30 pounds of pickles so the domain must be less than or equal to 30 .
- The amount of pickles could be any amount between 0 and 30 .

Range: The range will be the cost to transport the pickles in dollars.
The range is [1500,5400].

- What would the cost be if 0 pounds of pickles were transported? $C=1500$.
- What would the cost be if 30 pound of pickles were transported? $C=130(30)+1500=5400$
- The cost to transport any other amount of pickles will be in between $\$ 1500$ and $\$ 5400$.

Domain and range from the graph of a continuous function

Watch the video Determining Domain and Range of a Function from its Graph to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Determine the domain and range.

Domain:

Range:
Range:

EXAMPLE:
Find the domain and range of the function from the graph.

Domain: $(-\infty, \infty)$
Range: $(-\infty, 3$]

YOU TRY IT:

99. Find the domain and range of the function from the graph.

Domain and range from the graph of a piecewise function

\square Watch the video Interpreting Function Values from the Graph to complete the following.
a. Determine $f(-2)$
b. Determine $f(3)$
c. Find x for which $f(x)=-1$.

d. Find x for which $f(x)=-4$.
e. Determine the x-intercept(s).
f. Determine the y-intercept.
g. Determine the domain.
h. Determine the range.

Finding domain and range from a linear graph in context

Learning Page

The \qquad is the set of all the numbers that appear as \qquad of \qquad on the graph.

The \qquad is the set of all the numbers that appear as \qquad of \qquad on the graph.

YOU TRY IT:

100. Amir drained an aquarium. He took 20 minutes. The graph shows the amount of water (in liters) in the aquarium versus time (in minutes). Find the domain and the range of the function shown.

Finding inputs and outputs of a function from its graph

Learning Page

Each point on the graph of a function f can be written as an \qquad .

For each point (x, y) on the \qquad the x coordinate gives an \qquad of the function.

The y coordinate gives the corresponding \qquad That is \qquad

The video Interpreting Function Values from the Graph may also be helpful. You may find space to take notes under the topic Domain and range from the graph of a piecewise function.

EXAMPLE:

Use the graph to find the following.

a) $f(2)$

We see the point $(2,2)$ on the graph, so $f(2)=2$.
b) One value of x for which $f(x)=-2$

From the graph we see that $f(0)=-2$ so $x=0$. There are also two other values of x where $f(x)=-2$.

YOU TRY IT:

Use the graph to find the following.

101. $g(1)$
102. One value of x for which $g(x)=-1$

Finding inputs and outputs of a two-step function that models a real-world situation: Function notation

EXAMPLE:

A crew can lay 5 miles of track each day. They need to lay 175 miles of track. The length, L, in miles, that is left to lay after d days is given by the function $L(d)=175-5 d$.
a. How many miles of track does the crew have left to lay after 12 days?

We want to substitute 12 in for d to find $L(12)$.

$$
\begin{aligned}
L(12) & =175-5(12) \\
& =175-60 \\
& =115 \text { miles }
\end{aligned}
$$

b. How many days will it take the crew to lay all of the track?

We want to know when $L(d)=0$.

$$
\begin{aligned}
175-5 d & =0 \\
-5 d & =-175 \\
d & =35 \text { days }
\end{aligned}
$$

YOU TRY IT:

Steve wants to save $\$ 700$ to buy a computer. He saves $\$ 18$ each week. The amount A, in dollars he still needs after w weeks is given by the function $A(w)=700-18 w$.
103. How much money does Steve still need after 5 weeks?
104. If Steve still needs $\$ 394$, how many weeks has he been saving?

Finding the average rate of change of a function

\square Watch the video Determining Average Rate of Change to complete the following.

Determine the average rate of change of the function on the given interval.
\qquad $m=$ \qquad
a. \qquad
b. \qquad
c. \qquad

EXAMPLE:

Find the average rate of change of $f(x)=x^{2}+x-4$ from $x=1$ to $x=3$.
$\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(3)-f(1)}{3-1}$
$=\frac{\left(3^{2}+3-4\right)-\left(1^{2}+1-4\right)}{2}$
$=\frac{8-(-2)}{2}=5$

YOU TRY IT:

105. Find the average rate of change of
$f(x)=3-2 x-x^{2}$ from $x=-1$ to $x=2$.

Finding the average rate of change of a function given its graph

Watch the video Determining Average Rate of Change 1 to complete the following.

The function given by $y=f(x)$ shows the value of \qquad invested at \qquad interested compounded continuously after x years.
a. Find the average amount earned per year between the \qquad year and \qquad year.
\qquad

b. Find the average amount earned per year between the \qquad year and \qquad year.

Finding the initial amount and rate of change given a graph of a linear function

YOU TRY IT:

At a candy factory, a machine is putting candy into a container. The graph shows the amount of candy, in pounds, in the container versus time in minutes.

106. What is the amount of candy in the container at 0 minutes?
107. Describe how the time and amount of candy are related.

Finding the initial amount and rate of change given a table for a linear function

? Open the Instructor Added Resource which will direct you to a video to complete the following.

Sergio is adding water to a swimming pool at a constant rate. The table below shows the amount of water in the pool after different amounts of time.

Time (minutes)	6	9	12	15
Water (gallons)	118	142	166	190

1. How much water was already in the pool when Sergio started adding water?

From the table we have the points \qquad and \qquad

Slope:

To find how much water was in the pool when Sergio started adding water, we substitute
\qquad into our equation.
$y=$ \qquad

There were \qquad gallons of water in the pool when Sergio started adding water.
2. As time increases is the amount of water in the pool increasing or decreasing? At what rate?

Word problem involving average rate of change

Learning Page
The average rate of change is the \qquad of the line passing through
\qquad and \qquad .

EXAMPLE:

Travis is cooking a beef roast. The table below gives the temperature $R(t)$ of the roast in degrees Celsius, at a few times t in minutes after he removed it from the oven. Find the average rate of change for the temperature from 10 to 50 minutes.

Time t	Temperature $R(t)$
0	226.6
10	205.6
30	157.6
50	119.6
70	61.6

The average rate of change over $\left[x_{1}, x_{2}\right]$ is given by the formula below. In this problem $x_{2}=50$ and $x_{1}=10$. We find the values of the function from the table above.

$$
\begin{aligned}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} & =\frac{f(50)-f(10)}{50-10} \\
& =\frac{119.6-205.6}{40} \\
& =\frac{-86}{40}=-2.15^{\circ} \mathrm{C} \text { per minute }
\end{aligned}
$$

Notes from Focus Group:

Notes from Focus Group:

Module 7

Contents

Choosing a graph to fit a narrative: Basic 117
Choosing a graph to fit a narrative: Advanced 118
Graphing an absolute value equation of the form $y=A|x|$ 119
Graphing an absolute value equation in the plane: Advanced 119
Graphing a square root function: Problem type 1 120
Graphing a square root function: Problem type 2 121
Graphing a cubic function of the form $y=a x^{3}$ 122
\square Graphing a parabola of the form $y=a x^{2}+c$ 123
\square Graphing a parabola of the form $y=(x-h)^{2}+k$ 124
Matching parent graphs with their equations 125
How the leading coefficient affects the graph of a parabola 126
Translating the graph of a function: One step 126
Translating the graph of a function: Two steps 127Translating the graph of an absolute value function: Two steps127
Transforming the graph of a function using more than one transformation 128
Transforming the graph of a function by shrinking or stretching 129Transforming the graph of a function by reflecting over an axis131
\square Transforming the graph of a quadratic, cubic, square root, or absolute value function 132
Writing an equation for a function after a vertical and horizontal translation 133
Domain and range from the graph of a quadratic function133

Weekly Checklist

\square Complete MALL time.Work in ALEKS and Notebook at least 3 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by

Choosing a graph to fit a narrative: Basic

2 Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph that best describes the scenario below.
(a) A fle_ from its nest to go hunting.

(b) Frank drives at a \qquad speed for a while.

Choosing a graph to fit a narrative: Advanced

ใน Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph that best describes the scenario below.
(a) Hector begins his jogging workout by running \qquad for about a minute. Once he hits a comfortable pace, he runs at that pace for \qquad minutes. Then he gradually \qquad to a stop over the next few minutes.

(b) Tina is delivering a pizza to Ellen's house. She drives at a \qquad speed toward the house until she hits a traffic jam and has to \qquad for several minutes. After, she starts up again and drives at a \qquad speed than before.

Graphing an absolute value equation of the form $y=A|x|$

Learning Page Sketch the graph of $y=|x|$.

EXAMPLE: Sketch the graph of $y=-3|x|$.

- We first plot the vertex at $(0,0)$.
- Next we plot a point on either side of the vertex, use $x=-1,1$.
- If $x=-1$, then $y=-3|-1|=-3$. Plot $(-1,-3)$.
- If $x=1$, then $y=-3|1|=-3$. Plot $(1,-3)$.

YOU TRY IT:

108. Sketch the graph of $y=2|x|$.

Graphing an absolute value equation in the plane: Advanced

> Learning Page We will be graphing equations of the form $y=a|x-b|+c$.

The graphs of these equations will always have a \qquad shape.

The vertex of the "V shape" occurs at the \qquad that makes \qquad

To graph these equations, we first plot the \qquad and \qquad

We then draw rays starting from the \qquad that pass \qquad these points.

EXAMPLE: Sketch the graph of
$g(x)=-2|x-4|+6$.

- This is the graph of $g(x)=|x|$ shifted right 4 , up 6 , reflected across the x-axis and stretched by a factor of 2 .
- The vertex will be $(4,6)$ and it will open down because 2 is negative.
- We also find the x and y intercepts to obtain the graph.
- Let $x=0$ to find the y-intercept:
$y=-2|-4|+6=-2(4)+6=-2$.
- Let $y=0$ to find the x-intercept(s):

$$
\begin{array}{rlrl}
-2|x-4|+6 & =0 \\
|x-4| & =3 \\
& \\
x-4=3 & \text { or } & x-4=-3 \\
x=7 & \text { or } & x=1
\end{array}
$$

YOU TRY IT:

109. Sketch the graph of $f(x)=\frac{1}{2}|x-4|-1$

Graphing a square root function: Problem type 2

2 Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of $f(x)=$ \qquad
f is the graph of \qquad shifted \qquad units \qquad and \qquad units \qquad x-intercept:

Choose \qquad

Choose \qquad

YOU TRY IT:

110. Sketch the graph of $g(x)=\sqrt{x+1}+2$.

Module 7

Graphing a cubic function of the form $y=a x^{3}$

EXAMPLE:

Sketch the graph of $y=\frac{1}{3} x^{3}$.
We will complete the chart below to obtain the points to graph.

x	$y=\frac{1}{3} x^{3}$	(x, y)
-2	$y=\frac{1}{3}(-8)=-\frac{8}{3}$	$\left(-2,-\frac{8}{3}\right)$
-1	$y=\frac{1}{3}(-1)=-\frac{1}{3}$	$\left(-1,-\frac{1}{3}\right)$
0	$y=\frac{1}{3}(0)=0$	$(0,0)$
1	$y=\frac{1}{3}(1)=\frac{1}{3}$	$\left(1, \frac{1}{3}\right)$
2	$y=\frac{1}{3}(8)=\frac{8}{3}$	$\left(2, \frac{8}{3}\right)$

The graph of $y=x^{3}$ is drawn below as a dashed line so you can see how the value of a changes the graph.

YOU TRY IT:

111. Sketch the graph of $y=-\frac{3}{2} x^{3}$.

Graphing a parabola of the form $y=a x^{2}+c$

Learning Page

 A parabola with equation $y=a x^{2}+c$ has its vertex at \qquad .EXAMPLE: Sketch the graph of $y=2 x^{2}-5$.

- We first plot the vertex at $(0,-5)$.
- Next we plot 2 points on either side of the vertex.
*All parabolas have symmetry so we can use this when finding points.
- If $x=1$, then $y=2(1)^{2}-5=-3$. Plot $(1,-3)$.
- If $x=-1$, then $y=2(-1)^{2}-5=-3$. Plot $(-1,-3)$.
We could also have used symmetry. Because the points x values are the same distance from the x value of the vertex, they must have the same y coordinate.
- If $x=2$, then $y=2\left(2^{2}\right)-5=3$. Plot $(2,3)$ and using symmetry plot $(-2,3)$.

YOU TRY IT:

112. Sketch the graph of $y=-\frac{1}{2} x^{2}+3$.

Graphing a parabola of the form $y=(x-h)^{2}+k$

\square Watch the video Graphing a Parabola Given an Equation in Vertex Form to complete the following.

Given \qquad
a. Determine whether the graph of the parabola opens upward or downward.
b. Identify the vertex.
c. Determine the x-intercept(s).
d. Determine the y-intercept.
e. Sketch the function.

f. Determine the axis of symmetry.

Matching parent graphs with their equations

回
Basic functions and Their Graphs

How the leading coefficient affects the graph of a parabola

Learning Page
A equation of the form \qquad $(a \neq 0)$ describes a \qquad whose
\qquad is at the \qquad -

The value of the leading \qquad a tells us how the parabola looks.
(a) A \qquad leading coefficient, \qquad gives a parabola that opens \qquad

A \qquad leading coefficient \qquad gives a parabola that opens \qquad
(b) A \qquad parabola has a leading coefficient a \qquad to \qquad

A \qquad parabola has a leading coefficient a \qquad from \qquad

Translating the graph of a function: One step

Open the e-book to complete the following.

Vertical Translations of Graphs

Consider a function defined by $y=f(x)$. Let k represent a positive real number.

- The graph of \qquad is the graph of $y=f(x)$ shifted \qquad
- The graph of \qquad is the graph of $y=f(x)$ shifted \qquad .

Horizontal Translations of Graphs

Consider a function defined by $y=f(x)$. Let h represent a positive real number.

- The graph of \qquad is the graph of $y=f(x)$ shifted \qquad
- The graph of \qquad is the graph of $y=f(x)$ shifted \qquad

Translating the graph of a function: Two steps

\square Watch the video Using Rigid Transformations to Graph a Function to complete the following.

Graph \qquad Sketch the parent function using a dashed line and $c(x)$ using a solid line.

Translating the graph of an absolute value function: Two steps

3 Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of \qquad
Translations:
x-intercept(s):

y-intercept:

EXAMPLE:

Sketch the graph of $g(x)=|x+3|-5$.

- This is the graph of $g(x)=|x|$ shifted left 3 and down 5.
- We also find the x and y intercepts to obtain the graph.
- Let $x=0$ to find the y-intercept: $y=|0+3|-5=3-5=-2$.
- Let $y=0$ to find the x-intercept(s):

$$
|x+3|-5=0
$$

$$
\begin{array}{rlrlr}
x+3 & =5 & \text { or } & & x+3
\end{array}=-50 子 \begin{aligned}
& \text { or } & & x
\end{aligned}
$$

YOU TRY IT:

113. Sketch the graph of $f(x)=|x+2|-3$.

$$
|x+3|=5
$$

Transforming the graph of a function using more than one transformation

Open the e-book to complete the following.

Steps for Graphing Multiple Transformations of Functions

To graph a function requiring multiple transformations, use the following order.
1.
2.
3.
4.

EXAMPLE: The graph of $y=f(x)$ is shown.
Draw the graph of $y=-2 f(x-1)+3$.
This is the graph of $y=f(x)$ that is

- stretched vertically by a factor of 2
- reflected across the x-axis
- shifted right 1 and up 3.

Consider the following points:

Original	Stretch	Reflect	Shift
$(-5,-2)$	$(-5,-4)$	$(-5,4)$	$(-4,7)$
$(0,3)$	$(0,6)$	$(0,-6)$	$(1,-3)$
$(5,-2)$	$(5,-4)$	$(5,4)$	$(6,7)$

YOU TRY IT:

114. The graph of $y=g(x)$ is shown. Draw the graph of $y=\frac{1}{2} f(x+2)-3$.

Transforming the graph of a function by shrinking or stretching

Watch the video Investigating Horizontal Shrinking and Stretching to complete the following.

Horizontal Shrinking and Stretching of Graphs

Consider a function defined by $y=f(x)$. Let \qquad represent a \qquad real number.

- If \qquad , then the graph of \qquad is the graph of $y=f(x)$ \qquad
\qquad by a \qquad of a.
- If \qquad then the graph of \qquad is the graph of $y=f(x)$
\qquad by a factor of \qquad .

Note: for any point \qquad on the graph of $y=f(x)$, the point \qquad is on the graph of $y=$ $f(a x)$.

Continued on the next page

Sketch the graph of $y=f(x)$ using a dashed line and the transformed graph using a solid line.
Given $y=f(x)$, Graph $y=f(3 x)$.
Given $y=f(x)$, Graph $y=f\left(\frac{1}{3} x\right)$.

Points on $y=f(x)$:
\qquad
Points on $y=f(3 x)$:

Points on $y=f(x)$:
\qquad
Points on $y=f\left(\frac{1}{3} x\right)$:

앙 Open the e-book to find the following definition.

Vertical Shrinking and Stretching of Graphs

Consider a function defined by $y=f(x)$. Let a represent a positive real number.

- If \qquad then the graph of \qquad is the graph of $y=f(x)$ \qquad
\qquad by a factor of a.
- If \qquad then the graph of \qquad is the graph of $y=f(x)$
\qquad by a factor of a.

Note: for any point \qquad on the graph of $y=f(x)$, the point \qquad is on the graph of $y=a f(x)$.

Transforming the graph of a function by reflecting over an axis

Watch the video Investigating Reflections Across the x and y-Axes to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Reflections Across the x and y-Axes

Consider a function defined by $y=f(x)$.

- The graph of \qquad is the graph of $y=f(x)$ reflected across the \qquad -.
- The graph of \qquad is the graph of $y=f(x)$ reflected across the \qquad .

Sketch the blue graph from the video using a dashed line and the red graph using a solid line.

Sketch the graph of $y=f(x)$ using a dashed line and the transformed graph using a solid line.

Given $y=f(x)$, Graph $y=f(-x)$.

Points on $y=f(x)$:
\qquad
\qquad
\qquad

Points on $y=f(-x)$:

Given $y=f(x)$, Graph $y=-f(x)$.

Points on $y=f(x)$:
\qquad
\qquad

Points on $y=-f(x)$:

Transforming the graph of a quadratic, cubic, square root, or absolute value function

Possible transformations on a graph are reflecting about an axis, shifting, stretching, and shrinking. The chart below summarizes all the possible transformations of parent functions.

Transformations of functions

Consider a function defined by $y=f(x)$. If h, k, and a represent positive real numbers, then the graphs of the following functions are related to $y=f(x)$ as follows.

Transformation	Effect on the Graph of f	Changes to Points on f
Vertical Translations of Graphs $\begin{aligned} & y=f(x)+k \\ & y=f(x)-k \end{aligned}$	Shift \qquad units Shift \qquad units	Replace (x, y) by Replace (x, y) by
Horizontal translations $\begin{aligned} & y=f(x-h) \\ & y=f(x+h) \end{aligned}$	Shift \qquad units Shift \qquad units	Replace (x, y) by Replace (x, y) by
Vertical stretch/shrink $y=a f(x)$	Vertical \qquad if $a>1$ Vertical \qquad if $0<a<1$ Graph is stretched/shrunk vertical by a factor of \qquad	Replace (x, y) by
Horizontal stretch/shrink $y=f(a x)$	Horizontal \qquad if $a>1$ Horizontal \qquad if $0<a<1$ Graph is shrunk/stretched horizontally by a factor of \qquad	Replace (x, y) by
Reflection $\begin{aligned} & y=-f(x) \\ & y=f(-x) \end{aligned}$	Reflection across the \qquad Reflection across the \qquad	Replace (x, y) by Replace (x, y) by

Writing an equation for a function after a vertical and horizontal translation

Open the Instructor Added Resource which will direct you to a video to complete the following.

Using translations of the base graph $y=|x|$, write the equation of the graph shown below.

The base graph has been moved \qquad units to the \qquad and \qquad units
\qquad .

The equation of the graph
is \qquad -.

YOU TRY IT: Write the equation of the graph given below.
115.

Domain and range from the graph of a quadratic function

Learning Page It is possible to determine the domain and range of a function from its graph.

The \qquad is the set of all the numbers that appear as \qquad of points on the graph.

The \qquad is the set of all the numbers that appear as \qquad of points on the graph.

The graph of a \qquad function is a \qquad

YOU TRY IT: Find the domain and range of the quadratic given below.
116.

Notes from Focus Group:

Notes from Focus Group:

Module 8-Review

To help you review for your upcoming exam, this module contains all of the topics from the modules since the last exam. Topics that you have already mastered will not appear in your carousel.Complete this module before you take the ALEKS exam.
Each exam has two parts.

- The ALEKS exam (100 pts)
- The ALEKS exam must be taken in the MALL.
- The ALEKS exam is a Comprehensive Knowledge Check.
- Your score is the number of topics you have mastered out of the number of topics you should have mastered by this point.
- If you lose topics on your ALEKS exam, your Review Module completion grade will not change.
- Your scratch work for the ALEKS exam must be numbered and turned in through Blackboard.
- The Written exam (25 pts)
- Take your written exam in class the day of your focus group.
- To study for the written exam:
- Rework your old Focus Group assignments.
- Rework any topics in ALEKS you may have lost on the ALEKS exam.

	Score
ALEKS Exam	
Written Exam	

Module 9

Contents

\square Determining if graphs have symmetry with respect to the x-axis, y-axis, or origin138
Testing an equation for symmetry about the axes and origin 139\square Finding local maxima and minima of a function given the graph140Finding where a function is increasing, decreasing, or constant given the graph: Interval notation142Finding the absolute maximum and minimum of a function given the graph143
Finding values and intervals where the graph of a function is zero, positive, or negative 144
Finding a difference quotient for a linear or quadratic function 144
Graphing a piecewise-defined function: Problem type 1 145
Graphing a piecewise-defined function: Problem type 2 146
\square Graphing a piecewise-defined function: Problem type 3 146
Sum, difference, and product of two functions 147
\square Quotient of two functions: Basic 148
\square Combining functions: Advanced 148
Combining functions to write a new function that models a real-world situation 149
Introduction to the composition of two functions 149
Composition of two functions: Basic 150
Composition of two functions: Advanced 150
Composition of a function with itself 151
Expressing a function as a composition of two functions 152\square Word problem involving composition of two functions153

Weekly Checklist

Complete MALL time.
Work in ALEKS and Notebook at least 3 days a week.Complete the weekly Module and Notebook pages by the due date.
\square Attend Focus Group.Actively participate in Focus Group.
Earn extra credit: Complete 10 topics by

Determining if graphs have symmetry with respect to the x-axis, y-axis, or origin

\square Watch the video Introduction to Symmetry to complete the following.
On each axis below, sketch in the blue graph with a solid line and the black graph with a dashed line.

Symmetry with respect to the x-axis

Every point (x, y) has a
mirror image \qquad .

Symmetry with respect to the y-axis

Every point (x, y) has a
mirror image \qquad

Symmetry with respect to the origin

Every point (x, y) has a
mirror image \qquad _.

YOU TRY IT: Determine what kind of symmetry (if any) applies to the graph.
117.

Testing an equation for symmetry about the axes and origin

\square Watch the video Testing for Symmetry to complete the following.

Tests for Symmetry

Consider an equation in the variables x and y.

- The graph of the equation is symmetric with respect to the \qquad if substituting
\qquad in the equation results in an \qquad equation.
- The graph of the equation is symmetric with respect to the \qquad if substituting
\qquad in the equation results in an equivalent equation.
- The graph of the equation is symmetric with respect to the \qquad if substituting
\qquad and \qquad in the equation results in an equivalent equation.

Determine whether the graph of the equation is symmetric with respect to the x-axis, y-axis, origin, or none of these.
a.
b.

EXAMPLE:

Determine whether the graph of the equation is symmetric with respect to the x-axis, the y-axis, or the origin.

$$
x^{2} y^{2}+x y=4
$$

- Replace y with $-y$.

$$
\begin{array}{r}
x^{2}(-y)^{2}+x(-y)=4 \\
x^{2} y^{2}-x y=4
\end{array}
$$

This is not equivalent to $x^{2} y^{2}+x y=4$ so it is not symmetric to the x-axis.

- Replace x with $-x$.

$$
\begin{aligned}
(-x)^{2} y^{2}+(-x)(y) & =4 \\
x^{2} y^{2}-x y & =4
\end{aligned}
$$

This is not equivalent to $x^{2} y^{2}+x y=4$ so it is not symmetric to the y-axis.

- Replace x with $-x$ and y with $-y$.

$$
\begin{gathered}
(-x)^{2}(-y)^{2}+(-x)(-y)=4 \\
x^{2} y^{2}+x y=4
\end{gathered}
$$

This is equivalent to $x^{2} y^{2}+x y=4$ so it is symmetric to the origin.

YOU TRY IT:

118. Determine whether the graph of the equation is symmetric with respect to the x-axis, the y-axis, or the origin.

$$
5 x^{2}+8 y^{2}=14
$$

Finding local maxima and minima of a function given the graph

Watch the video Introduction to Relative Maxima and Minima to complete the following.

Relative Minimum and Relative Maximum Values

- $f(a)$ is a relative maximum of f if there exists an open interval containing a such that
\qquad for all x in the interval.
- $f(a)$ is a relative minimum of f if there exists an open interval containing a such that
\qquad for all x in the interval.

Note: An \qquad interval is an interval in which the endpoints are

Continued on the next page

a. Determine the relative maxima.
b. Determine the relative minima.

EXAMPLE:

Use the graph of the function f below to find:

a) All local maximum and minimum values of f

- Local maximum value: 4
- Local minimum value: 0
b) All values at which f has a local maximum and minimum
- Local maximum at $x=0$
- Local minimum at at $x=2$

YOU TRY IT:

Use the graph of the function f below to find:

119. All local maximum and minimum values of f
120. All values at which f has a local maximum and minimum

Finding where a function is increasing, decreasing, or constant given the graph: Interval notation

Learning Page

- A function f is (strictly) increasing on an interval if, for all a and b in that interval, $a<b$ implies
\qquad
- A function f is (strictly) decreasing on an interval if, for all a and b in that interval, $a<b$ implies
\qquad .
- A function f is constant on an interval if, for all a and b in that interval, $a<b$ implies
\qquad
Sketch a graph of each type of function on the axes below.

EXAMPLE:
Determine where the function below is increasing, decreasing, or constant.

The function is

- Increasing on $(1, \infty)$
- Decreasing on $(-\infty,-2)$
- Constant on $(-2,1)$

YOU TRY IT:

121. Determine where the function below is increasing, decreasing, or constant.

Finding the absolute maximum and minimum of a function given the graph

Learning Page We will use the following information about absolute maximums and minimums, vertical asymptotes, and "holes".

Suppose the domain of a function f is an interval.

- Absolute maximums and minimums:

The absolute \qquad of f is the \qquad of any point on the graph of f.

The absolute \qquad of f is the \qquad of any point on the graph of f.

- Vertical asymptotes:

Suppose the graph of f has a vertical asymptote, \qquad
As the x-coordinatesof the graph of f approach a, the y-coordinates approach \qquad or \qquad If the y-coordinates approach \qquad then the function will \qquad have an absolute \qquad .

If the y-coordinates approach \qquad then the function will \qquad have an absolute \qquad

- "Holes":

A "hole" in the graph of f is show as a \qquad
A "hole" is a point that is \qquad on the graph of f.

If a "hole" in the graph of f has a \qquad y-coordinate than any point on the graph of f, then the function does \qquad have an absolute \qquad
If a "hole" in the graph of f has a \qquad y-coordinate than any point on the graph of f, then the function does \qquad have an absolute \qquad

Finding values and intervals where the graph of a function is zero, positive, or negative

Open the Instructor Added Resource which will direct you to a video to complete the following.

a. Is $f(-2)$ negative?
b. For which value(s) of x is $f(x)<0$?
c. For which value(s) of x is $f(x)=0$?
d. For which value(s) of x is $f(x)>0$

Finding a difference quotient for a linear or quadratic function

Watch the video Finding a Difference Quotient for a Nonlinear Function to complete the following.NOTE: This may not be the first video that pops up. Select the appropriate video in the video box.

Given \qquad , find the difference quotient.

EXAMPLE:

Find the difference quotient for $f(x)=3 x^{2}-4 x+5$.
First, find $f(x+h)$.

$$
\begin{aligned}
f(x+h) & =3(x+h)^{2}-4(x+h)+5 \\
& =3\left(x^{2}+2 x h+h^{2}\right)-4 x-4 h+5 \\
& =3 x^{2}+6 x h+3 h^{2}-4 x-4 h+5
\end{aligned}
$$

Now find $\frac{f(x+h)-f(x)}{h}$.

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h} \\
& =\frac{3 x^{2}+6 x h+3 h^{2}-4 x-4 h+5-\left(3 x^{2}-4 x+5\right)}{h} \\
& =\frac{3 x^{2}+6 x h+3 h^{2}-4 x-4 h+5-3 x^{2}+4 x-5}{h} \\
& =\frac{6 x h+3 h^{2}-4 h}{h} \\
& =\frac{h(6 x+3 h-4)}{h} \\
& =6 x+3 h-4
\end{aligned}
$$

YOU TRY IT:

122. Find the difference quotient for $f(x)=-4 x^{2}+5 x-3$.

Graphing a piecewise-defined function: Problem type 1

ใ Open the Instructor Added Resource which will direct you to a video to complete the following.
$g(x)= \begin{cases}\quad & \text { if }-2 \leq x<-1 \\ \quad & \text { if }-1 \leq x<0 \\ \quad & \text { if } 0 \leq x<1 \\ \quad & \text { if } 1 \leq x<2\end{cases}$

Graphing a piecewise-defined function: Problem type 2

\square Watch the video Graphing a Piecewise-Defined Function to complete the following.

The graph of $f(x)$ is continuous if there are no "holes" or "jumps" in the graph. In other words, you can draw the graph without lifting your pencil.

Graphing a piecewise-defined function: Problem type 3

If you did not complete the video Graphing a Piecewise-Defined Function under the topic Graphing a piecewisedefined function: Problem type 2, click the video link now and complete the work.

YOU TRY IT:

123. Sketch the graph of $f(x)=$
$\begin{cases}-2 & \text { if } x<-3 \\ x+1 & \text { if }-3 \leq x \leq 2 \\ 4 & \text { if } x>2\end{cases}$

Sum, difference, and product of two functions

Watch the video Introduction to Operations on Functions to complete the following.

Sum, Difference, Product, and Quotient of Functions

Given the functions f and g, the functions $f+g, f-g, f \cdot g$, and $\frac{f}{g}$ are defined by:

$$
\begin{aligned}
&(f+g)(x)= \\
&(f-g)(x)= \\
&(f \cdot g)(x)= \\
&\left(\frac{f}{g}\right)(x)= \\
&
\end{aligned}
$$

The domains of the functions $f+g, f-g, f \cdot g$, and $\frac{f}{g}$ are all real numbers in the of the individual functions f and g.

For $\frac{f}{g}$ we further restrict the domain to \qquad

Given $f(x)=$ \qquad and $g(x)=$ \qquad find $(f+g)(x)$.

EXAMPLE:

Given $f(x)=x^{2}-3 x$ and $g(x)=\sqrt{4 x-1}$, find the function and its domain.

$$
\begin{aligned}
(f \cdot g)(x) & =f(x) \cdot g(x) \\
& =\left(x^{2}-3 x\right) \sqrt{4 x-1}
\end{aligned}
$$

The domain of f is $(-\infty, \infty)$ and the domain of g is $\left[\frac{1}{4}, \infty\right)$ so the domain of $f \cdot g$ is the intersection of the two domains. Interval notation: $\left[\frac{1}{4}, \infty\right)$.

YOU TRY IT:

Given $f(x)=3 x^{2}+2 x$ and $g(x)=1-\frac{1}{x}$, find the function and its domain.
124. $(g \cdot f)(x)$

Quotient of two functions: Basic

\square Watch the video Evaluating Functions for a Given Value of x to complete the following.
Evaluate the functions for the given values of x.
$f(x)=$ \qquad

$$
g(x)=
$$

\qquad

$$
h(x)=
$$

\qquad
a.
b.

YOU TRY IT: Given $f(x)=x^{2}-3 x$ and $g(x)=\sqrt{4 x+1}$, find the following.
125. $\left(\frac{f}{g}\right)(2)$
126. $\left(\frac{f}{g}\right)(-4)$

Combining functions: Advanced

\square Watch the video Combining Functions and Finding Domain to complete the following.

Given \qquad and \qquad , evaluate the given function and write the domain in interval notation.
a.
b.

Combining functions to write a new function that models a real-world situation

EXAMPLE:

A website designer creates videos on how to create websites. He sells the video packages for $\$ 40$ each. His one-time initial cost to produce a package is $\$ 5000$. The cost to ship each video is $\$ 2.80$.
a. Write a function that represents the cost $C(x)$ to produce and ship x video packages.
$C(x)=2.8 x+5000$
b. Write a function that represents the revenue $R(x)$ for selling x video packages.
$R(x)=40 x$
c. Evaluate $(R-C)(x)$ and interpret its meaning in the context of this problem.
$(R-C)(x)=40 x-(2.8 x+5000)=$ $37.2 x-5000$
This represents the profit for selling x video packages.

YOU TRY IT:

An artist makes jewelry from polished stones. The rent for her studio and utilities comes to \$640 per month. It also costs her $\$ 3.50$ for supplies to make one necklace. She sells the necklaces for \$25 each.
127. Write a function $C(x)$ that represents the cost to produce x necklaces during a one month period.
128. Write a function $R(x)$ that represents the revenue for selling x necklaces.
129. Evaluate $(R-C)(x)$ and interpret its meaning in the context of this problem.

Introduction to the composition of two functions

Watch the video Composing Functions to complete the following.

Composition of Functions

The composition of f and g denoted \qquad is defined by \qquad
The domain of \qquad is the set of real numbers x in the \qquad
such that \qquad is in the domain of \qquad _.

Evaluate the given functions for

$$
f(x)=\square \quad g(x)=\square \quad h(x)=
$$

a.
b.

Composition of two functions: Basic

용 Open the e-book to find and watch the Animation: Introduction to the composition of functions to complete the following. The Animation is found right after Figure 2-41.

Given \qquad and \qquad evaluate,
a. $(f \circ g)(-2)$
b. $(f \circ g)(x)$

Composition of two functions: Advanced

Watch the video Composing Functions and Determining Domain 1 to complete the following.For the given functions, evaluate $(q \circ m)(x)$ and write the domain in interval notation.

EXAMPLE:

Given $f(x)=\frac{x}{x+2}$ and $g(x)=\frac{1}{x-4}$, find the following function and its domain. $(f \circ g)(x)$

$$
\begin{aligned}
f(g(x)) & =f\left(\frac{1}{x-4}\right) \\
& =\frac{\frac{1}{x-4}}{\frac{1}{x-4}+2} \\
& =\frac{\frac{1}{x-4}}{\frac{1}{x-4}+2} \cdot \frac{x-4}{x-4} \\
& =\frac{1}{1+2(x-4)} \\
& =\frac{1}{2 x-7}
\end{aligned}
$$

YOU TRY IT:

Given $f(x)=\frac{3}{x}$ and $g(x)=\frac{x-1}{x-4}$, find the following functions and their domains.
130. $(g \circ f)(x)$

We must exclude 4 from the domain and we must also exclude values of x where $\frac{1}{x-4}+2=0$. We solve this equation for x.

$$
\begin{aligned}
\frac{1}{x-4}+2 & =0 \\
1+2(x-4) & =0(x-4) \\
1+2 x-8 & =0 \\
2 x & =7 \\
x & =\frac{7}{2}
\end{aligned}
$$

The domain of $f \circ g$ is
$\left(-\infty, \frac{7}{2}\right) \cup\left(\frac{7}{2}, 4\right) \cup(4, \infty)$.

Composition of a function with itself

ใน Open the Instructor Added Resource which will direct you to a video to complete the following.

Given \qquad find and simplify $(f \circ f)(x)$.

EXAMPLE:

Given $f(x)=x^{2}+2$ and $g(x)=\frac{1}{x-4}$, find the following.
a) $(f \circ f)(x)$

$$
\begin{aligned}
f(f(x)) & =f\left(x^{2}+2\right) \\
& \left(x^{2}+2\right)^{2}+2 \\
& =\left(x^{4}+2 x^{2}+2 x^{2}+4\right)+2 \\
& =x^{4}+4 x^{2}+6
\end{aligned}
$$

b) $(g \circ g)(x)$

$$
\begin{aligned}
g(g(x)) & =g\left(\frac{1}{x-4}\right) \\
& =\frac{1}{\frac{1}{x-4}-4} \\
& =\frac{1}{\frac{1}{x-4}-4} \cdot \frac{x-4}{x-4} \\
& =\frac{x-4}{1-4(x-4)} \\
& =\frac{x-4}{1-4 x+16} \\
& =\frac{x-4}{17-4 x}
\end{aligned}
$$

YOU TRY IT:

Given $f(x)=\frac{3}{x}$ and $g(x)=x^{2}-5$, find the following functions and their domains.
131. $(f \circ f)(x)$
132. $(g \circ g)(x)$

Expressing a function as a composition of two functions

\square Watch the video Decomposing a Function to complete the following.

Find two functions f and g such that $h(x)=(f \circ g)(x)$.

Word problem involving composition of two functions

Open the e-book and read EXAMPLE 10 to complete the following.

At a popular website the cost to download individual songs is \qquad per song. In addition, a first time visitor to the website has a one-time coupon for off.
a. Write a function to represent the $\operatorname{cost} C(x)$ (in $\$$) for a first-time visitor to purchase x songs.

$$
C(x)=
$$

\qquad
The cost function is a \qquad .
b. The sales tax for online purcahses depends on the location of the business and customer. If the sales tax rate on a purchase is \qquad write a function to represent the total cost $T(a)$ for a first-time visitor who buys a dollars in songs.

$$
T(a)=
$$

\qquad $=$ \qquad
The total cost is the \qquad
c. Find $(T \circ C)(x)$ and interpret the meaning in context.
$(T \circ C)(x)=T(C(x))=$ \qquad $=$ \qquad
\qquad
$(T \circ C)(x)$ represents the \qquad for a first-time visitor to the website.
d. Evaluate $(T \circ C)(10)$ and interpret the meaning in context.
$(T \circ C)(10)=$ \qquad $=$ \qquad
The \qquad for a first-time visitor to \qquad
$\underline{\text { Notes from Focus Group: }}$

Notes from Focus Group:

Module 10

Contents\square Constructing a scatter plot156
\square Scatter plots and correlation 156
Classifying linear and nonlinear relationships from scatter plots 157
Identifying outliers and clustering in scatter plots 158
Sketching the line of best fit 158
\square Predictions from the line of best fit 158
Approximating the equation of a line of best fit and making predictions 159
Interpreting the graphs of two functions 160
Computing residuals 160
\square Interpreting residual plots 161
Linear relationship and the correlation coefficient 162
Finding outliers in a data set 163
Choosing a quadratic model and using it to make a prediction 163
Finding the zeros of a quadratic function given its equation 163
Finding the vertex, intercepts, and axis of symmetry from the graph of a parabola 164
\square Finding the maximum or minimum of a quadratic function 165
Graphing a parabola of the form $y=a(x-h)^{2}+k$ 166
Writing the equation of a quadratic function given its graph 167
Word problem involving the maximum or minimum of a quadratic function 168
Word problem involving optimizing area by using a quadratic function 169
Solving a quadratic inequality written in factored form 170
\square Solving a quadratic inequality 170

Weekly Checklist

Complete MALL time.
Work in ALEKS and Notebook at least 3 days a week.
Complete the weekly Module and Notebook pages by the due date.
Attend Focus Group.
Actively participate in Focus Group.
Earn extra credit: Complete 10 topics by

Constructing a scatter plot

(Aa) Open the dictionary to complete the following.
A scatter plot is a \qquad representation of values of \qquad variables.

The paired values are represented as \qquad in the \qquad

Scatter plots and correlation

Learning Page The correlations between two \qquad is an \qquad of how the
\qquad are related.

The figures below show different types of correlation. Fill in the blanks in the table below.

Correlation	\ldots correlation	___ correlation
 As x \qquad y tend to \qquad	 As x \qquad y tends to \qquad	 There is \qquad pattern.

Classifying linear and nonlinear relationships from scatter plots

Learning Page Four scatter plots are shown below. From the Learning Page, find the corresponding graph and label it as positive linear relationship, negative linear relationship, no relationship, or nonlinear relationship.

The data points appear to follow a line.
This line goes \qquad from left to right.
\qquad relationship
The data points appear to follow a line.
This line goes \qquad from left to right.

There is no \qquad pattern to the data points.

They \qquad appear to folllow a
\qquad or a simple curve.
\qquad relationship

The data points appear to follow a simple
\qquad
There does appear to be a \qquad to the data.

But this pattern is \qquad in the form of a

Identifying outliers and clustering in scatter plots

Learning Page Data sets can sometimes have clusters.

A cluster is a \qquad

An a cluster doesnt have \qquad (or any) data points \qquad _.

Data sets can sometimes have outliers.

An \qquad is a data point that is \qquad from the
points.

Sketching the line of best fit

Learning Page Informally, the line of best fit is a \qquad that lies as \qquad as
possible to all the \qquad points.

It is a line that shows the \qquad of the data points as \qquad as any other.

Predictions from the line of best fit

Learning Page Suppose we can draw a \qquad that follows the \qquad of the data shown in
a \qquad plot.

Then, we can \qquad the relationship between the \qquad as \qquad
We can use the line to \qquad the corresponding \qquad for a given \qquad
We can also use the line's \qquad to \qquad how y will \qquad as \qquad changes.

For a \qquad increase in \qquad the \qquad change in \qquad is equal to the
\qquad of the line.

Approximating the equation of a line of best fit and making predictions

Watch the video Writing a Linear Model to Relate Two Variables in an Application to complete the following.

The table gives the number of calories and the amount of cholesterol for selected fast food hamburgers.
a. Graph the data in a scatter diagram using the number of calories as the independent variable x and the amount of cholesterol as the dependent variable y.

Hamburger Calories	Cholesterol (mg)
220	
420	
460	
480	
560	
590	
610	
680	
720	
800	
1050	

Amount of Cholesterol vs. Number of Calories for Selected Hamburgers

b. The amount of cholesterol is approximately linearly related to the number of calories. Use the points
\qquad
\qquad to write a linear function that defines the amount of cholesterol $c(x)$ as a linear function of the number of calories, x.
c. Interpret the meaning of the slope in the context of this problem.
d. Use the model from part (b) to predict the amount of cholesterol for a hamburger with 650 calories.

Interpreting the graphs of two functions

ใ Open the Instructor Added Resource which will direct you to a video to complete the following.
The water company has a different monthly pricing plan for residential customers than for business customers. For each pricing plan, cost (in dollars) depends on water used (in hundreds of cubic feet, HCF). Draw in the Residential Plan graph using a solid line and the Business Plan graph using a dashed line. Answer all questions using complete sentences using the context of the problem.

1. If the monthly water usage is 22 HCF which plan costs less?

How much less does it cost than the other plan?
2. For what amount of monthly water usage do the plans cost the same?

If the monthly water usage is less than this amount, which plan costs less?

Computing residuals

Learning Page
 Residual

A residual is a \qquad of how far the \qquad value is from the \qquad value.

In particular, we compute the \qquad for a particular data point as follows.
\qquad
y-value
y-value

Interpreting residual plots

Learning Page A residual is a \qquad of how far a \qquad value is from an
\qquad value.

We can find residuals \qquad when looking at a \qquad plot that has a line of
\qquad fit.

A residual \qquad how far we move \qquad or \qquad from a point (the
y-value) to the line (the \qquad y-value).

Points above the line have \qquad residuals, and points below the line have \qquad residuals.

A residual plot can be used to determine how \qquad the line of best fit \qquad a data set.

- The line is a \qquad model for the data set if the residuals \qquad
- The line is a \qquad (but not perfect) model for the data set is the following are \qquad
- The points on the residual plot appear to be \qquad with no ——pattern.
- There are about as many \qquad residuals as \qquad residuals.
- The points on the residual plot are \qquad fairly close to the \qquad
- The line might \qquad be an \qquad model if there is a \qquad in the residual plot.

Linear relationship and the correlation coefficient

Learning Page The correclation coefficient, \qquad measures the between two variables. The value of r is a \qquad from \qquad to \qquad .

A \qquad value of r indicates a \qquad linear relationship between the two

A value of r \qquad to \qquad indicates there is \qquad to \qquad linear relationship.

A \qquad value of r indicates a positive \qquad relationship.

linear relationship	linear relationship	\qquad linear relationship
As x increases, y tends to \qquad	There is no __ pattern.	As x increases, y tends to \qquad

The \qquad the points are to \qquad on a \qquad line, the
\qquad the \qquad relationship.

The \qquad the linear relationship, the \qquad r is to \qquad or \qquad
A value of \qquad indicates a \qquad positive \qquad relationship.

The points lie \qquad on a straight line that \qquad from \qquad to

A value of \qquad indicates a perfect \qquad linear relationship.

The \qquad lie exactly on a \qquad line that \qquad from left to right.

Finding outliers in a data set

Learning Page

An outlier is a data \qquad that is \qquad smaller or larger than most of the

It is a value that is " \qquad $"$ and is very \qquad from most of the other values.

YOU TRY IT: Identify all values that are outliers.
133. $181,494,497,500,505,511,513,516,518,832$

Choosing a quadratic model and using it to make a prediction

Learning Page Informally, the curve that fits the data best is the curve that lies ___ to
the \qquad points. It shows the \qquad of the data points \qquad than the other curves.

Finding the zeros of a quadratic function given its equation

Learning Page The zeros of a function are the \qquad that give an \qquad -

So, to find the zeros, we set \qquad and \qquad .

EXAMPLE: Find all zeros of the quadratic.

$$
y=x^{2}-14 x+33
$$

YOU TRY IT: Find all zeros of the quadratic.
134. $y=x^{2}+5 x-14$

We set $y=0$ and solve for x

$$
0=x^{2}-14 x+33
$$

Factor the quadratic.

$$
0=(x-11)(x-3)
$$

Set each factor equal to 0 .

$$
x=11,3
$$

Finding the vertex, intercepts, and axis of symmetry from the graph of a parabola

Open the e-book to complete the following.

Quadratic Function

A function defined by \qquad $(a \neq 0)$ is called a quadratic function. By completing the square $f(x)$ can be expressing in vertex form as $f(x)=a(x-h)^{2}+k$.

- The graph of f is a \qquad with vertex \qquad .
- If \qquad , the parabola opens \qquad and the \qquad is the
\qquad point. The \qquad value of f is \qquad .
- If \qquad , the parabola opens \qquad and the \qquad is the
\qquad
\qquad value of f is \qquad
- The \qquad is \qquad This is the \qquad line that passes through the \qquad
On the graphs below, label
- the axis of symmetry with $x=h$
- the vertex with (h, k)
- the value of a with $a>0$ or $a<0$

Finding the maximum or minimum of a quadratic function

\square Watch the video Applying the Vertex Formula and Graphing a Parabola to complete the following.

Given $g(x)=$ \qquad
a. Determine whether the graph of the parabola opens upward or downward.
b. Identify the vertex.
c. Determine the x-intercept(s).
d. Determine the y-intercept.
e. Sketch the function.

f. Determine the axis of symmetry.
g. Determine the minimum or maximum value of the function.
h. Domain:

Range:

Graphing a parabola of the form $y=a(x-h)^{2}+k$

\square Watch the video Graphing a Parabola Given an Equation in Vertex Form to complete the following.

Given $h(x)=$ \qquad
a. Determine whether the graph of the parabola opens upward or downward.
b. Identify the vertex.
c. Determine the x-intercepts.
d. Determine the y-intercept.
e. Sketch the function.
f. Determine the axis of symmetry.

g. Determine the minimum or maximum value of the function.
h. Domain:

Range:

Writing the equation of a quadratic function given its graph

Learning Page
The graph of a quadratic function is a \qquad .

Any quadratic function f whose graph has vertex \qquad can be written in the following form.

$$
f(x)=
$$

EXAMPLE:

Find the equation of the quadratic function f whose graph is shown below.

A parabola with vertex (h, k) has the form: $y=a(x-h)^{2}+k$

The graph has vertex $(4,-3)$ so we have $y=$ $a(x-4)^{2}-3$.

We need to find a. We use the other given point: $(6,-11)$, which gives us an x and a y value to substitute and solve then for a.

$$
\begin{aligned}
y & =a(x-4)^{2}-3 \\
-11 & =a(6-4)^{2}-3 \\
-8 & =a(2)^{2} \\
-2 & =a
\end{aligned}
$$

Equation of parabola: $y=-2(x-4)^{2}-3$

YOU TRY IT:

Find the equation of the quadratic function f whose graph is shown below.
135.

Word problem involving the maximum or minimum of a quadratic function

Watch the video Interpreting the Vertex of a Parabola in an Application to complete the following.A fireworks mortar is launched straight upward from a pool deck platform 3 m off the ground at an initial velocity of $42 \mathrm{~m} / \mathrm{sec}$. The height of the mortar can be modeled by \qquad , where
$h(t)$ is the height in \qquad and t is the time in \qquad after launch.
a. Determine the time at which the mortar is at its maximum height. Round to 2 decimal places.
b. What is the maximum height? Round to the nearest meter. Sketch in the graph of the function on the right, labeling the vertex.

YOU TRY IT: A ball is thrown vertically upward. After t seconds, its height h, in feet, is given by the function $h(t)=100 t-20 t^{2}$.
136. When will the ball reach a maximum height?
137. What is the maximum height that the ball will reach?

Word problem involving optimizing area by using a quadratic function

Watch the video Applying a Quadratic Function in Geometry to complete the following.

Suppose that a family wants to fence in an area of their yard for a garden. One side is already fenced from the neighbor's property.

Draw the picture to illustrate this example.
a. If the family has enough money to buy \qquad ft of fencing, what dimensions would produce the maximum area for the garden?

Constraint equation: \qquad $=$ \qquad

Area equation: \qquad
b. What is the maximum area?

YOU TRY IT: Two pens are to be built adjacent to one another from 120 ft of fencing.

138. What dimensions should be used to maximize the area of an individual coop?
139. What is the maximum area of an individual coop?

Solving a quadratic inequality written in factored form

ใ Open the Instructor Added Resource which will direct you to a video to complete the following.

Graph the solution to the inequality

$x=$ \qquad

$$
x=
$$

$x=$ \qquad

Solving a quadratic inequality

\square Watch the video Solving Quadratic Inequalities to complete the following.

Solve the inequality.

EXAMPLE:

Graph the solution to the inequality $x^{2}-x<12$.
We rewrite the inequality, then factor.

$$
\begin{aligned}
x^{2}-x & <12 \\
x^{2}-x-12 & <0 \\
(x-4)(x+3) & <0
\end{aligned}
$$

- We want the values of x that make ($x-$ 4) $(x+3)$ less than zero (negative).
- $(x-4)(x+3)$ is equal to zero when $x=4$ or $x=-3$.

We will test a point in each interval on the number line above.

- For $x=-4$, we have $(-)(-)=+$
- For $x=0$, we have $(-)(+)=-$
- For $x=5$, we have $(+)(+)=+$

Note that we do not need the VALUE, just
whether it will be positive or negative.

The solution in interval notation is $(-3,4)$. And graphically is

YOU TRY IT:

140. Graph the solution to the inequality

$$
2 x^{2}-9 x \geq 5
$$

An alternative method to the one shown above is to graph the parabola and determine the answer from the graph. Solve $x^{2}-2 \geq 0$

We can find the x-intercepts of the graph $(\sqrt{2}, 0)$ and $(-\sqrt{2}, 0)$. We want the x values where the graph lies on or above the x-axis.

The solution is $(-\infty,-\sqrt{2}] \cup[\sqrt{2}, \infty)$.

Notes from Focus Group:

Notes from Focus Group:

Module 11

Contents

\square Finding the zeros of a quadrtic function given its equation 175
Finding a polynomial of a given degree with given zeros: Real zeros 175
\square Identifying polynomial functions 176
Finding zeros of a polynomial function written in factored form 177
\square Finding zeros and their multiplicities given a polynomial function written in factored form 178
Finding x and y intercepts given a polynomial function 178
Determining the end behavior of the graph of a polynomial function 180
Determining end behavior and intercepts to graph a polynomial function 181
\square Matching graphs with polynomial functions 181
\square Inferring properties of a polynomial function from its graph 182
Polynomial long division: Problem type 2 183
The Factor Theorem 184\square Synthetic division185Using a given zero to write a polynomial as a product of linear factors: Real zeros185
Finding the intercepts, asymptotes, domain, and range from the graph of a rational function 186
Finding the asymptotes of a rational function: Constant over linear 187
Finding the asymptotes of a rational function: Linear over linear 188
Finding horizontal and vertical asymptotes of a rational function: Quadratic numerator or de- nominator 189
Graphing a rational function: Constant over linear 190
\square Graphing a rational function: Linear over linear 191
Matching graphs with rational functions: Two vertical asymptotes 192

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 3 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by

Finding the zeros of a quadrtic function given its equation

Learning Page The zeros of a function are the \qquad that give an \qquad
of \qquad .

In our function \qquad they are the \qquad of \qquad that
make \qquad .

So, to find the \qquad we set \qquad equal to \qquad and \qquad for \qquad
$0=$ \qquad

$$
0=
$$

\qquad

The product of \qquad and \qquad must \qquad 0.

This will be true if and only if at \qquad one of the expressions equals 0 .

So we have the following.
\qquad $=0 \quad$ or \qquad $=0$

We solve these two equations for \qquad .
\qquad or \qquad

Finding a polynomial of a given degree with given zeros: Real zeros

Learning Page The Factor Theorem tells us the following.

A number c is a zero of a polynomial $f(x)$ if and only if \qquad

We also get that, if c is a zero of \qquad then \qquad

YOU TRY IT:

141. Find a polynomial $p(x)$ of degree 5 that has zeros $-2,0,1$ (multiplicity 2), 7 .

Identifying polynomial functions

D Watch the video Introduction to Polynomial Functions to complete the following.

Polynomial Function
Not a Polynomial Function

Definition of a Polynomial Function

Let n be a whole number and $a_{n}, a_{n-1}, a_{n-2}, \ldots, a_{1}, a_{0}$ be \qquad where $a_{n} \neq 0$. Then a function defined by

$$
f(x)=
$$

\qquad
is called a polynomial function of degree \qquad
$f(x)=$ \qquad

degree $=$
\qquad
$f(x)=$ \qquad

degree $=$ \qquad
Graph three functions that are NOT polynomials.

EXAMPLE:

Identify which of the following are polynomials.
a) $A(x)=3 x^{5}-2 x^{3}+5 x^{-4}$

This is not a polynomial because the exponent on the term $5 x^{-4}=\frac{5}{x^{4}}$ is not a whole number.
b) $B(x)=x^{3}+\sqrt{5} x^{2}-3 x+\sqrt{7}$

This is a polynomial. All coefficients are real numbers and all exponents are whole numbers.
c) $C(x)=\frac{3-x}{7}$

This is a polynomial, it can be rewritten as $C(x)=\frac{3}{7}-\frac{1}{7} x$. All coefficients are real numbers and all exponents are whole numbers.
d) $D(x)=\frac{4-x^{2}}{x-1}$

This is not a polynomial. It is a ratio of polynomials so is a rational function.

YOU TRY IT:

Identify which of the following are polynomials.
142. $a(x)=3 x^{5}-2 \sqrt{x}+5 x^{2}$
143. $b(x)=\frac{5 x^{4}-2 x^{2}+x}{3}$
144. $c(x)=-6$
145. $d(x)=2 x(x+4)(x-7)(x+1)^{4}$

Finding zeros of a polynomial function written in factored form

Learning Page The \qquad of f are the real numbers x for which

So we set \qquad and \qquad .

For a product to \qquad at least one of the \qquad must \qquad 0.

YOU TRY IT:

146. Find the zeros of $f(x)=3 x^{2}\left(x^{2}-9\right)(x+4)$

Finding zeros and their multiplicities given a polynomial function written in factored form

Watch the video Determining Zeros and Multiplicities to complete the following.Determine the zeros of the function and state their multiplicities.
$f(x)=$ \qquad
Zero: \qquad Multiplicity: \qquad
Zero: \qquad Multiplicity: \qquad
Zero: \qquad Multiplicity: \qquad
Zero: \qquad Multiplicity: \qquad

EXAMPLE:
Consider the polynomial

$$
p(x)=-4 x(x-3)^{2}(x+7)^{3}(x-1) .
$$

List each zero and its multiplicity.
Zeros of multiplicity one: 0,1
Zero of multiplicity two: 3
Zero of multiplicity three: -7

YOU TRY IT:

147. Consider the polynomial

$$
q(x)=5 x^{2}(x-1)^{4}(x+5)^{2}(x+6) .
$$

List each zero and its multiplicity.

Finding x and y intercepts given a polynomial function

Learning Page
A y-intercept is the \qquad of a point where the graph

A function's graph has \qquad y-intercept.

To find it, we find the \qquad .

Continued on the next page

Watch the video Identifying Zeros and Multiplicities to complete the following.

Given a polynomial function defined by $y=f(x)$:
The values of x in the \qquad of f for which \qquad are called the \qquad of the function. These are also called the \qquad of the equation \qquad

Determine the zeros of the function and state their multiplicities.

EXAMPLE:

Find all intercepts of $p(x)=3 x^{3}+x^{2}-2 x$.
a) y-intercept
$p(0)=3(0)^{3}+0^{2}-2(0)=0$
$(0,0)$ is the y-intercept.
b) x-intercept

$$
\begin{aligned}
3 x^{3}+x^{2}-2 x & =0 \\
x\left(3 x^{2}+x-2\right) & =0 \\
x(3 x-2)(x+1) & =0 \\
x & =0, \frac{2}{3},-1
\end{aligned}
$$

$(0,0),\left(\frac{2}{3}, 0\right)$, and $(-1,0)$ are x-intercepts.

YOU TRY IT:

148. Find all intercepts of $q(x)=2 x^{4}-2 x^{3}-$ $24 x^{2}$.

Determining the end behavior of the graph of a polynomial function

Open the e-book to complete the following.
Notation for Infinite Behavior of $y=f(x)$

$x \rightarrow \infty$	is read as \qquad This means that x becomes infinitely large in the \qquad direction
$x \rightarrow-\infty$	is read as \qquad This means that x becomes infinitely large in the \qquad direction
$f(x) \rightarrow \infty$	is read as \qquad This means that the y value becomes infinitely large in the \qquad direction
$f(x) \rightarrow-\infty$	is read as \qquad This means that the y value becomes infinitely large in the \qquad direction

The Leading Term Test

Consider a polynomial function given by

$$
f(x)=
$$

\qquad
As $x \rightarrow \infty$ or as $x \rightarrow-\infty, f$ eventually becomes forever increasing or forever decreasing and will follow the general behavior of \qquad

Compete the chart below, then sketch a graph in each box that represents the correct end behavior.

Determining end behavior and intercepts to graph a polynomial function

\square Watch the video Graphing a Polynomial Function to complete the following.

Matching graphs with polynomial functions

19 Open the e-book to complete the following.

Touch Points and Cross Points

Let f be a polynomial function and let c be a real zero of f. The point \qquad is an x-intercept of the graph of f. Furthermore,

- If c is a zero of \qquad multiplicity, the graph \qquad the x-axis at c.

The point $(c, 0)$ is called a \qquad .

- If c is a zero of \qquad multiplicity, the graph \qquad the x-axis at c.

The point $(c, 0)$ is called a \qquad .

EXAMPLE:

Sketch the graph of

$$
f(x)=-\frac{1}{2}(x-1)^{2}(x+3)(x+1)^{2} .
$$

- The touch points of f are $(1,0)$ and $(-1,0)$.
- The cross point of f is $(-3,0)$.
- The y-intercept of f is $\left(0,-\frac{3}{2}\right)$.
- The degree of f is 5 and a_{n} is negative so as $x \rightarrow \infty, f(x) \rightarrow-\infty$ and as $x \rightarrow-\infty, f(x) \rightarrow \infty$.

YOU TRY IT:

149. Sketch the graph of

$$
g(x)=x^{2}(x+1)^{2}(x-3)(x-2)
$$

Inferring properties of a polynomial function from its graph

Δ Watch the video Turning Points of a Graph of a Polynomial Function to complete the following.

Number of Turning Points of a Polynomial Function

Let f represent a polynomial function of \qquad Then the graph of f has at most turning points.

YOU TRY IT: Below is the graph of a polynomial function f with real coefficients. Use the graph to answer the following questions.

150. At what x-values does f have local minima?
151. What is the sign of the leading coefficient of f ?
152. What is the lowest possibility for the degree of f ?

Polynomial long division: Problem type 2

\square Watch the video Long Division of Polynomials with a Linear Divisor to complete the following.

EXAMPLE:

Use polynomial long division to evaluate:
$\left(x^{4}+3 x^{3}+x-5\right) \div\left(x^{2}-3\right)$

$$
x^{2}+3 x+3
$$

$$
\left.x^{2}-3\right) \quad x^{4}+3 x^{3} \quad+x-5
$$

$$
\frac{-x^{4} \quad+3 x^{2}}{3 x^{3}+3 x^{2}}+x
$$

$$
\frac{-3 x^{3}+9 x}{3 x^{2}+10 x}-5
$$

$$
\frac{-3 x^{2} r 9}{10 x+4}
$$

So $\left(x^{4}+3 x^{3}+x-5\right) \div\left(x^{2}-3\right)$

$$
=x^{2}+3 x+3+\frac{10 x+4}{x^{2}-3}
$$

YOU TRY IT:

Use polynomial long division to evaluate:
153. $\left(2 x^{5}+x^{4}-x^{3}-x-1\right) \div\left(x^{2}-2 x+1\right)$

The Factor Theorem

\square Watch the video Introduction to the Factor Theorem to complete the following.

Factor Theorem

Let $f(x)$ be a polynomial.

1. If $f(c)=0$, then \qquad is a \qquad of $f(x)$.
2. If \qquad is a factor of $f(x)$, then \qquad .

Use the Factor Theorem to determine if the given binomial is a factor of $f(x)$.

$$
f(x)=x^{4}+11 x^{3}+41 x^{2}+61 x+30
$$

a. \qquad b. \qquad

YOU TRY IT:

154. Use the Factor theorem to determine whether $x+4$ is a factor of $q(x)=x^{3}-13 x+12$.

EXAMPLE:

Use the Factor Theorem to determine whether $x+1$ is a factor of $p(x)=-3 x^{3}+4 x^{2}-2 x-6$.

$$
\begin{aligned}
p(-1) & =-3(-1)^{3}+4(-1)^{2}-2(-1)-6 \\
& =3+4+2-6 \\
& =3
\end{aligned}
$$

$p(-1) \neq 0$ so $x+1$ is not a factor of $p(x)$.

Synthetic division

\square Watch the video Introduction to Synthetic Division to complete the following.
Divide.

EXAMPLE:

Use synthetic division to evaluate:

$$
\begin{aligned}
& \left(x^{4}-14 x^{2}+5 x-9\right) \div(x+4) \\
& \quad-4 \left\lvert\, \begin{array}{rrrrr}
1 & 0 & -14 & 5 & -9 \\
& -4 & 16 & -8 & 12 \\
1 & -4 & 2 & -3 & 3
\end{array}\right.
\end{aligned}
$$

So $\left(x^{4}-14 x^{2}+5 x-9\right) \div(x+4)$

$$
=x^{3}-4 x^{2}+2 x-3+\frac{3}{x+4}
$$

YOU TRY IT:

Use synthetic division to evaluate:
155. $\left(2 x^{4}-x^{3}-3 x-1\right) \div(x-2)$

Using a given zero to write a polynomial as a product of linear factors: Real zeros

Watch the video Factoring a Polynomial Given a Zero of the Polynomial to complete the following.
a. Factor $f(x)=$ \qquad given that $\frac{1}{4}$ is a zero.
b. Solve \qquad

Finding the intercepts, asymptotes, domain, and range from the graph of a rational function

Watch the video Introduction to Rational Functions to complete the following.a. As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
b. As $x \rightarrow 4^{-}, f(x) \rightarrow$ \qquad
c. As $x \rightarrow 4^{+}, f(x) \rightarrow$ \qquad
d. As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
e. Increasing:

h. Range:
f. Decreasing:
g. Domain:

In mathematics, \rightarrow means the word \qquad

YOU TRY IT: Use the graph to answer the following questions about $f(x)$.

156. Find the domain of $f(x)$.
157. Find the range of $f(x)$.
158. Find all asymptotes of $f(x)$.

Finding the asymptotes of a rational function: Constant over linear

Learning Page

Vertical asymptote(s):

A rational function in simplest form has vertical asymptotes at the \qquad of
the \qquad

Horizontal asymptote(s):

A rational function can have \qquad horizontal asymptote.

To find the horizontal asymptotes (if any), we compare the \qquad n of the \qquad with the \qquad of the \qquad

- If \qquad the horizontal asymptote is \qquad -.
- If \qquad the horizontal asymptote is given by
- If \qquad there is \qquad horizontal asymptote.

YOU TRY IT:

159. Find all vertical and horizontal asymptotes of the function $f(x)=\frac{7}{3 x-2}$.

Finding the asymptotes of a rational function: Linear over linear

Open the e-book to complete the following.

Definition of a Vertical Asymptote

The line \qquad is a vertical asymptote of the graph of a function f if $f(x)$ approaches
\qquad or \qquad as x approaches \qquad from either side.

Identifying Vertical Asymptotes of a Rational Function

Consider a rational function f defined by \qquad , where $p(x)$ and $q(x)$ have
\qquad other than 1 .

If c is a \qquad then \qquad is a \qquad asymptote of the graph of f.

Definition of a Horizontal Asymptote

The line \qquad is a horizontal asymptote of the graph of a function f if infinity or negative infinity.

Identifying Horizontal Asymptotes of a Rational Function

Let f be a rational function defined by

$$
f(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+b_{m-2} x^{m-2}+\ldots+b_{1} x+b_{0}}
$$

The definition of $f(x)$ indicates that \qquad is the \qquad of the \qquad and \qquad is the \qquad of the \qquad
1.
2.
3.

Finding horizontal and vertical asymptotes of a rational function: Quadratic numerator or denominator

Watch the video Identifying Vertical Asymptotes Algebraically 1 to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

$$
f(x)=
$$

\qquad $=$ \qquad

Denominator is zero when: \qquad

Numerator is zero when: \qquad
Vertical asymptote(s): \qquad

EXAMPLE:

Find all asymptotes of

$$
f(x)=\frac{x+1}{(x-2)(x+3)}
$$

- The numerator and denominator share no common factors other than 1.
- To find the vertical asymptotes we consider the zeros of the denominator which are 2 and -3 .
- Vertical asymptotes:
- $x=2$
- $x=-3$
- Horizontal asymptote:
- We look at the degree of the top compared to the degree of the bottom.
- As x gets large, y will get close to zero so the horizontal asymptote is $y=0$.

YOU TRY IT:

160. Find all asymptotes of

$$
f(x)=\frac{x^{2}}{x^{2}-9}
$$

Graphing a rational function: Constant over linear

Open the e-book to complete the following.

Graphing a Rational Function

Consider a rational function f defined by $f(x)=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomials with no common factors.

1. Determine the \qquad by evaluating \qquad
2. Determine the \qquad by finding the \qquad solutions of \qquad
The value $f(x)$ equals \qquad when \qquad .
3. Identify any \qquad and graph them as \qquad lines.
4. Determine whether the function has a \qquad or a slant asymptote (or neither), and graph the asymptote as a \qquad line.
5. Determine where the function crosses the \qquad or slant asymptote (if applicable).
6. If a test for \qquad is easy to apply, use \qquad to plot additional points. Recall:

- f is an even function (symmetric to the \qquad) if \qquad
- f is an odd function (symmetric to the \qquad) if \qquad

7. Plot at least one point on the intervals defined by the x-intercepts, vertical asymptotes, and any points where the function crosses a horizontal or slant asymptote.
8. Sketch the function based on the information found in steps 1-7.

Graphing a rational function: Linear over linear

ใ? Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of $f(x)=$ \qquad
Vertical asymptote:

Horizontal asymptote:

y-intercept:

YOU TRY IT:

161. Sketch the graph of $f(x)=\frac{2 x-2}{x+3}$.

Matching graphs with rational functions: Two vertical asymptotes

\square Watch the video Graphing a Rational Function to complete the following.

Graph $r(x)=$ \qquad $=$
y-intercept:
x-intercept(s):

Vertical asymptote(s):

Horizontal or slant asymptote:

Notes from Focus Group:
$\underline{\text { Notes from Focus Group: }}$

Module 12-Review

To help you review for your upcoming exam, this module contains all of the topics from the modules since the last exam. Topics that you have already mastered will not appear in your carousel.Complete this module before you take the ALEKS exam.
Each exam has two parts.

- The ALEKS exam (100 pts)
- The ALEKS exam must be taken in the MALL.
- The ALEKS exam is a Comprehensive Knowledge Check.
- Your score is the number of topics you have mastered out of the number of topics you should have mastered by this point.
- If you lose topics on your ALEKS exam, your Review Module completion grade will not change.
- Your scratch work for the ALEKS exam must be numbered and turned in through Blackboard.
- The Written exam (25 pts)
- Take your written exam in class the day of your focus group.
- To study for the written exam:
- Rework your old Focus Group assignments.
- Rework any topics in ALEKS you may have lost on the ALEKS exam.

	Score
ALEKS Exam	
Written Exam	

Module 13

Contents

Horizontal line test 196
Graphing the inverse of a function given its graph 196
Determining whether two functions are inverses of each other 197
Inverse functions: Linear, discrete 198
Inverse functions: Quadratic, square root 200
Inverse functions: Cubic, cube root 201
Finding, evaluating, and interpreting an inverse function for a given linear relationship 202
Table for an exponential function 202
Graphing an exponential function and its asymptote: $f(x)=b^{x}$ 203
Translating the graph of an exponential function 203
The graph, domain, and range of an exponential function 204
Transforming the graph of a natural exponential function 205
Evaluating an exponential function with base e that models a real-world situation 206
\square Evaluating an exponential function that models a real-world situation 207
Converting between logarithmic and exponential equations 208
Converting between natural logarithmic and exponential equations 209
Evaluating logarithmic expressions 210
Graphing a logarithmic function: Basic 210
\square The graph, domain, and range of a logarithmic function 211
Domain of a logarithmic function: Advanced 212

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 3 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by

Module 13

Horizontal line test

\square Watch the video Applying the Horizontal Line Test to complete the following.

Horizontal Line Test

A function defined by $y=f(x)$ is \qquad if \qquad intersects the graph in \qquad .

Sketch the graph and determine if the relation defines y as a one-to-one function of x.

Graphing the inverse of a function given its graph

Learning Page To get the graph of \qquad , we take the \qquad of \qquad and
\qquad them.

That is, we \qquad -.

We see that the graph of f^{-1} is the \qquad of the \qquad of \qquad over the line \qquad
YOU TRY IT: The graph of $f(x)$ is given below. Sketch the graph of $f^{-1}(x)$ on the same axes.
162.

Determining whether two functions are inverses of each other

\square Watch the video Determining Whether Two Functions are Inverses to complete the following.

Determine whether the two functions are inverses.
$f(x)=$ \qquad and $g(x)=$ \qquad

Let f be a \qquad function. Then g is the inverse of f if the following conditions are both true.
1.
2.

YOU TRY IT:

163. Determine if $f(x)=3 x+7$ and $g(x)=\frac{x-3}{7}$ are inverses.

Inverse functions: Linear, discrete

Learning Page For a given \qquad function f, there is a related function, \qquad which is the

The function f maps \qquad if and only if f^{-1} maps \qquad So, the \qquad are the \qquad and vice versa.

More precisely,
\qquad if and only if \qquad

There is a general method to find the inverse of a function that is defined by an equation.
Step 1:
Step 2:
Step 3:
Step 4: .

The composition of a function with its inverse always gives an \qquad to the
\qquad
\square Watch the video Introduction to Inverse Functions to complete the following.

$f=\longrightarrow \quad$| Domain: |
| :--- |
| Range: |
| Domain: |
| Range: |

EXAMPLE:

Given $f=\{(1,3),(2,4),(5,7)\}$, find the following
a) f^{-1}

The inverse function f^{-1} reverses the ordered pairs of f.
$f^{-1}=\{(3,1),(4,2),(7,5)\}$.
b) $f^{-1}(7)$

From part a) we see $f^{-1}(7)=5$.
c) $\left(f^{-1} \circ f\right)(1)$
$\left(f^{-1} \circ f\right)(1)=f^{-1}(f(1))=f^{-1}(3)=1$

YOU TRY IT:

Given $g=\{(3,0),(2,5),(4,6),(7,9)\}$, find the following.
164. g^{-1}
165. $g^{-1}(5)$
166. $\left(g^{-1} \circ g\right)(7)$

EXAMPLE:

Given $g(x)=3 x-7$, find the following
a) $g^{-1}(x)$

$$
\begin{aligned}
g(x) & =3 x-7 \\
y & =3 x-7 \\
x & =3 y-7 \\
x+7 & =3 y \\
\frac{x+7}{3} & =y \\
g^{-1}(x) & =\frac{x+7}{3}
\end{aligned}
$$

b) $\left(g \circ g^{-1}\right)(4)$

From the definition of inverse function we know $\left(g \circ g^{-1}\right)(x)=x$ for all x in the domain. So $\left(g \circ g^{-1}\right)(4)=4$.

YOU TRY IT:

Given $f(x)=\frac{1}{7} x+5$.
167. Find $f^{-1}(x)$
168. Find $\left(f \circ f^{-1}\right)(-3)$.

Inverse functions: Quadratic, square root

\square Watch the video Finding the Inverse of Function with a Restricted Domain to complete the following.
a. Graph $f(x)=$ \qquad ;
b. From the graph of f, is f a one-to-one function?
c. Write the domain of f in interval notation.
d. Write the range of f in interval notation.
e. Write an equation for $f^{-1}(x)$.
f. Graph $y=f(x)$ and $y=f^{-1}(x)$ on the same coordinate system.

g. Write the domain of $f^{-1}(x)$ in interval notation.
h. Write the range of $f^{-1}(x)$ in interval notation.

EXAMPLE:

a) Find the inverse of $f(x)=\sqrt{x-4}+3$.

$$
\begin{aligned}
f(x) & =\sqrt{x-4}+3 \\
y & =\sqrt{x-4}+3 \\
x & =\sqrt{y-4}+3 \\
x-3 & =\sqrt{y-4} \\
(x-3)^{2} & =y-4 \\
x^{2}-6 x+9+4 & =y \\
f^{-1}(x) & =x^{2}-6 x+13 \text { for } x \geq 3
\end{aligned}
$$

We need the extra condition $x \geq 3$ because otherwise $f^{-1}(x)$ is NOT one-to-one.
b) Find the inverse of $g(x)=x^{2}+2 x-4$ where $x \geq-1$.

$$
\begin{aligned}
g(x) & =x^{2}+2 x-4 \\
y & =x^{2}+2 x-4 \\
x & =y^{2}+2 y-4 \\
x & =y^{2}+2 y+1-1-4 \\
x & =(y+1)^{2}-5 \\
x+5 & =(y+1)^{2} \\
\sqrt{x+5} & =y+1 \\
\sqrt{x+5}-1 & =f^{-1}(x)
\end{aligned}
$$

YOU TRY IT:

169. Find the inverse of $f(x)=\sqrt{3 x-1}+2$.
170. Find the inverse of $g(x)=x^{2}-6 x-4$ where $x \geq 3$.

Inverse functions: Cubic, cube root

EXAMPLE:

Find the inverse of $f(x)=\sqrt[3]{x-7}+4$.

$$
y=\sqrt[3]{x-7}+4
$$

Switch x and y.
$x=\sqrt[3]{y-7}+4$
Subtract 4.

$$
x-4=\sqrt[3]{y-7}
$$

Cube both sides.

$$
(x-4)^{3}=(\sqrt[3]{y-7})^{3}
$$

Simplify.

$$
(x-4)^{3}=y-7
$$

$$
\text { Add } 7 .
$$

$$
(x-4)^{3}+7=y
$$

$$
f^{-1}(x)=(x-4)^{3}+7
$$

YOU TRY IT:

171. Find the inverse of $f(x)=(x+4)^{3}$.

Finding, evaluating, and interpreting an inverse function for a given linear relationship

EXAMPLE: Steve is walking and his distance D in miles from Fargo after x hours of walking is given by $D(x)=11.6-4 x$.
a. Describe in words what $D^{-1}(x)$ means.

With a function and its inverse we are "switching" the domain and range.
The input for $D^{-1}(x)$ will be a distance and the output will be a time.
$D^{-1}(x)$ represents the amount of time in hours that Steve has walked when he is x miles from Fargo.
b. Find $D^{-1}(x)$.

$$
\begin{aligned}
y & =11.6-4 x \\
x & =11.6-4 y \\
x-11.6 & =-4 y \\
\frac{x-11.6}{-4} & =y \\
D^{-1}(x) & =\frac{11.6-x}{4}
\end{aligned}
$$

Table for an exponential function

Learning Page The table gives \qquad x and their corresponding $h(x)$.

We use the rule $\left(\frac{a}{b}\right)^{-n}=$ \qquad

YOU TRY IT: Complete the tables below.
172.

x	$g(x)=5^{x}$
0	
1	
2	
3	
-1	
-2	
-3	

173.

x	$f(x)=\left(\frac{1}{3}\right)^{x}$
0	
1	
2	
3	
-1	
-2	
-3	

Graphing an exponential function and its asymptote: $f(x)=b^{x}$

\square Watch the video Graphing Exponential Functions to complete the following.

Graph the functions. Sketch $g(x)$ with a solid line and $k(x)$ with a dashed line.
a. $g(x)=$ \qquad b. $k(x)=$ \qquad

x	$g(x)$
0	
1	
2	
3	
-1	
-2	
-3	

x	$k(x)$
0	
1	
2	
3	
-1	
-2	
-3	

Translating the graph of an exponential function

\square Watch the video Graphing an Exponential Function Using Transformations to complete the following.

Graph $g(x)=$ \qquad

EXAMPLE: Sketch the graph of $y=-2^{x+3}+5$.
This is the graph of $y=2^{x}$ transformed by

- Shifting left 3 units
- Reflecting across the x-axis
- Shifting up 5 units

YOU TRY IT.

174. Sketch the graph of $y=3^{x-2}-4$

The graph, domain, and range of an exponential function

Open the e-book to complete the following.
Graphs of $f(x)=b^{x}$
The graph of an exponential function defined by $f(x)=b^{x}$ where $b>0$ and $b \neq 1$ has the following properties.

1. If $b>1, f$ is an \qquad exponential function, sometimes called an exponential
\qquad function.

If $0<b<1, f$ is a \qquad exponential function, sometimes called an
exponential \qquad function.
2. The domain is \qquad .
3. The range is \qquad
4. The line \qquad is a \qquad .
5. The function passes through the point \qquad (this is the y-intercept) because $f(0)=b^{0}=1$.

Transforming the graph of a natural exponential function

Learning Page

Some ways to transform the graph of a function.
1.
2.
3.

In what order is it a good idea to perform the transformations?

YOU TRY IT: Sketch the graph of $y=e^{x-1}-3$
175.

Evaluating an exponential function with base e that models a real-world situation

\square Watch the video Applying an Exponential Function to Newton's Law of Cooling to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

The temperature $T(t)$ of an object set to cool is modeled by

$$
T(t)=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}
$$

where T_{a} is the \qquad of the surrounding \qquad
T_{0} is the \qquad temperature of the object
t is the \qquad since the hot object was set to cool
k is a \qquad related to the physical \qquad of the object

A cake comes out of the oven at \qquad and is placed on a cooling rack in a \qquad kitchen.

After checking the temperature several minutes later, it is determined that the cooling rate k is \qquad $-$
a. Write a function that models the temperature $T(t)$ (in ${ }^{\circ} \mathrm{F}$) of the cake t minutes after being removed from the oven.
b. What is the temperature of the cake 10 min after coming out of the oven? Round to the nearest degree.
c. It is recommended that the cake should not be frosted until it has cooled to under $100^{\circ} \mathrm{F}$. If Jessica waits 1 hr to frost the cake, will the cake be cool enough to frost?

EXAMPLE:

A bacteria population size increases according to $P(t)=1700 e^{0.18 t}$ where t is measured in hours. Find the initial number in the population and the number after 7 hours.

- Initial number

We want the number of bacteria after 0 hours so we compute $P(0)$.
$P(0)=1700 e^{0.18(0)}=1700$

- Number after 7 hours $P(7)=1700 e^{0.18(7)} \approx$ 5993

YOU TRY IT:

The velocity $v(t)$ in m / s of an object falling near Earth's surface is given by $v(t)=49\left(1-e^{-0.22 t}\right)$ where t is measured in seconds.
176. Find the velocity of the object after 4 seconds.

Evaluating an exponential function that models a real-world situation

EXAMPLE:

The dollar value $c(t)$ of a car that is t years old is given by $c(t)=19,900(0.86)^{t}$. Find the value initial value of the car and the value of the car after 11 years.

- Initial value

The initial value will be the value of the car at 0 years so we compute $c(0)$.
$c(0)=19,900(0.86)^{0}=\$ 19,900$

- Value after 11 years

We are computing $c(11)$.
$c(11)=19,900(0.86)^{11} \approx \$ 3787$

YOU TRY IT:

A radioactive substance has a half-life of 14 hours. The amount $a(t)$ in grams of a sample remaining after t hours is given by

$$
a(t)=2800\left(\frac{1}{2}\right)^{\frac{t}{14}}
$$

177. Find the initial amount in the sample.
178. Find the amount remaining after 30 hours.

Converting between logarithmic and exponential equations

\square Watch the video Converting from Logarithmic Form to Exponential Form to complete the following.

Write each equation in exponential form.
a.
b.
is the same as
c.
\square Watch the video Converting from Exponential Form to Logarithmic Form to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Write each equation in logarithmic form.
a.
b.
is the same as
c.

EXAMPLE:

a) Write $\log _{5} x=y$ as an exponential equation.

$$
\begin{aligned}
& \log _{5} x=y \\
& 5^{y}=x
\end{aligned}
$$

b) Write $c^{6}=3$ as a logarithmic equation.

$$
\begin{aligned}
c^{6} & =3 \\
\log _{c} 3 & =6
\end{aligned}
$$

YOU TRY IT:

179. Write $\log _{4} 5=x$ as an exponential equation.
180. Write $7^{y}=9$ as a logarithmic equation.

Converting between natural logarithmic and exponential equations

Learning Page For any numbers a, b, and c, with a and c positive $(a \neq 1)$, we have the following equivalence.
$\log _{a} c=b$ if and only if \qquad

The first is a \qquad equation, and the second is an \qquad equation.

However, when the base is \qquad , we do \qquad write \qquad .

Instead, we write \qquad , which is read as \qquad
e is a special \qquad number. Its value is $e=$ \qquad
So, when the base of the logarithm is e, we write the relationship as follows.
\qquad if and only if

EXAMPLE:

a) Write $\ln 8=x$ as an exponential equation.

$$
\begin{aligned}
\ln 8 & =x \\
e^{x} & =8
\end{aligned}
$$

b) Write $e^{y}=2$ as a logarithmic equation.

$$
\begin{aligned}
e^{y} & =2 \\
\ln 2 & =y
\end{aligned}
$$

YOU TRY IT:

181. Write $\ln x=5$ as an exponential equation.
182. Write $e^{r}=t$ as a logarithmic equation.

Evaluating logarithmic expressions

\square Watch the video Evaluating Common and Natural Logarithms to complete the following.

Simplify the expressions.
a.
b.

YOU TRY IT: Simplify the expressions.
183. $\log _{5} \frac{1}{125}$
184. $\ln e^{5}$

Graphing a logarithmic function: Basic

Watch the video Graphing a Logarithmic Function to complete the following.

The graph, domain, and range of a logarithmic function

Open the e-book to complete the following.

Graphs of Exponential and Logarithmic Functions

Domain: \qquad

Range: \qquad
Horizontal asymptote: \qquad
Passes through: \qquad

Domain: \qquad

Range: \qquad
Vertical asymptote: \qquad
Passes through: \qquad
If $b>1$, the function is \qquad -.

If $b>1$, the function is \qquad .

If $0<b<1$, the function is \qquad If $0<b<1$, the function is \qquad

EXAMPLE:

Sketch the graph of $y=\ln (x+2)-1$.
This is the graph of $y=\ln x$ shifted

- left 2 units
- down 1 unit

YOU TRY IT:

185. Sketch the graph of $y=-2 \ln (x+3)+1$.

Domain of a logarithmic function: Advanced

\square Watch the video Identifying the Domain of a Logarithmic Function to complete the following.

The domain of \qquad is restricted to \qquad

Write the domain in interval notation.
\qquad
a. $f(x)=$
b. $r(x)=$ \qquad
\qquad
4

YOU TRY IT: Find the domain of the function. Write your answer in interval notation.
186. $g(x)=\log (x+7)$

Notes from Focus Group:
$\underline{\text { Notes from Focus Group: }}$

Module 14

Contents

Basic properties of logarithms215\square Using properties of logarithms to evaluate expressions 216Expanding a logarithmic expression: Problem type 1217
\square Expanding a logarithmic expression: Problem type 2 218
Writing an expression as a single logarithm 218
Solving an equation of the form $\log _{b} a=c$ 219
Solving a multi-step equation involving a single logarithm: Problem type 1 220
Solving a multi-step equation involving a single logarithm: Problem type 2 221
\square Solving a multi-step equation involving natural logarithms 222
Solving an equation involving logarithms on both sides: Problem type 1 222
Solving an equation involving logarithms on both sides: Problem type 2 223
Solving an exponential equation by finding common bases: Linear exponents 224
\square Solving an exponential equation by using logarithms: Exact answers in logarithmic form 225
Finding the time given an exponential function with base e that models a real-world situation 226
Finding the initial amount and rate of change given an exponential function 227

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 3 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by

Basic properties of logarithms

(1) Open the e-book to complete the following.

Product Property of Logarithms

Let b, x, and y be positive real numbers where $b \neq 1$. Then

$$
\log _{b}(x y)=
$$

\qquad

The logarithm of a product equals the \qquad

Quotient Property of Logarithms

Let b, x, and y be positive real numbers where $b \neq 1$. Then

$$
\log _{b}\left(\frac{x}{y}\right)=
$$

\qquad

The logarithm of a quotient equals the \qquad of the logarithm of the \qquad and the
\qquad of the \qquad

Power Property of Logarithms

Let b, x, and y be positive real numbers where $b \neq 1$. Let p be any real number. Then

$$
\log _{b} x^{p}=
$$

\qquad

Properties of Logarithms

Let b, x, and y be positive real numbers where $b \neq 1$, and let p be any real number. Then the following properties of logarithms are true.

1. $\log _{b} 1=$ \qquad 3. $\log _{b} b^{p}=$ \qquad
2. $\log _{b} b=$ \qquad 4. $b^{\log _{b} x}=$ \qquad

Using properties of logarithms to evaluate expressions

Learning Page Let a, b, and c be any real numbers, with a and c positive, and $a \neq 1$.
We have the following definition of the logarithm.
\qquad if and only if \qquad
From this definition, we get the following fact.

However, when the base is \qquad , we do \qquad write \qquad

Instead we write \qquad which is read as \qquad .
\qquad if and only if \qquad
From this definition, we get the following fact.

We also have the following properties of logarithms.

Logarithm of a product:	$\log _{a} M+\log _{a} N=$
Logarithm of a quotient:	$\log _{a} M-\log _{a} N=$
Logarithm of a power:	$p \log _{a} M=$

For these properties, a, M, and N are \qquad numbers, with \qquad and \qquad is any

YOU TRY IT: Use the properties of logarithms to evaluate the expression.
187. $6 \ln e^{4}-\ln e^{3}$

Expanding a logarithmic expression: Problem type 1

\square Watch the video Applying the Product Property of Logarithms to complete the following.

Product Property of Logarithms

Let b, x and y be positive real numbers where \qquad Then,
\qquad
\qquad

Example:

Write the logarithm as a sum and simplify if possible.

EXAMPLE: Expand $\log \left(\frac{x^{3} y^{5}}{z}\right)$.
Use the Quotient Property

$$
\log \left(\frac{x^{3} y^{5}}{z}\right)=\log \left(x^{3} y^{5}\right)-\log z
$$

Use the Product Property
$=\log x^{3}+\log y^{5}-\log z$
Use the Power Property

$$
=3 \log x+5 \log y-\log z
$$

YOU TRY IT:

188. Expand $\ln \left(\frac{x z^{2}}{y^{5}}\right)$.

Expanding a logarithmic expression: Problem type 2

\square Watch the video Writing a Logarithmic Expression in Expanded Form to complete the following.

Write the expression as the sum or difference of logarithms.

Writing an expression as a single logarithm

Watch the video Writing the Sum or Difference of Logarithms as a Single Logarithm 2 to complete the following.Write the logarithmic expression as a single logarithm with coefficient 1 , and simplify if possible.

EXAMPLE: Write $\frac{1}{2} \ln y-\frac{1}{3} \ln x+\ln 2$ as a single log.

$$
\begin{aligned}
\frac{1}{2} \ln y-\frac{1}{3} \ln x+\ln 2 & =\ln y^{1 / 2}-\ln x^{1 / 3}+\ln 2 \\
& =\ln \sqrt{y}-\ln \sqrt[3]{x}+\ln 2 \\
& =\ln \left(\frac{\sqrt{y}}{\sqrt[3]{x}}\right)+\ln 2 \\
& =\ln \left(\frac{2 \sqrt{y}}{\sqrt[3]{x}}\right)
\end{aligned}
$$

YOU TRY IT:

189. Write $\log (x-1)+\log 3-3 \log x$ as a single log.

Solving an equation of the form $\log _{b} a=c$

Learning Page

For any numbers a, b, and c, with a and c positive $(a \neq 1)$, we have the following relationship.
\qquad if and only if \qquad

EXAMPLE: Solve.

$$
\log _{2} x=-3
$$

Use the relationship above.

$$
\begin{aligned}
2^{-3} & =x \\
\frac{1}{8} & =x
\end{aligned}
$$

YOU TRY IT: Solve.
190. $\log _{x} 2=\frac{1}{3}$

Solving a multi-step equation involving a single logarithm: Problem type 1

Read EXAMPLE 8: Solving a Logarithmic Equation to complete the following steps.
Solve. \qquad

Solution:

$$
\begin{gathered}
4 \log _{3}(2 t-7)=8 \\
\log _{3}(2 t-7)=2
\end{gathered}
$$

Isolate the \qquad by \qquad both sides by 4 .

The equation is in the form \qquad where \qquad
Write the equation in \qquad form.

$$
\begin{array}{cl}
2 t-7=9 & \text { Check: } 4 \log _{3}(2 t-7)=8 \\
t=8 & 4 \log _{3}[2(8)-7] \stackrel{?}{=} 8 \\
& 4 \log _{3} 9 \stackrel{?}{=} 8 \\
& 4 \cdot 2 \stackrel{?}{=} 8 \checkmark
\end{array}
$$

YOU TRY IT: Solve.
191. $5 \log _{6}(7 x+1)=10$

Solving a multi-step equation involving a single logarithm: Problem type 2

Watch the video Solving a Logarithmic Equation by Writing Exponential Form to complete the following.

Solving Logarithmic Equations by Using Exponential Form

Step 1 Given a logarithmic equation, \qquad ـ.

Step 2 Use the \qquad to write the equation in the form
\qquad where k is a constant.

Step 3 Write the equation in \qquad
Step 4 \qquad the equation from \qquad .

Step 5 \qquad the potential solution(s) in the \qquad

Solve. Check:

EXAMPLE: Solve.

$$
\log _{3}(x-1)-\log _{3} 4=2
$$

Use Quotient Property of Logs.

$$
\log _{3} \frac{x-1}{4}=2
$$

Use Def of Log.

$$
\begin{aligned}
\frac{x-1}{4} & =3^{2} \\
x-1 & =36 \\
x & =37
\end{aligned}
$$

Solving a multi-step equation involving natural logarithms

วิ Open the Instructor Added Resource which will direct you to a video to complete the following.
Solve for x.

YOU TRY IT: Solve for x.
193. $\ln (x+2)=4$

Solving an equation involving logarithms on both sides: Problem type 1

Watch the video Solving a Logarithmic Equation 2 to complete the following.Solve \qquad

YOU TRY IT: Solve the equation.
194. $\log _{3} x+\log _{3}(x+6)=3$

Solving an equation involving logarithms on both sides: Problem type 2

\square Watch the video Solving a Logarithmic Equation by Using the Equivalence Property to complete the following.

Equivalence Property of Logarithmic Expressions

Let b, x, and y be positive real numbers with $b \neq 1$. Then,
\qquad implies that

Solve \qquad

EXAMPLE:

Solve.

$$
\begin{aligned}
\log _{5}(x+18)+\log _{5}(x-6) & =2 \log _{5} x \\
\log _{5}((x+18)(x-6)) & =\log _{5} x^{2} \\
(x+18)(x-6) & =x^{2} \\
x^{2}+12 x-108 & =x^{2} \\
12 x-108 & =0 \\
12 x & =108 \\
x & =9
\end{aligned}
$$

YOU TRY IT:

Solve.
195. $\log _{2} x+\log _{2}(x-4)=\log _{2}(x+24)$

Solving an exponential equation by finding common bases: Linear exponents

Watch the video Solving an Exponential Equation by Using the Equivalence Property to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Equivalence Property of Exponential Expressions

Let b, x, and y be real numbers with $b>0$ and $b \neq 1$. Then,

$$
b^{x}=b^{y} \text { implies that }
$$

\qquad

Solve.
Check:

Continued on the next page

Learning Page For any positive number A such that $A \neq 1$, we have the following.
\ldots if and only if \qquad
We can write each side of our equation with the \qquad and then apply this property.

EXAMPLE:

Solve.

$$
32^{x-4}=64
$$

Rewrite each side with base 2.

$$
\left(2^{5}\right)^{x-4}=2^{6}
$$

Simplify exponent on left.
$2^{5 x-20}=2^{6}$
Use property from above.

$$
\begin{aligned}
5 x-20 & =6 \\
5 x & =26 \\
x & =\frac{26}{5}
\end{aligned}
$$

YOU TRY IT:

Solve.
196. $4^{x+2}=\frac{1}{2^{x}}$

Solving an exponential equation by using logarithms: Exact answers in logarithmic form

\square Watch the video Solving an Exponential Equation by Using Logarithms 3 to complete the following.

Solve

EXAMPLE:
Solve.

$$
\begin{aligned}
4^{x+2} & =7^{x} \\
\ln 4^{x+2} & =\ln 7^{x} \\
(x+2) \ln 4 & =x \ln 7 \\
x \ln 4+2 \ln 4 & =x \ln 7 \\
x \ln 4-x \ln 7 & =-2 \ln 4 \\
x(\ln 4-\ln 7) & =-2 \ln 4 \\
x & =\frac{2 \ln 4}{\ln 4-\ln 7}
\end{aligned}
$$

YOU TRY IT:

Solve.
197. $e^{x-2}=9$

Finding the time given an exponential function with base e that models a real-world situation

Read EXAMPLE 5 Part b: Creating a Model for Exponential Decay to complete the following steps.
An archeologist uncovers human remains at an ancient Roman burial site and finds that \qquad of the carbon-14 still remains in the bone. How old is the bone? Round to the nearest hundred years.

Solution:
\qquad $=Q_{0} e^{-0.000121 t} \quad$ The quantity $Q(t)$ of carbon-14 in the bone is \qquad of \qquad
\qquad $=e^{-0.000121 t}$

Divide by \qquad on both sides.

$$
\ln 0.7666=
$$

\qquad
$t=$ \qquad \approx \qquad

The bone is \qquad years old.

Finding the initial amount and rate of change given an exponential function

Learning Page

A function in the following form models \qquad .
\qquad (where $a>0, b>0$, and \qquad

Here, y is an \qquad and t is the \qquad Note the following.

- The constant \qquad is the \qquad that is, the value of
\qquad .
- The constant \qquad tells whether the functions models \qquad
- If \qquad then the function models \qquad
- If \qquad then the function models \qquad
- From the value of \qquad , we can also ge the \qquad of growth or decay.
- If \qquad then b equals \qquad where r is the \qquad —.

That is \qquad is the \qquad (expressed as a decimal) for each
\qquad .

- If \qquad then b equals \qquad where r is the \qquad

That is \qquad is the \qquad (expressed as a decimal) for each

Notes from Focus Group:

Notes from Focus Group:

Module 15-Final Review

To help you review for your upcoming final exam, this module contains all of the topics from the course. Topics that you have already mastered will not appear in your carousel.

- ALEKS final exam
- The ALEKS final exam must be taken in the MALL.
- The ALEKS final exam is a Comprehensive Knowledge Check.
- The ALEKS final exam must be completed by \qquad
- To study for the final exams:
- Complete this ALEKS Final Review Module.
- Rework the problems on your old exams.
- Review your old Focus Group assignments.

Solutions

Module 1

1. $-\frac{8}{125}$
2. $\frac{1}{25}$
3. $\frac{4}{x^{5}}$
4. $3 x^{7}$
5. $\frac{x^{12}}{27}$
6. $\sqrt{x^{7}}$
7. $x^{4 / 3}$
8. 2
9. 2
10. 4
11. 27
12. 64
13. $\frac{1}{9}$
14. $7 \sqrt{6}$
15. $x \neq \frac{1}{3}$
16. $x=-\frac{39}{11}$
17. $y=-7$
18. $x=-2$
19. $x=-13$
20. $d=\frac{2 S-a n}{n}$
21. $c=3 A-a+b$
22. $y=2$
23. $w=25$
24. $t=\frac{27}{4}$

Module 2
25. $7 i$
26. $4 i \sqrt{3}$
27. $x=\frac{2}{3},-7$
28. $y=0,9$
29. $x=5,3$
30. $x=-3,-2$
31. $y=-\frac{3}{2}, \frac{7}{5}$
32. $3 x^{2}-9 x-30=0$
33. $u=2$
34. $x=2 \pm \sqrt{10}$
35. $x=\frac{-3 \pm \sqrt{14}}{2}$
36. $x=-\frac{1}{3} \pm i \frac{\sqrt{2}}{3}$
37. length: 24 ft height: 10 ft
38. $x=4 \pm \sqrt{14} \mathrm{sec}$ $x \approx .26 \mathrm{sec}, 7.74 \mathrm{sec}$
39. $x=\frac{1}{3}, 2$
40. $x=-\frac{1}{3}$
41. $y=3,-2$
42. $(0,-5)$, Answers may vary
43. $x=-1 \pm 2 i$

Module 3

44. x-intercepts: $(\sqrt{5}, 0),(-\sqrt{5}, 0)$ y-intercepts: $(0, \sqrt{7}),(0,-\sqrt{7})$
45. x-intercept: $\frac{3}{7}$
y-intercept: $-\frac{3}{5}$
46. $-\frac{2}{3}$
47. 0
48. $y=\frac{3}{4} x-\frac{9}{2}$
49. $y=-\frac{7}{3} x+\frac{2}{3}$
50. $x=-4$
51. $y=-12$
52. perpendicular
53. $y=\frac{3}{4} x-5$
54. $y=-\frac{4}{3} x+\frac{10}{3}$
55.

56.

57. Slope is $\frac{2}{3}$
y-intercept $(0,-3)$

58.

59. 4
60. -3
61.

62. $C=150 S+4350$

63. $\$ 15$ per toy produced
64. $\$ 1100$
65. $(1,2)$
66. $(-2,2)$
67. A notebook is $\$ 1.85$ and a pen is $\$ 0.65$.

Module 5

68. $x<-\frac{7}{2}$
69. $x=7,-7$
70. $-4,-10$
71. No solution
72. $x=5,9$
73. $c \leq 500$

74. \varnothing
75. $(-\infty, 2] \cup(5, \infty)$
76. No Solution
77. $x=10$
78. $14 \mathrm{~m} / \mathrm{sec}$
79. $x=6$
80. $x=4 \sqrt[3]{2}-5$
81. Function
82. Not a Function
83. Function
84. Not a Function
85. $f(-4)=-\frac{2}{3}$
86. 17
87. 22
88. 3
89. $\$ 531.44$
90. $\$ 660$

Module 6

92. $75 x^{2}-20 x+7$
93. $\sqrt{17-4 x^{2}}$
94. domain: $\{2,-5,0,5\}$
range: $\{3,1,-4\}$
95. $3,-3$
96. $(-\infty,-3) \cup(-3,5) \cup(5, \infty)$
97. $\left(-\infty, \frac{4}{7}\right]$
98. $\left(-\infty, \frac{9}{7}\right)$
99. Domain: $(-\infty, \infty)$ Range: $[-2, \infty)$
100. domain: $0 \leq x \leq 20$
range: $0 \leq y \leq 100$
101. 2
102. 0
103. $\$ 610$
104. 17 weeks
105. -3
106. 20
107. As time increases, the amount of candy in the container increases by 60 pounds per minute.

Module 7

108.

109.

110.

Solutions

111.

112.

113.

114.

115. $y=(x-4)^{2}-6$
116. Domain: $(-\infty, \infty)$

Range: $[-6, \infty)$
Module 9
117. y-axis
118. symmetric to the x-axis, y axis and the origin
119. local min value: 0
local max value: 4
120. max at $x=0$
\min at $x=-2,2$
121. Increasing on $(-\infty,-2)$

Decreasing on $(1, \infty)$
Constant on $(-2,1)$
122. $-8 x-4 h+5$
123.

124. $3 x^{2}-x-2$

D: $(-\infty, 0) \cup(0, \infty)$
125. $-\frac{2}{3}$
126. Not defined
127. $C(x)=3.5 x+640$
128. $R(x)=25 x$
129. $(R-C)(x)=21.5 x-640$

Represents the monthly profit for selling x necklaces.
130. $(g \circ f)(x)=\frac{3-x}{3-4 x}$

D: $(-\infty, 0) \cup\left(0, \frac{3}{4}\right) \cup\left(\frac{3}{4}, \infty\right)$
131. $(f \circ f)(x)=x$
132. $(g \circ g)(x)=x^{4}-10 x^{2}+20$

Module 10

133. 181, 832
134. $x=2,-7$
135. $y=\frac{7}{2}(x-1)^{2}-4$
136. 2.5 sec
137. 125 feet
138. 20 ft by 15 ft
139. $300 \mathrm{ft}^{2}$
140. $\begin{array}{lllllllll}-3-2-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

Module 11

141. $p(x)=x(x+2)(x-$ $1)^{2}(x-7)$
142. Not a polynomial
143. polynomial
144. polynomial
145. polynomial
146. $0,3,-3,-4$
147. Zero of multiplicity one: -6

Zeros of multiplicity two: 0,-5
Zero of multiplicity four: 1
148. x-intercepts: $(0,0)$,
$(-3,0),(4,0)$
y-intercept: $(0,0)$
149.

150. $x=-3$
151. negative
152. 3
153. $2 x^{3}+5 x^{2}+7 x+9+$ $\frac{10 x-10}{x^{2}-2 x+1}$
154. $q(-4)=0$ so $x+4$ is a factor.
155. $2 x^{3}+3 x^{2}+6 x+9+\frac{17}{x-2}$
156. $(-\infty, 2) \cup(2, \infty)$
157. $(-\infty,-1) \cup(-1, \infty)$
158. Vertical asymptote: $x=2$ Horizontal asymptote: $y=-1$
159. Vertical: $x=\frac{2}{3}$

Horizontal: $y=0$
160. $x=3, x=-3, y=1$
161.

Module 13
162.

163. $(f \circ g)(x)=\frac{3 x+40}{7}$ so f and g are NOT inverses.
164. $g^{-1}=\{(0,3),(5,2),(6,4),(9,7)\}$
165. 2
166. 7
167. $f^{-1}(x)=7 x-35$
168. -3
169. $f^{-1}(x)=\frac{1}{3} x^{2}-\frac{4}{3} x+\frac{5}{3}$
for $x \geq 2$
170. $g^{-1}(x)=\sqrt{x+13}+3$
171. $f^{-1}(x)=\sqrt[3]{x}-4$
172.

x	$g(x)=5^{x}$
0	1
1	5
2	25
3	125
-1	$\frac{1}{5}$
-2	$\frac{1}{25}$
-3	$\frac{1}{125}$

173.

x	$f(x)=\left(\frac{1}{3}\right)^{x}$
0	1
1	$\frac{1}{3}$
2	$\frac{1}{9}$
3	$\frac{1}{27}$
-1	3
-2	9
-3	27

174.

175.

176. $29 \mathrm{~m} / \mathrm{s}$
177. 2800 grams
178. 634 grams
179. $4^{x}=5$
180. $\log _{7} 9=y$
181. $e^{5}=x$
182. $\ln t=r$
183. -3
184. 5
185.

186. $(-7, \infty)$

Module 14

187. 21
188. $\ln x+2 \ln z-5 \ln y$
189. $\log \left(\frac{3 x-3}{x^{3}}\right)$
190. $x=8$
191. 5
192. $x=13$
193. $x=e^{4}-2$
194. 3
195. $x=8$
196. $x=-\frac{4}{3}$
197. $x=\ln 9+2$

Index

Applying the quadratic formula: Exact answers, 48
Approximating the equation of a line of best fit and making predictions, 159
Basic properties of logarithms, 215
Choosing a graph to fit a narrative: Advanced, 118
Choosing a graph to fit a narrative: Basic, 117
Choosing a quadratic model and using it to make a prediction, 163
Classifying linear and nonlinear relationships from scatter plots, 157
Combining functions to write a new function that models a real-world situation, 149
Combining functions: Advanced, 148
Completing the square, 55
Composition of a function with itself, 151
Composition of two functions: Advanced, 150
Composition of two functions: Basic, 150
Computing residuals, 160
Constructing a scatter plot, 156
Converting between logarithmic and exponential equations, 208
Converting between natural logarithmic and exponential equations, 209
Converting between radical form and exponent form, 28
Determining end behavior and intercepts to graph a polynomial function, 181
Determining if graphs have symmetry with respect to the x-axis, y-axis, or origin, 138
Determining the end behavior of the graph of a polynomial function, 180
Determining whether an equation defines a function: Basic, 102
Determining whether two functions are inverses of each other, 197
Domain and range from ordered pairs, 103
Domain and range from the graph of a continuous function, 107
Domain and range from the graph of a piecewise function, 108
Domain and range from the graph of a quadratic function, 133
Domain and range of a linear function that models a real-world situation, 106
Domain of a logarithmic function: Advanced, 212
Domain of a rational function: Excluded values, 104
Domain of a rational function: Interval notation, 104
Domain of a square root function: Advanced, 105
Estimating a square root, 33
Evaluating a cube root function, 97
Evaluating a function: Absolute value, rational, radical, 96
Evaluating a piecewise-defined function, 96
Evaluating a rational function: Problem type 2, 95
Evaluating an exponential function that models a real-world situation, 207

Evaluating an exponential function with base e that models a real-world situation, 206
Evaluating an expression with a negative exponent: Negative integer base, 26
Evaluating an expression with a negative exponent: Positive fraction base, 26
Evaluating logarithmic expressions, 210
Expanding a logarithmic expression: Problem type 1, 217
Expanding a logarithmic expression: Problem type 2, 218
Expressing a function as a composition of two functions, 152
Factoring a product of a quadratic trinomial and a monomial, 32
Finding x and y intercepts given a polynomial function, 178
Finding a difference quotient for a linear or quadratic function, 144
Finding a polynomial of a given degree with given zeros: Real zeros, 175
Finding a solution to a linear equation in two variables, 55
Finding domain and range from a linear graph in context, 109
Finding horizontal and vertical asymptotes of a rational function: Quadratic numerator or denominator, 189
Finding inputs and outputs of a function from its graph, 109
Finding inputs and outputs of a two-step function that models a real-world situation: Function notation, 110
Finding local maxima and minima of a function given the graph, 140
Finding outliers in a data set, 163
Finding slope given two points on the line, 62
Finding the x and y intercepts of a line given the equation: Advanced, 61
Finding the x and y intercepts of the graph of a nonlinear equation, 60
Finding the absolute maximum and minimum of a function given the graph, 143
Finding the asymptotes of a rational function: Constant over linear, 187
Finding the asymptotes of a rational function: Linear over linear, 188
Finding the average rate of change of a function, 111
Finding the average rate of change of a function given its graph, 112
Finding the domain of a fractional function involving radicals, 106
Finding the initial amount and rate of change given a graph of a linear function, 112
Finding the initial amount and rate of change given a table for a linear function, 113
Finding the initial amount and rate of change given an exponential function, 227
Finding the intercepts, asymptotes, domain, and range from the graph of a rational function, 186
Finding the maximum or minimum of a quadratic function, 165
Finding the original price given the sale price and percent discount, 99
Finding the roots of a quadratic equation of the from $a x^{2}+b x=0,43$
Finding the roots of a quadratic equation with leading coefficient 1,43
Finding the roots of a quadratic equation with leading coefficient greater than 1, 45
Finding the slope of horizontal and vertical lines, 63
Finding the time given an exponential function with base e that models a real-world situation, 226
Finding the total cost including tax or markup, 98
Finding the vertex, intercepts, and axis of symmetry from the graph of a parabola, 164
Finding the zeros of a quadratic function given its equation, 163
Finding the zeros of a quadrtic function given its equation, 175
Finding values and intervals where the graph of a function is zero, positive, or negative, 144
Finding where a function is increasing, decreasing, or constant given the graph: Interval notation, 142
Finding zeros and their multiplicities given a polynomial function written in factored form, 178
Finding zeros of a polynomial function written in factored form, 177
Finding, evaluating, and interpreting an inverse function for a given linear relationship, 202
Graphing a cubic function of the form $y=a x^{3}, 122$
Graphing a line by first finding its x and y-intercepts, 71

INDEX

Graphing a line by first finding its slope and y-intercept, 69
Graphing a line given its equation in slope-intercept form: Fractional slope, 68
Graphing a line given its equation in standard form, 69
Graphing a line through a given point with a given slope, 70
Graphing a logarithmic function: Basic, 210
Graphing a parabola of the form $y=(x-h)^{2}+k, 124$
Graphing a parabola of the form $y=a(x-h)^{2}+k, 166$
Graphing a parabola of the form $y=a x^{2}+c, 123$
Graphing a piecewise-defined function: Problem type 1, 145
Graphing a piecewise-defined function: Problem type 2, 146
Graphing a piecewise-defined function: Problem type 3, 146
Graphing a rational function: Constant over linear, 190
Graphing a rational function: Linear over linear, 191
Graphing a square root function: Problem type 1, 120
Graphing a square root function: Problem type 2, 121
Graphing an absolute value equation in the plane: Advanced, 119
Graphing an exponential function and its asymptote: $f(x)=b^{x}, 203$
Graphing the inverse of a function given its graph, 196
Hamburger Menu, 11
Horizontal line test, 196
How the leading coefficient affects the graph of a parabola, 126
Identifying functions from relations, 93
Identifying outliers and clustering in scatter plots, 158
Identifying parallel and perpendicular lines from equations, 66
Identifying polynomial functions, 176
Inferring properties of a polynomial function from its graph, 182
Interpreting residual plots, 161
Interpreting the graphs of two functions, 160
Interpreting the parameters of a linear function that models a real-world situation, 73
Introduction to solving an absolute value equation, 82
Introduction to the composition of two functions, 149
Inverse functions: Cubic, cube root, 201
Inverse functions: Linear, discrete, 198
Inverse functions: Quadratic, square root, 200
Linear relationship and the correlation coefficient, 162
Matching graphs with polynomial functions, 181
Matching graphs with rational functions: Two vertical asymptotes, 192
Matching parent graphs with their equations, 125
Polynomial long division: Problem type 2, 183
Power and quotient rules with negative exponents: Problem type 1, 27
Predictions from the line of best fit, 158
Quotient of two functions: Basic, 148
Rational exponents: Negative exponents and fractional bases, 31
Rational exponents: Non-unit fraction exponent with a whole number base, 30
Rational exponents: Unit fraction exponents and bases involving signs, 29

Restriction on a variable in a denominator: Linear, 32
Restriction on a variable in a denominator: Quadratic, 46
Rewriting an algebraic expression without a negative exponent, 27
Scatter plots and correlation, 156
Set builder and interval notation, 87
Simplifying the square root of a whole number greater than 100, 31
Sketching the line of best fit, 158
Solving a linear equation with several occurrences of the variable: Fractional forms with binomial numerators, 35
Solving a linear equation with several occurrences of the variable: Variables on both sides and fractional coefficients, 34
Solving a linear equation with several occurrences of the variable: Variables on both sides and two distributions, 33
Solving a linear inequality with multiple occurrences of the variable: Type 1, 81
Solving a linear inequality with multiple occurrences of the variable: Type 3, 81
Solving a multi-step equation involving a single logarithm: Problem type 1, 220
Solving a multi-step equation involving a single logarithm: Problem type 2, 221
Solving a multi-step equation involving natural logarithms, 222
Solving a proportion of the form $\frac{a}{x+b}=\frac{c}{x}, 36$
Solving a quadratic equation by completing the square: Exact answers, 56
Solving a quadratic equation needing simplification, 44
Solving a quadratic equation using the square root property: Exact answers, advanced, 47
Solving a quadratic equation with complex roots, 49
Solving a quadratic inequality, 170
Solving a quadratic inequality written in factored form, 170
Solving a rational equation that simplifies to linear: Denominators a, x or $a x, 37$
Solving a rational equation that simplifies to linear: Denominators $a x$ and $b x, 38$
Solving a rational equation that simplifies to linear: Unlike binomial denominators, 38
Solving a rational equation that simplifies to quadratic: Binomial denominators and numerators, 53
Solving a rational equation that simplifies to quadratic: Binomial denominators, constant numerators, 52
Solving a rational equation that simplifies to quadratic: Proportional form, advanced, 54
Solving a system of linear equations using elimination with multiplication and addition, 75
Solving a system of linear equations using substitution, 74
Solving a word problem using a quadratic equation with irrational roots, 51
Solving a word problem using a quadratic equation with rational roots, 50
Solving a word problem using a system of linear equations of the form $A x+B y=C, 77$
Solving an absolute value equation: Problem type 2, 84
Solving an absolute value equation: Problem type 4, 85
Solving an equation involving logarithms on both sides: Problem type 1,222
Solving an equation involving logarithms on both sides: Problem type 2, 223
Solving an equation of the form $\log _{b} a=c, 219$
Solving an equation using the odd-root property: Problem type 2, 93
Solving an equation with exponent $\frac{1}{a}$: Problem type 1, 92
Solving an equation written in factored form, 42
Solving an exponential equation by finding common bases: Linear exponents, 224
Solving an exponential equation by using logarithms: Exact answers in logarithmic form, 225
Solving for a variable in terms of other variables in a linear equation with fractions, 36
Sum, difference, and product of two functions, 147
Synthetic division, 185

Table for a square root function, 97
Table for an exponential function, 202
Technical Support, 12
Testing an equation for symmetry about the axes and origin, 139
The Factor Theorem, 184
The graph, domain, and range of a logarithmic function, 211
The graph, domain, and range of an exponential function, 204
The Learning Carousel, 10
Transforming the graph of a function by reflecting over an axis, 131
Transforming the graph of a function by shrinking or stretching, 129
Transforming the graph of a function using more than one transformation, 128
Transforming the graph of a natural exponential function, 205
Transforming the graph of a quadratic, cubic, square root, or absolute value function, 132
Translating the graph of a function: One step, 126
Translating the graph of a function: Two steps, 127
Translating the graph of an absolute value function: Two steps, 127
Translating the graph of an exponential function, 203
Union and intersection of intervals, 88
Using i to rewrite square roots of negative numbers, 42
Using a given zero to write a polynomial as a product of linear factors: Real zeros, 185
Using properties of logarithms to evaluate expressions, 216
Variable expressions as inputs of functions: Problem type 1, 102
Variable expressions as inputs of functions: Problem type 2, 103
Vertical line test, 94
Word problem involving average rate of change, 114
Word problem involving composition of two functions, 153
Word problem involving optimizing area by using a quadratic function, 169
Word problem involving radical equations: Advanced, 91
Word problem involving the maximum or minimum of a quadratic function, 168
Working in ALEKS with the Notebook, 10
Writing a quadratic equation given the roots and the leading coefficient, 46
Writing an equation and drawing its graph to model a real-world situation: Advanced, 73
Writing an equation for a function after a vertical and horizontal translation, 133
Writing an equation in slope-intercept form given the slope and a point, 64
Writing an expression as a single logarithm, 218
Writing an inequality for a real-world situation, 86
Writing and evaluating a function that models a real-world situation: Advanced, 72
Writing equations of lines parallel and perpendicular to a given line through a point, 67
Writing the equation of a quadratic function given its graph, 167
Writing the equation of the line through two given points, 65
Writing the equations of vertical and horizontal lines through a given point, 65

ARITHMETIC PROPERTIES	
addition: $a+(b+c)=(a+b)+c$ Associative: multiplication: $a(b c)=(a b) c$	
Commutative:addition: $a+b=b+a$ multiplication: $a b=b a$	addition: $a+(-a)=0$ Inverse: multiplication: $a \cdot \frac{1}{a}=1, a \neq 0$
Distributive: $\quad a(b+c)=a b+a c$	
FRACTIONS	
Adding: $\quad \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$	Multiplying: $\quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$
Subtracting: $\quad \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}$	Dividing: $\quad \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}$
FACTORING	
Difference of Two Squares $\begin{aligned} & a^{2}-b^{2}=(a-b)(a+b) \\ & a^{2}+b^{2}=\text { Does not factor } \end{aligned}$	Sum and Difference of Two Cubes $\begin{aligned} & a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\ & a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \end{aligned}$
Perfect Square Trinomials $\begin{aligned} & a^{2}-2 a b+b^{2}=(a-b)^{2} \\ & a^{2}+2 a b+b^{2}=(a+b)^{2} \end{aligned}$	
DISTANCE AND MIDPOINT FORMULAS	
Distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	Midpoint between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ $m=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
ABSOLUTE VALUE	
Statement Equivalent Statement $\begin{array}{ll} \|x\|=a & x=a \text { or } x=-a \\ \|x\|=\|y\| & x=y \text { or } x=-y \end{array}$	Statement Equivalent Statement $\begin{array}{ll} \|x\| \leq a & -a \leq x \leq a \\ \|x\| \geq a & x \leq-a \text { or } x \geq a \end{array}$
CIRCLE	
Standard Form of a Circle with center (h, k) and radius $r:(x-h)^{2}+(y-k)^{2}=r^{2}$	

Common Properties, Graphs \& Formulas

COMMON GRAPHS

$f(x)=m x+b$

GEOMETRY		
Rectangle	Perimeter $P=2 l+2 w$	Area $A=l w$
Parallelogram	Perimeter $P=2 a+2 b$	Area $A=b h$
Triangle	Perimeter $P=a+b+c$	Area $A=\frac{1}{2} b h$
Trapezoid	$\mathrm{P}=a+b_{1}+b_{2}+c$	Area $A=\left(\frac{b_{1}+b_{2}}{2}\right) h$
Circle	Circumference $C=2 \pi r$	Area $A=\pi r^{2}$
Right Circular Cone	Volume $V=\frac{1}{3} \pi r^{2} h$	Surface Area $A=\pi r \sqrt{r^{2}+h^{2}}$
Right Circular Cylinder	Volume $V=\pi r^{2} h$	Surface Area $A=2 \pi r h$
Sphere	Volume $V=\frac{4}{3} \pi r^{3}$	Surface Area $A=4 \pi r^{2}$
Parallelepiped	Volume $V=l w h$	Surface Area $A=2(l w+l h+w h)$

PROPERTIES OF EXPONENTS

$a^{m} \cdot a^{n}=a^{m+n}$	$\frac{a^{m}}{a^{n}}=a^{m-n}$	$\left(a^{n}\right)^{m}=a^{n m}$	$(a b)^{m}=a^{m} b^{m}$
$a^{0}=1, a \neq 0$	$a^{-n}=\frac{1}{a^{n}}$	$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$	

DEFINITION OF LOGARITHM

$$
\begin{array}{l|l}
\log _{a} x=y \Longleftrightarrow a^{y}=x & \ln x=y \Longleftrightarrow e^{y}=x
\end{array}
$$

LAWS OF LOGARITHMS

$\begin{aligned} \log _{a} m+\log _{a} n & =\log _{a} m n \\ \log _{a} m-\log _{a} n & =\log _{a} \frac{m}{n}\end{aligned}$
$\log _{a} m^{n}=n \log _{a} m$
$\ln m+\ln n=\ln m n$
$\ln m-\ln n=\ln \frac{m}{n}$ $\ln m^{n}=n \ln m$

