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ABSTRACT

In this paper we study the stability and convergence properties of Bergman
kernel methods, for the numerical conform al mapping of simply and doubly-
connected domains. In particular, by using certain well-known results of
Carleman, we establish a characterization of the level of instability in
the methods, in terms of the geometry of the domain under consideration.
We also explain how certain known convergence results can provide some
theoretical justification of the observed improvement in accuracy which

is achieved by the methods, when the basis set used contains functions

that reflect the main singular behaviour of the conformal map.






1. Introduction

Let oQ be a closed piecewise analytic Jordan curve in the complex z-plane,
assume that 0 is in Q = Int(eQ ), and let f be the function which maps conformally
Q onto the unit disc {w: |[w| <1} so that f(0) = 0 and f'(0) > 0. Also, let L,(Q)
be the Hilbert space of all square integrable analytic functions in Q, denote by

<.,.> the inner product of L, (Q), i.e.
<u,v) = [[ u@)vizxs,, (1.1)

and let K(.,0) be the Bergman kernel function of Q. Then, the kernel K(.,0)

is uniquely characterized by the reproducing property

< g K0 > = g0 , vV oge Lix(Q) (1.2)

and is related to the mapping function f by means of

1
=17 k) (1.3)
zZ)= Z, ; .
k(0,0)
see e.g. [1,7,8,12].
Let n;; = 1,2,3,..., be a complete set of functions of L,(Q). Then

the reproducing property (1.2) and the relation (1.3) suggest the following

procedure for approximating the mapping function f. The set {‘r]j}?:1 is

orthonormalized by means of the Gram-Schmidt process to give the orthonormal

% |0
set {nJ } 1.The kernel k(z,0) is then approximated by the finite Fourier
J:
K, (20)= Y _<k(0) .n;>n;®)
=1

= njom;@ , (1.4)

and finally equation (1.3) is used to give the approximation

T 2 (7
fn(z>—{kn (0,0)} j k,(C0)C (1.5)

to the function f. In other words the approximation f, is obtained after

first determining the least squares approximation, in

A, =span{nl,n2,....m,} , (1.6)



to the Bergman kernel function K(.,0). This method of approximating f is the
well-known Bergman kernel method (BKM); see e.g. [1,2,4,7,8,10,12-14].
Let now oQ2; and 2L, be two closed piecewise analytic Jordan curves such

that oQ; — Int(eQ;) and 0 Int(e€2;), denote by Q the doubly-connected domain
Q= Ext(oQ;) N int (aQ25), (1.7)

and let f be the function which maps conformally Q onto a circular annulus
{w: 1< |w| <M} so that f( ;) = 1, where {; is some fixed point on 2Q2;. Also
let
H(=z) = t'(z)/f(z) - 1/z , (1.8)
and denote by Li(Q) the Hilbert space of all functions in L,(€2) which also

possess a single-valued indefinite integral in €. Then, it can be shown that

for n e L‘; (Q)
<77,H>=iIaQI Uoq, 1(z)log|z|dz (1.19)

provided that the function m satisfies certain boundary continuity requirements;
see [7,p.249] and the remark in [15,§2,p.686]. In other words, the determin-
ation of <mn,H > does not require the explicit knowledge of H and, because of

this, an approximation f, to f can be determined by means of (1.8), in a manner
similar to the BKM. That is, the approximation f, to the conformal map of the

doubly-connected domain (1.7) is determined from the least squares approximation

of the function H in A,, where now A, is an n-dimensional subspace of L5, Q).
Also, an approximation to the outer radius M of the annulus, i.e. to the con-
formal modulus of Q, may be determined, from the least squares approximation

of H by means of

logM:{lJ‘ llog|z|dz—||H||2}/27t, (1.10)
1Joa 2

where || * |7 = <..> The above method for approximating f and M is the ortho-

normalization method ONM considered recently in [15,17]; see also [7,§53,p.249].



The purpose of this paper is to consider the stability and convergence
properties of the BKM and the ONM, in relation to the basis set {n;} used

and to the geometry of the domain Q under consideration. In particular, we
consider the effect that the geometry of Q has on the stability and convergence

of the methods when the "monomial" basis sets

n, =z §=1,20 . , (1.11)

and
nzj_lzzJ‘l,nzj —1/2 oo (1.12)

are used respectively in the BKM and ONM. We also consider how the use of
"augmented" basis sets, of the type considered in [10] and [13-18], affect
the stability and convergence properties of the two methods. These augmented
sets are formed by introducing into the monomial sets (1.11) and (1.12)
"singular" functions that reflect the main singular behaviour of the conformal
maps on o and in compl(QUoQ).

The details of the presentation are as follows:

In Section 2 we consider various ways of measuring the level of instability
in the Gram-Schmidt process and, in particular, we define an instability .
indicator which can be computed easily during the orthonormalization.

In Section 3 we consider the stability properties of the BKM and the ONM.
In particular, we establish a geometrical characterization of the degree of
instability in the orthonormalization of the monomial basis sets (1.11) and
(1.12), by using certain well-known results of Carleman [5]. (It is, of course,
well-known that the Gram-Schmidt process is numerically unstable. However, for
the applications considered here, we are not aware of any detailed study regard-
ing the dependence of the level of instability on the basis set used and on
the geometry of Q.)

Section 4 concerns the convergence properties of the BKM and ONM. Here,
we discuss the significance of certain known convergence results contained in

[7,8,11,20], In particular, we indicate how the results in [7,8] can be used



to provide some theoretical explanation of the observed improvement in accuracy
which is achieved when the monomial sets (1.11) and (1.12) are augmented by
introducing appropriate singular functions.

Finally, in Section 5 we present several numerical examples, illustrating

the stability and convergence results of the previous sections.

2. Instability Indicators

In what follows the function g and the Hilbert space A have the following
meanings, depending on whether the domain QQ wunder consideration is simply or
doubly-connected.

(i) When Q is simply-connected then g is the Bergman kernel function K(.,0)
of Q, and A is the space L, (Q)-

(ii)) When Q is doubly-connected then g is the function H of (1.8), and A
is the space L‘; (Q)

Let nj;; j = 1,2,..., be a complete set of A and let

An = span{n;,MNz2....,Nn} (2.1)
Then, with the notation introduced above, in both the BKM and ONM the approx-
imation f, to the mapping function f is determined after first computing the

least squares approximationg, €A, and geA That is,

n

= <g m >n, 22)

j=1

where {"\j}n is the orthonormal set obtained from {1’] j}?=1 , by means of the Gram-

Schmidt process. Of course, the approximation (2.2) can also be expressed as

J=1

n
gn=.§lcn,J L (2.3)
J_
where the coefficients c, ; j = 1(1)n, satisfy the Gram linear system
Z< ;N >¢,; =<gm; >; i=1)n . 2.9
=1
Let
G

n= {<nni>j} . (2.5)



denote the coefficient matrix of (2.4) and let C(G,) be the spectral condition

number of G, , i.e.

C(G,)=p(G,)p(G,") , (2.6)
where we use p (-) to denote the spectral radius of a matrix. Then, a small
C(G , ) implies that the Gram linear system (2.4) is well-conditioned, and
suggests that there is no-excessive build-up of rounding errors in the corres-
ponding orthonormalization process. Conversely, a large C(G,) suggests ill-
conditioning and a rapid build-up of errors. However, a large C(G, ) may be

simply due to a badly scaled Gram linear system. For this reason, it is more
appropriate to use, as a measure of instability, the condition numberC(Gn)

corresponding to the normalized Gram matrix

Gn={<ﬁj7ﬁi >}a
where 2.7
ﬁi =Tli/||ni .

Of course, the condition number

CGn)=p@Gnlp@Gy) 2.8)
depends on the basis set {nj.} used and on the geometry of the domain Q under
consideration. n However, it is very difficult to obtain, directly from defin-
ition (2.8), any information regarding the dependence of C(G, ) on {n j-4 and
on Q . Furthermore, the determination of C(G, ) involves considerable comput-
ational effort. Ideally, we require an easily computable instability indicator,
which can also be used to provide a characterization of the degree of instability
in terms of the basis set {n;.} and the geometry of Q. Such an indicator emerges

from the result of the following theorem, which is due to Taylor [24].

Theorem 2.1 (Taylor [24,p.p.46-47])

Let N;; 1 = 1(1)n, denote the (n-1)-dimensional subspaces

Ni = span{nl,nz, ....... LR e UP 2.9



of A, , and let e; be the ith column of the n x n identity matrix. @ Then, for

any 1 = 1,2,...,n,

(CG)'<T,.<1,, , (2.10)
where
~  H-1
In,i =e; Gp e 2.11)
and
i . 2
Lo =?§§i 17 —ull”. (2.12)

As was remarked by Taylor [24], the deviation of the quantity

min .
IS, =1<i<n In,i (2.13)

from zero measures the deviation of the set {n;} from linear dependence. (If

the 7,'s are linearly dependent, i.e. ifis {ﬁi}?—l

not a basis, then I,; = O,

whilst if {ﬁi}inzl is an orthonormal set then I ,; = 1; i = 1(1)n.) This

means that the deviation of the numbers IS, from unity gives a measure of the
level of instability in the orthonormalization process. However, a more easily

computable instability indicator can be defined, by using (2.9)-(2.10), as follows.

We recall that the Gram-Schmidt process generates a triangular array a;;j;

i =1(1)n, j < 1, with diagonal elements a; > 0, so that each orthonormal

function 1, is of the form

|
ni=2a

.M. i =12,...... n. (2.14)
~ 1]
J=1

N;

Let A be the nxn lower triangular matrix formed by the coefficients a;j, in

(2.14), Then, the orthonormality property <1‘|?,1‘|§ >=9,. implies that

i

]
Gn =AHA, | (2.15)

where G, is the Gram matrix (2.5). Therefore, from (2.7), (2.11) and (2.15)

we have that

T, =(A e)" (A e)/lIn, |

n 2 -l
={|ni||22|aij|} ,
j=1

(2.16)



ie.
(2.17a)
2 2 -1, C _
Lyg =g 1P rag P +rT 7l i=1n -1,
and
Tn,n:In,n
_ 2 2
=1/||ng || ‘ann| . (2.17b)
Let
ISn=121iglnIn’i . (2.18)
Then, from (2,10),
(C(Gy)y < Tsyy <Tsy, (2.19)

and this shows that, like IS, , the number IS, may also be regarded as an
instability indicator. However, unlike IS, , the indicator (2.18) can be
computed easily during the orthonormalization, by means of (2.17).

We end this section by considering briefly another instability indicator.
This 1is the so-called Bauer's condition number of the Gram matrix G ,, which

is defined by

B(Gp)= inf C(diag(y;)Gpdiag(y,)). (2.20)
v: >0

i.e. P(G, ) is the spectral condition number corresponding to the best possible
re-scaling of the matrix G,. Clearly, it is very difficult to determine B (G ,)
and, for this reason, the measure (2.20) is of mainly theoretical value. How-
ever, we must state here an important result due to Svecova [23], concerning
the condition number B(G, ) of the matrix G, corresponding to the monomials

zZ j=1,2,.,.,n. Svecova has studied the asymptotic behaviour of this

B(G.) and has shown that, unless Q is a disc with its centre at O,

lim B(Gp)=co. (2.21)

3. Stability Properties

We examine first the stability properties of the BKM with monomial basis
(1.11), i.e. with
ni(z)=z"; j = 1,2,3,... , (3.1)



for the mapping of a simply-connected domain Q. More specifically, we examine

the rate of decrease of the sequence {I,,} where, from (2,12) and (2.17)-(2.19),

(€6 <i8y <18, <Ty g, (3.2)

and where, for the set (3.1),

I min {||z" —u|? /| 2" |} (3.3)

n+ln+l ~ UEAL
with
An= span{l,z,z>,..,z"""} . (3.4)

Our main result is Theorem 3.2, which gives a geometrical characterization of

the rate of decrease of {I,,} and hence, because of (3.2), of the level of

instability in the orthonormalization of the set (3.1). The theorem is estab-
lished by using two preliminary lemmas, concerning the sizes of || z" ||* and
min ||z" —u .
UEAL
Lemma 3.1 let 0Q be a closed piecewise analytic Jordan curve without cusps,
and let
d = max{ |z : ze 0Q} . (3.5
Then, there exists a constant o> 0 so that, for all n> 0,
ad?"*? . nd’n + 2
— <z st—. (3.6)
n(n +1) (n+1)

Proof Let D = {z : |z[ < d}. Then,Q2Q <D and the upper bound follows since

J.J-] z"|* dS, =nd*™ /(n +1).
D

To establish the lower bound, let zg € 0Q be such that d = |z, and assume,
without loss of generality, that Q is orientated so that z, = (d,0). Then the
assumptions concerning the geometry of O0Q imply that there exist numbers r; >0

and 0, ,0,, with 6; +6, >0, so that the sector
A={z:]z-d|<r,(n-0,)<arg(z—-d)<(n+0,)}

is contained in Q. This means that



12" 122 gl 2" 1 s, 2 02 [fid -1 rdrde
1 0

and the lower bound follows.

The next lemma contains essentially one of the results of Carleman [5],

on asymptotic properties of orthonormal polynomials; see [7,p.136], [8,p.20]
and [21,p.288], The result of the lemma is given in terms of the so-called
capacity of the curve 0Q , which is defined as follows. Let fg be the function
which maps conformally Ext(0€) onto {w: |[w| > 1}, so that fg(0) = oo and
lljl;flz (z)>0. Then,

cap (0Q) = ll_r}:lo{fE ()} " . 3.7)
Lemma 3.2 Let QUAQ be as in Lemma 3.1 and let

¢c = cap (0Q)
be the capacity of OQ as defined by (3.7). Then

. no_ 2< 2n+2
unenﬁln | z ull“< zc (n+1) , (3.8)
where An is the polynomial space (3.4)..

The lemma can be established by modifying trivially the proof of Theorem

2 of Gaier [8,p.20-22]. More precisely in [8] Gaier establishes the sharper result

min || z" —u ||2:7t(:2n+2/(n +1) +O(r§n ), Iy <¢ 3.9

UEAL
of Carleman [5], under the assumption that ©6Qis an analytic curve. (To recog-

nize the connection between (3.9) and the result proved in [8], recall that

min | z" —u|>=1/a%n+l.n+l,
UE/\n

where a ,, 1 1S the coefficient of z" in the (n+1)th orthonormalized poly-

nomial, and observe that Gaier denotes this coefficient by k , )

Theorem 3.1 Let QUoQ be as in Lemma 3.1,

let I ,qnn be defined by (3.3),
and let
& = {c/d}? (3.10)

where, as before d = max{|z| : z €0 Q} and ¢ = cap (o) . Then, there exists a

constant 3> 0 so that, for all n >1,
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I ) < Bnd™. (3.11)

n+1,n+
Furthermore, if oQ is analytic then there exist constants > 0,y >0 and

0<ry<c so that, for all n>1,

2n
T
g+l 1-{%} STy iinal SBYRS". (3.12)

(Observe that 0< 1, unless Q is a disc {z:|z| <R} in which case 60=1.)

Proof The result (3.11) is a direct consequence of (3.8) and the lower bound
in (3.6). The lower bound in (3.12) is established by using (3.9) and the upper
bound in (3.6).

Finally, the upper bound in (3.12) is obtained from (3.8), by observing
that if o Q is analytic then the lower bound in (3.6) can be replaced by
ad®™"/{\n(n+1)}.

It follows from (3.2) and the results (3.11)-(3.12) that the quantity
0 may be regarded as a '"geometrical' indicator, whose deviation from unity
measures the level of instability in the orthonormalization of the monomial
set (3.1). Because of this, the theorem provides theoretical justification
for some intuitively apparent results, concerning the relation between the
stability properties of the BKM with monomial basis and the geometry of Q.
For example, we have the following.

1) For the purposes of stability, the origin O should be positioned
so that its maximum distance from O is as small as possible.

(ii) Best stability occurs when 0Q is nearly circular and O is positioned
properly so that & is close to unity. Conversely, when Q is a "thin" domain
then 6 1is small and the orthonormalization process is very unstable.

We consider now the use of the ONM with "monomial" basis (1.12), for the
mapping of a doubly-connected domain . Q As before, we define the quantities

I,n by means of

uen

. 2 2
Iy p =, J0in 1{H Mp —ull™ 7y | , (3.13)
n_

where
An-1 =span{mni, Nz,....... Mnoo1 s (3.14)
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and assume that the basis functions (1.12) are introduced in the order

—1 j+1 .
nzj_l(z)=zJ ,112J.=1/zJ S j=12 (3.15)

Then, corresponding to Theorem 3.1 we have the following.

Theorem 3.2 Let Q be a doubly-connected domain whose inner and outer boundary
components 06Q; and 0Q, are closed piecewise analytic Jordan curves without cusps.

Assume that 0 € Int(0Q,; ), and let

di = min{|z|: z€ 0Q, }, d = max{|z|: zeg OQ ,}. (3.16)
and

cy = cap(o,). (3.17)
Also, let Ry, be the conformal radius of Int(6Q;) at 0, i.e.

R, = 1/f (0), (3.18)

where f; is the function that maps conformally Int(6Q2;) onto {w: |[w| < 1},
so that f;(0) = 0 and f1 (0) > 0. Then, there exist constants o >0 and >0

so that, for all n>1,

C2 2n
and
2n
d,
Ion+2,2n42 S Bn{_} : (3.20)
, R2
Proof Let
A, =span {l,z,z°,., z" '},

B  =span{l/z*]1/z°,..,1/2z""},
and observe that A, C A ,, and B,CA ,,+1 . where, because of the ordering (3.15)

Aoy = span {1,1/22,2, ozt z My

and

Asnir = span {1,1/2%z,....z2"" 1/2"" 2"} .
Also, let Qr. be the image of Ext(oQ;) under the inversion w= '/, ,and

observe that
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cap(0Q)) =1/R, (3.21)

and

max{| w| : wedQ| =1/d. (3.22)

Then, by using Lemma 3.2, we have that

. 2 . n 2 2n+2
ug%anr—uHSuggnﬁman |z —u\<ﬁz}ﬁnc [(n+1) ,  (3.23)

2) 2

and

cmin (|12 w2 < min {Ugu/z n+2 )2 dsz}
2n +1 ueBy

2
< min # | w il — dS
min oy 1w —u sy |

<R "D 1), (3.24)

The results (3.19) and (3.20). follow at once from (3.23) and (3.24), by
observing that the lower bound of Lemma 3.1 also holds when the domain is
doubly-connected and d is the distance of 0 from the outer boundary.-

We consider next the use of the BKM or ONM with augmented basis, for
the mapping of simply or doubly-connected domains respectively. That is,
we consider the case where the basis set is formed by introducing into one
of the monomial sets (3.1) or (3.15) a fixed number m of "singular" functions
of the type used in [10,13-18]. As before, we denote the basis set by {nj
and assume that, corresponding to the ordering m;,n2..., the m singular

functions are
Ng_ >MNg _ sereeeeee Mg . (3.25)

Then, it follows immediately that the level of instability in the orthonormal-
ization of the set inj}l?l, nZSi, is at least as serious as in the ortho-

J:
normalization of the n-i monomials in (3.1) or (3.15).For this reason, we
cannot expect to improve significantly the stability of the BKM or ONM by
introducing singular functions into the monomial basis sets. In fact, the

use of an augmented basis may lead to a substantial deterioration of the
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stability, when one or more of the singular basis functions mg,. are "nearly"
linearly dependent on the other basis functions. The situation is character-

ized by a rapid decrease of the sequence {l, s} where, as in (2.12),

. n 2
I = min —ul|”. 3.26
ns. =,mp s, —ul (3.:26)
i

For this reason, when an augmented basis is used it is essential to measure
the level of instability by means of the indicators IS , oriSn,defined by
(2.12) and (2.18), rather than by the size of the quantities I ,,.

To illustrate the deterioration in stability that the introduction of
singular functions may cause, we consider the use of the BKM and assume that,
due to the presence of a pole of f at a point p € compl,QU 0Q ,the basis set

used is
Mm@ = p/(zp), nj(z) = z'! Dj=1,2,..... : (3.27)

see [10,§2.1], [13,§84.1] and [18,§5]. In this case, if p is "far" from oQ

then the singular function n; has the series expansion

1~ A
(z2) =—— i(z/p) (3.28)
n,(z pZ;sz

which converges rapidly in Q. That is, if p is far from oQ then there is "near"
linear dependence between 1n;, and the first few monomials 1,z,7°,... and, because
of this, the sequence of indicators {I,; }tends rapidly to zero. More gener-
ally, the above situation arises when singular functions are used to reflect
pole type singularities, of the form described in [18,§5],at points which are
far from the boundary. In general, however, such weak singularities do not
affect seriously the rate of convergence of the numerical methods, and do not

require special treatment .

4. Convergence Properties

Let Q be ecither a simply or doubly-connected domain, and let f denote the
associated mapping function. Also, let f, be the nth approximation to f,

obtained by applying to an appropriate basis set either the BKM or the ONM.
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Then, it is well-known that for each of the two methods the sequence {f ,}
converges uniformly to f on any compact subset of Q. Furthermore, the two
books of Gaier [7,8] and the papers by Simonenko [20] and Kulikov [11] con-
tain a number of results which establish the uniform convergence in Q=QoQ
of the approximations {f,}, obtained by using as basis one of the monomial
sets (1.11) or (1.12). The purpose of this section is to discuss the signif-
icance of the convergence results of [7,8,11,20], and to indicate how they
can be used to provide some theoretical explanation of the experimentally
observed improvement in accuracy, which is achieved when the monomial basis

sets are augmented by introducing appropriate singular functions.

We consider first the use of the BKM for the mapping of a simply-connected
domain Q = Int(0Q) and, as before, we let f g be the function which maps con-
formally Ext(0Q) onto {w : |w| >1}, so thath(oo):oo and Zlil)noofE(Z)>0' Then,
the level curves of the region Ext(oQ) are defined by

Cr = {z: |fe(z)| = R, R>1}. “4.1)

Assume that there exists an R>1 so that f is analytic in Int(Cgr), and
observe that this assumption holds whenever 0€2 is an analytic curve or more
generally, whenever the mapping function f is analytic on 6Q. Then the theory
of maximal convergence of polynomial approximations of Walsh [25,pp.77-79]

leads to the results contained in the following theorem.

Theorem 4.1 Assume that the mapping function f is analytic on oQ, and let

R = sup{R :f is analytic in Int(C g }} . (4.2)

Also, let f, denote the nth BKM approximation to f, corresponding to the monomial

basis (1.11). Then, the following results hold:

(1) For each R, 1 <R< R, there exists a constant M(R), independent of

n, so that

max | f(z) — f, (2) [< M(R)/R . (4.3)
zeQ)
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(i1) An inequality of the form (4.3) cannot hold with R>R

R, Unl_q 4
(111) nIﬂ)n(}o{ng(|f(z)| }—I/R . O

zeQ)
4.4
A detailed proof of Theorem 4.1 can be found in Gaier [8,pp,33-35];
see also [7,p.125] and Ellacott [6]. The theorem states that if f is analytic
on 00, and hence analytic in the interior of some level curve Cg, then the
convergence of the sequence of polynomial approximations {f,} is maximal in

Q. in the sense that

max |f(z) — f, () [=0(I/R ™), VR, 1<R<R . (4.5)
ze

It follows that we have maximal convergence, of the form (4.5), whenever the
boundary 0Q of Q is an analytic curve. It also follows from the results of
Lehman [9], concerning the asymptotic expansion of the mapping function in
the neighbourhood of a corner, that we may have convergence of the form (4.5)
in some other cases where O0Q is piecewise analytic and involves only corners
with interior angles mw/q, q = 2,3.4,,.,; see [18,§4], For more general piece-

wise analytic boundaries we have the following two theorems:

Theorem 4.2 Let the boundary 0Q of Q be a piecewise analytic Jordan curve

with parametric equation
z=p(s) . 0<s=<L,p (0 =p?@® ; j= 01, (4.6)

(k)

where s denotes are length, and assume that, for some k=>1, p (s) is of Lipschitz

class 1 in the interval [O,L], Then, there exists a constant C, independent

of n, so that

max_|f(z) - £y (2) |< C log nn K1 4.7

zeQ)

where, as in Theorem 4.1, f, is the nth BKM approximation to f corresponding

to the monomial basis (1.11),

Theorem 4.3 If the boundary 0Q of Q is a piecewise analytic Jordan curve

without cusps then there exist constants C>0 and vy >0, independent of n,

so that
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max | f(z) — £, (z)[<C/n ", (4.8)
zZE
where f, is as in Theorem 4.1.,

Theorem 4.2 is a special case of a slightly more general result due to
Suetin [22]; see Gaier [8,p.40] and compare with Walsh [25,Theor.1,p.371].
The theorem applies only to domains bounded by curves with continuously
varying tangents.  For example, let Q be the domain whose boundary consists
of the half circle
I={z=x+iy: |z|=1,x <0} 4.9)
and the half ellipse
IL={z=x+iyx/a’+y*=1x>0, a>1} . (4.10)
In this case, Theorem 4.1 is not applicable, because f has branch point singular-
ities at the points +1i, where the two curves rj; j = 1,2, meet each other.
This follows from the results of Lehman [9], which show that the asymptotic
expansions of f at the points z; =i and z, = -i involve respectively the singular
functions
gi(2)=(z;20’Log(z;z) ; j=1,2. (4.11)
However, the boundary 0Q = I'; U I'; satisfies the smoothness condition of Theorem

4.2 with k=1, and thus (4.7) gives

max | f(z) — f}, (z) [< const. logn/nz. (4.12)

VA4S

It is of interest to observe that the Maclaurin series expansion of the singular

functions (4.11) satisfy

_ 2 r 1y . il
T;l&x“gj(z) réoéj (0)/r!}z |<1n/(n -1) ; j=1,2 . (4.13)

In other words, the Maclaurin expansions of (4.11) display a similar type of
convergence as the sequence{fn}.

Theorem 4.3 is a recent result due to Simonenko [20]. This important
theorem establishes the uniform convergence inQ= QUsQ of the BKM polynomial

approximations to f, associated with any piecewise analytic boundary without cusps.
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Unfortunately, however, the theorem does not provide any information about the
magnitudes of the constants C and yin (4.8). A more recent result of Kulikov
[11] gives a domain dependent constanty; > O such that (4.8) holds for all
v€(0,v1). However, this constant y; of [11] cannot exceed 1/16 for any domain.
For this reason, the estimate of the rate of convergence implied by the result

of [11] can be very pessimistic; see §5,Ex.5.3.

As was remarked by Ellacott [6,p.189], in some special cases, Theorem 4.1
can be used to explain the improved convergence which is achieved when rational
functions, that reflect the dominant pole singularities of f in Ext(0Q), are
introduced into the basis set (1.11). To see this, we let f be analytic on 0Q,

and assume that its analytic extension, across 02, has simple poles at the points

p i< Ext(0Q) ; j =1(Dk , 4.14)
where

)| = fe®) = ... = [fe@®o |- (4.15)

We also assume that the other singularities of the analytic extension of f

occur at the points Piii ,Px+2seee--- ,where
ITe () <[fe (P < [ Te(Pyin) S e (4.16)

Then, from Theorem 4.1 we have that
max | f(z)|[=0(1/R™), VR, 1<R<R, (4.17a)
zZe

where

R=|f,(p)l. (4.17b)

We now let fr(lA) be the nth BKM approximation corresponding to the augmented basis

ni(z = -p; /(z-p;)®> ; j = 1(Dk ,

(4.18)
M (2) = 27 5 ji= 1,2,...,
which reflects the dominant singularities of f; see [10,§2.1] and [18,§5].

Then the k functions mn; j = 1(1)k, "cancel out" the mnearest singularities

of f at the k points (4,14) in the sense that the approximations frfA) satisfy
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max | f2) - £ @) |F0/R ™) , VR, 1<R <R , (4.19a)
zeG
where G is any compact subset of Q and
R, =[fg () >R (4.19b)

In fact our numerical results in Section 5 suggest that, in some cases,
(4.19) might also hold with G replaced byﬁ,but we have not been able to prove this.

The above discussion explains the improvement in convergence which is
achieved by using an appropriate augmented basis, in cases where f is analytic
on oQ and the singular functions in the basis set reflect exactly the dominant
singularities of f in compl(ﬁ), In general however the situation regarding
the convergence of approximations obtained by using an augmented basis is not
clear. For example, the numerical experiments of [10] and [13,14] indicate
clearly that substantial improvement in accuracy is achieved when, in the
presence of a "singular" corner at z , € 92, the basis set contains functions
of the form

(z—zO)B{Log(z—zo)}m ,

where the real number B > 0 and the integer m > 0 depend on the size of the
angle at z, .However, such singular functions do not reflect exactly the
corner singularities of f on 6Q. For this reason, when 0Q involves singular
corners we do not expect the BKM approximations to f to satisfy convergence
results of the form (4.5), even when an augmented basis is used. We can only
speculate that in the presence of corner singularities the convergence is
always of the type described in (4.8), and that the use of an appropriate
augmented basis leads to a larger exponent v.

We consider next the convergence of the ONM approximations to the function
f, which maps conformally a finite doubly-connected domain € onto a circular
annulus {w: 1< |w| <M}. As before, we let 0Q; and 0, be respectively the
inner and outer components of the boundary 0Q, and assume that 0 € Int (0Q,).
We also recall that in the ONM the approximations to f are obtained after first

determining a least squares approximation to the function
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H(z) = f'(z>/f (z) - l/z. (4.20)

Then, in the case where both 0, and OQ , are analytic Jordan curves we have
a result due to Gaier [7,p.250], which establishes the uniform convergence
in Q = QU 0Q of the ONM approximations corresponding to the use of the monomial
basis (1.12). More precisely, the result of [7] states that if 0Q; and 0Q , are
analytic Jordan curves then, for some p<l1, there exists a constant A independ-
ent of n so that
max | H(z) - H,(z)| < 4p" , (4.21)
zeQ)
where H, denotes the nth ONM approximation to H, corresponding to the monomial
basis (1.12). (We point out that Gaier in his book does not consider the ONM,

but an equivalent variational method.)

Our purpose here is to express the above convergence result of [7] in
a slightly more detailed form, analogous to that of Theorem 4.1. In order to
do this we need to make the following four observations:
(i) The function H of (4.20) can be expressed as
H = H; + Hg , (4.22)
where H; is analytic in Int (8€,), and z> Hg(z) is analytic in Ext(éQ;) including

the point at infinity. This means that the function
* 2
HE(Z):HE(I/Z)/Z (4.23)

is analytic in Int(0Q;),, where 0Q] is the image of 8Q, under the inversion
z— 1/z.

(ii) If the mapping function f is analytic on 0Q = 0Q; U 0Q, then the
function H is also analytic on OQ.

(iii) Because of (i), the least squares property of the ONM approximation
H,, implies that

. . * *
IH=Hy, 192 inf [Hy —ulyan )+ inf [, @) (4.24)

where A, = span{1.,z7%...,z™"'}, and where we used|| || g to denote the norm

of the space L,(QG).



20

(iv) If G is abounded domain of finite connectivity then convergence
in the norm of the space L,(G) implies uniform convergence in every compact
subset of G.

We also need to define the two families of curves
Cri= {z:|fii(@[=R, R<1} (4.25)

and
Cri1= {z :| fp2(2)| = R,R >1} (4.26)

where f; is the interior mapping function associated with Int (0Q,), and
f g2 is the exterior mapping function associated with Ext(0Q ;). Then, the
observations (i)-(iv) in conjunction with the theory of maximal convergence

of polynomial approximations lead easily to the following theorem.

Theorem 4.4 Assume that the mapping function f is analytic on 0Q, and let

ﬁl = inf {R : H is analytic in Ext (Cg; ) N Int (02,)} 4.27)

and

A

R, = sup{R: H is analytic in Int (CR,) N Ext(0Q,)} . (4.28)

Also, let fy denote the kth ONM approximation to f, corresponding to the monomial
basis (1.12). Then, for each R, 1<R<min(l/li1,li2),there exists a constant

M(R), independent of n so that

max | f(z) - £, (z) SM(R)/R™.. (4.29)
ze
Theorem 4.4 applies only to a slightly wider class of domains than the
class of doubly-connected domains whose boundary components 0Q; and 0Q, are

both analytic Jordan curves. Unfortunately, we do not know of any results,

similar to those of Theorems 4.2 and 4.3, which establish the uniform con-

vergence of the ONM approximations in Q. when 0Q; and 6Q, are more general

piecewise analytic Jordan curves. Regarding the use of augmented basis sets,
the remarks we made in connection with the BKM also apply to the ONM. In the
case of the ONM however, it has been shown in [17] that it is not possible to
reflect exactly the singularities of H, even when the singular points are in

compl (QUoN).
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5. Numerical Examples

In this section we present four numerical examples, illustrating the
stability and convergence results of Sections 3 and 4. The computational
details of the BKM and ONM procedures used in these examples are as described
in [10,§3] and [15,§5] respectively. In particular, when Q is simply-connected
then the estimate E ,, of the maximum error in the modulus of the nth BKM approx-
imation f,,is given by

Enme}x‘l—|fn(zj)|‘ : (5.1)

where {z;} is a set of "boundary test points " on 0OQ. Similarly, when Q is
doubly-connected then the estimate E, , corresponding to the nth ONM approx-

imation f,,is given by

E, = max {mejlx‘l—]fn(zl’j) ,mejlx‘Mn—]fn(zz’j)\ U , (5.2)

where {z;;} and {z.;} are two sets of boundary test points on 0€ ; and 0Q »
respectively, and M, is the nth ONM approximation to the conformal modulus M
of Q. As was remarked in Section 1, the approximation M , is computed by using
formula (1.10).

Each of the BKM and ONM algorithms computes recursively a sequence of
approximations f,. Also, each algorithm includes a termination criterion
for terminating the process at some "optimum" value n = Nopt, which gives a
"best" approximation f Nop¢ in some pre-defined sense. In [10,13,15], the

number Nopt is determined by using essentially the following procedure:
A minimum number n ,;, of basis functions to be used i1s defined and. for

each n > n iy, the error estimate E , is computed. If at the (n+1)th stage the
inequality

ny < n (5.3)
is satisfied then the approximation f ,., is computed. When for a certain
value of n, due to numerical instability, (5.3) no longer holds then the process
is terminated and n is taken to be the optimum number Nopt of basis functions.

Naturally, the number Nopt depends critically on the precision of the computer
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arithmetic used, and on the stability and convergence properties of the numerical

method. Regarding the choice of the parameter n ., , when a monomial basis is

used then n ., =2 is appropriate. However, when an augmented basis is used then

n i, should always be chosen sufficiently large so that the basis set {mn; N,

..xNpn . -y includes the "main" singular functions.
min

A drawback of the above procedure for determining Nopt is that it does not
take into account the possibility of non-monotonic convergence. (Even with exact
arithmetic, there is no guarantee that sequence {E ,} will decrease monotonically.)
In the present paper we attempt to remedy this shortcoming, by determining the

numbers E, defined by

En =En _Ep=min{En.Ep ) sn=ng o elon o2, (5.4)
and taking as Nopt the first n > n .;, for which
E,.;=E,; j=123. (5.5)

In general, the procedure for determining Nopt also includes a termination
criterion which safeguards against "slow" convergence. In the present paper
however, because of the nature of our investigation, we introduce such a criter-
ion only in Ex. 5.3, where we anticipate very slow convergence. More precisely,
in this example we take Nopt to be the first n > n ,;, for which either the
equalities (5.5) or the inequality

E

1.5 > 09 E, (5.6)

are satisfied.

For comparison purposes, we present numerical results obtained by implement-
ing our BKM and ONM Fortran algorithms on each of the following three computers,

in the precision €& indicated.

COMP1 : Honeywell level 68 computer.

Single precision: & = 272° ~ 1.5x 107%. (5.7)
COMP2 : CDC 7600 computer.

Single precision: & =2% ~ 7.1 x 107"~ (5.8)
COMP3 : IBM Amdahl computer.

Extended precision: e = 27" ~ 3.1 x 107 . (5.9)
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In presenting the results, we use the abbreviations BKM/MB and BKM/AB
to denote respectively the BKM with monomial basis (1.11) and with augmented
basis.Similarly, we use ONM/MB and ONM/AB to denote the ONM with monomial
basis (1.12) and with augmented basis. Also, in the tables of results we

use the abbreviation a(-M) to denote a 10™ .

Example 5.1 BKM for ellipse

Q= {(xy) :x*/a’+y* <1, a>1} . (5.10)
Monomial basis. Because QQ has two-fold rotational symmetry about the origin,
the monomial basis is taken to be
n; (2 = z*4Y j =1,2,3 (5.11)
Augmented basis. In this case, the exact mapping function f is given by an
elliptic sine; see e.g. [12,Eq.51,p,296]. From this it follows that f has
simple poles at the infinite array of points
z=i(a’ —1)% sinh(2k +1)sinh " (2a/(a®* =1))} ; k=0,+1,+2, ..., (5.12)
on the imaginary axis.
The augmented basis is formed so that it reflects the two dominant singular-

ities of f, i.e. the two simple poles at the points =+ ip;, where

1

pi = 2a/(@-1)? . (5.13)
Because of the symmetry, this is done by introducing into the monomial set

(5.11) the single singular function {z/(z> + p;®)}'. That is, the augmented basis is

a6

(M (z2)={z/z* +p})} .n, =n D= 1,23, : (5.14)

see [10,Ex.5].

Optimum results. The values of Nopt and E nope Obtained by applying the BKM/MB
and the BKM/AB to the four ellipses corresponding to the values a = 1.2, 2.0, 4.0
and 8.0 are listed in Table 5.1. For each geometry, the table contains the
results obtained by carrying out the computations on each of the three computers
COMP1, COMP2 and COMP3, in the precision given respectively by (5.7), (5.8)

and (5.9).
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TABLE 5.1

Values of Nopt and Eyop.

COMP1 COMP2 COMP3

e = 1.5(-8) e = 7.1(-15) e - 3.1(-33)

a | BKM/ Nopt — Enopt Nopt  Enjopt Nopt  Eyjoy
1o MB 8 6.7(-8) 15 5.0(-14) 32 8.3(-31)
AB 2 3.4(-7) 3 5.8(-13) 6 2.9(-28)
20 MB 11 1.7(-5) 19 2.6 (-9) 42 5.1(-19)
AB 4 1.0 (-7) 6 3.5(-13) 12 5.6(-28)
40 MB 8 1.7(-2) 14 1.2(-3) 32 5.9 (-7)
AB 7 2.2(-7) 11 7.5(-12) 21 3.0(-23)

- MA 7 1.7 (-1) 12 6.6(-2) 27 1.5(-3)

BA 9 1.5(-5) 16 5.6(-8) 27 8.2(-15)

From the table, we observe that in the case a =1.2 the optimum BKM/MB
approximations are accurate to almost machine precision. We also observe
that, for all four values of a, the use of the augmented basis (5.14) improves
considerably the rate of convergence of the method. However, when a=1.2
the optimum BKM/AB approximations are not as accurate as those obtained by
using the monomial basis (5.11). For the other three values of a the use of
(5.14) leads to a substantial improvement in accuracy. In what follows, we
shall attempt to explain the above observations by examining the stability
and convergence properties of the BKIM/MB and BKM/AB.

Stability. The exterior mapping function f g associated with Ext(0Q) is

1

fo(z)={z+((z*—a’>+1)2}/(a+1) . (5.15)
Thus, cap (6Q) =(1+a)/2 and, since max {|z| : z € 0} = a, the quantity 0 defined
by (3.10) is given by & = {(1 + a)/2a}”.

In this example, because of the symmetry of Q, the monomial set (5.11)

involves only the even powers of z. For this reason, it follows from Theorem 3.1
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that the rate of decrease of the sequence of indicators {I,, }, associated

with the set (5.11), is at least as rapid as that of the sequence
{2n-1A"} , where A= &8 ={(1+a)/2a}* . (5.16)

Furthermore, since in this case O0Q is analytic and the bound (3.12) holds,
we expect the rate of decrease of (5.16) to reflect closely that of {I,, }.
We note that for all a> 1,

/16 <A< 1 , (5.17)
where the limiting values A=1 and A=1/16, for "perfect" and "worst" stability,
correspond respectively to the cases where Q is the unit disc and, by rescaling,
the straight line slit joining the points £ 1. We also note the following in
connection with the limiting value A =1/16. As a—oo the matrix G aof (2.7),
corresponding to the set (5.11), tends to the Gram matrix inassociated with
the construction of even degree Legendre polynomials. As is well-known, the
condition number of the matrix L n 1increases with n at least as rapidly as
the sequence {16 " }; see e.g. [24].

For the values a=1.2, 2.0, 4.0 and 8,0, considered in this example, the

corresponding values of A are respectively

0.706 07 , 0.316 41 , 0.152 59 and 0.100 11 . (5.18)

Thus, we expect the level of instability in the case a =2.0 to be substantially
higher than in the case a =1.2. Similarly, we expect the levels of instability
in the two cases a=4.0 and a = 8.0 to be higher than in the case a = 2.0.

In Table 5.2 we list COMP3 values of the instability indicators I ,,,
TSH and {C(G,)}”', associated with the use of both the monomial and augmented
basis sets (5.11) and (5.14). The values I ,,and TSnare determined during
the orthonormalization process from (2.17b) and (2.17)-(2.18), by allowing
when necessary the process to continue after the value Nopt is reached. The
values of {C(Gn)}_lare determined from (2.8), by computing the largest and

smallest eigenvalues of any means of the NAG Library Subroutine FO2AAF. In
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the table we also compare the observed and theoretical rates of decrease of
the sequence {I ,, }, associated with the monomial set (5.11). We do this by
comparing the computed values
A, ={2n=-3)I,,/2n-DI .} , (5.19)
with the exact values of A given in (5.18).
TABLE 5.2

Instability -indicators

~

oo Is. {C(Go)-!

a n MB AB MB AB MB AB An A

6 | 9-1) 5(-3) 4(-1)  4(-10) | 1(-1) 8(-5) 0.639
12] 12| 1¢-1) 1(-3) 2(-2) 3(-22) | 3(-3)  4(-23) | 0.676 | 0.706
18 | 4(-2)  2(-2) 1(-3) 1(-31) | 5(-4)  2(-32) | 0.687

6 | 2(2)  7(-3) 4(-3) 1(-4) 1(-5) 1(-5) 0.292
20| 12| 3(-5)  9(-6) 3(-7)  5(-10) | 2(-8)  2(-11) | 0.303 | 0.316
18 | 3(-8) 1-8) | 2(-11) 1(-15) | 5(-13) 4 (-17) | 0.308

6 | 7(-4)  2(-3) 1(-4) 3(-4) 1(-5)  4(-5) 0.139
40 | 12| 1(-8)  3(-8) 5(-11) 1(-10) | 2(-12) 6(-12) 0.146 | 0.153
18 | 2(-13)  5(-13) | 2(-17) 4(-17) | 4(-19) 9(-19) | 0.147

6 1(-4) 9(-4) 2(-5) 2(-4) 2(-6) 2(-5) 0.092
80 | 12 | 2(-100 1(-9) 6(-13)  6(-12) | 2(-14) 3(-13) 0.096 | 0.100
18 | 3(-16) 2(-15)| 1(-20) 1(-19) * * 0.097

* The eigenvalues of G, cannot be computed to sufficient accuracy.

The results of Table 5.2 confirm completely the theoretical predictions
made in Section 3. In particular, we observe that the use of the augmented
basis (5.14) causes the level of instability to increase substantially in the
case a=1.2. The reason for this is that when a =1.2 the two points £ ip are
"far " from oQ and, because of this, there is "near" linear dependence between
the singular function{z/(zz—lrp]z)}' and the first few terms of (5.11). The
same remark, but to a much lesser extent, also applies to the case a=2.0. By
contrast, in the two cases a=4.0 and a =8.0, when the points =+i p; are close
to 0Q and the singularities are much more serious, the introduction of the

singular function into the set (5.11) does not lead to a deterioration of

the stability.
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Convergence, As before, we let+ip be the singular points of f nearest to

0Q, and observe that the next nearest singular points are +ip where

p,=p,{3+4p; /[(a’ -1} ; (5.20)
see Eq. (5.12). We also let fg be the exterior mapping function (5.15).
Then, it follows from Section 4 that the BKM/MB and BKM/AB approximations

of f satisfy respectively

max_|f(z) —fn (@ = OIR ") ,v R, 1<R <Ry, (5.21)
zeQ

and
max [f(z) ~fh(z)| = /R "), VR , 1< R<R,, (5.22)
zeG

where G is any compact subset of Q and where, because the basis sets (5.11)

and (5.14) reflect the symmetry of Q,

R, =|f.(xip,)> =(a+1)/Na—-1), (5.23a)
and
- 1
R, =[f.(xip,)|” = {p;+a’ -1)2}* (a+1)* . (5.24b)
For the four cases a = 1.2, 2.0, 4.0 and 8.0, the values of the constants

(5.22) and (5.23) are as follows:

() a=12:R =11.0, R, =161 051.0 ,
(ii) a=2.0:R =30, R, = 243.0 ,
A . (5.24)
(iii) a=40:R =166 667, R, =12.8 601 ,
(iv) a=80:R =128 571, R, = 3.51 336 ,

Therefore, for the geometry under consideration, the theory indicates clearly
the serious effect that singularities close to 0 have on the rate of convergence
of the BKM/MB. Also, (5.22) provides some explanation for the observed
improvement in convergence which is achieved when the monomial basis set
(5.11) is replaced by the augmented set (5.14)

In Table 5.3 we examine further the rates of convergence of the BKM/MB

and BKM/AB by listing values of the ratios

rm=E/E, 1 ,n=Nopt/2+2, (5.25)
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TABLE 5.3

Convergence ratios

a BKM/MB BKM/AB
s rig =11.000 000 000 3 rs = 1.619(5)
R, =11.0 R, = 1.6 11(5)
2o I 24 =2.999 999 999 7 ro = 243.9
R, =3.0 R, = 243.0
—1.666 1
fis r, =12.94
4.0 )
R, =1.666 67 R, =12.86
rig — 1.276 Tig =3.29
8.0 R
R, =1 R, =3.51

where the E; are COMP3 error estimates, and comparing them with the correspond-
ing values RI and 12’2 given in (5.24). The results of the table suggest that,
for the ellipse under consideration, Theorem 4.1 gives a sharp estimate of
the rate of convergence of the BKM/MB. The results also suggest that, in this
case, the BKM/AB approximations satisfy (5.22) with G replaced by Q.
Example 5.2 BKM for rectangle

Q={xy) x| <a, |y[<1 ,a=1} (5.26)
Monomial basis. Because of the rotational symmetry the monomial basis set is

taken to be
n,(z) = 249 j=1,2.,3,.. , (5.27a)
when a=1, i.e. when Q is a square, and

2 (j=1)

nj(z) =z ; ] =1,2,3,... , (5.27b)

when a > 1.
Augmented basis. In thiscase, it follows at once from the Schwarz reflection
principle that the mapping function f has simple poles at the mirror images of

the origin with respect toeach of the four sides of Q, i.e. at the four points
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z = £2i and z = X2a. (5.28)
More precisely, the repeated application of the reflection principle shows that

f has simple poles at all points
z =2ma + 12n ; mmn =0,£1,£2,..., m+n = odd. (5.29)

The augmented basis is formed, as in Levin et al [10,Ex.1], by introducing
into the appropriate monomial set (5.27) the functions that reflect the singular-
ities of f at the four points (5.28). However, when a> 1 we also consider the
use of the augmented basis that reflects the singularities of f only at the two
points =+ 2i nearest to 02 Thus, because of the symmetry, the two augmented

basis sets considered are as follows:
AB: (i) When a=1,
n(z) =4z/z2+16) ', 7, (2) = 2*" = 1,2, (5.30a)

(i)) When a> 1,

2 (J=1)

N, (2) ={z/z> +4)}', n,(2) ={z/z* —4a’)}', n,,(2) =z ;
i=1,2,... . (5.30b)

AB—: When a>1,

2 (J=1)

N, (z) = {z/z> + 4)}", N (z) =z ;o ]J=1,2,... . (5.31)
Optimum results. The COMP1, COMP2, and COMP3 values of Nopt and E nop Obtained
by applying the BKM/MB, BKM/AB and BKM/AB' to the four domains corresponding
to a = 1,2,4 and 8 are given in Table 5.4, (We observe that when a=1 the
value of E nop (COMP2) given in Table 5.4 is considerably less than the corres-
ponding value obtained by Levin et al [10,Ex.1], also on COMP2. This discrepancy
must be due to the slightly different methods used by Levin et al for performing
the orthonormalization and for determining Nopt.)

Stability. Let
& = {cap(6Q)}* /(1+a*) (5.32)
and observe that for any value of a, cap(d€Q) can be determined from the exact

formula of Bickley [3]. Then, it follows from Theorem 3.1 that the sequence
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TABLE 5.4

Values of Nopt and E nop.

COMP1 COMP2 COMP3
e ~ 1.5(-8) e =~ 7.(-15) e =~ 3.1(-:33)
BKM/
a Nopt ENopt Nopt ENopt Nopt ENopt
| MB 7 8.8(-7) 13 6.3(-12) 2 1.0(-24)
AB 3 1-2(-6) 5 2.1(-11) 11 1.9(-24)
MB 11 7.6(-4) 2 2.5(-6) 45 3.3(-13)
2 AB 6 2.1(-6) 10 1.0(-10) 21 2.1(-20)
AB' 9 3.0(-6) 15 2.3(-10) 19 6.3(-22)
MB 8 4.9(-2) 18 24(3) 37 3.5(-6)
4 AB 7 1.6(-5) 11 2.3(-8) 24 3.7(-17)
AB' 8 2.0(-6) 13 2.0(-10) 28 2.4(-21)
MB 8 2.0(-1) 12 9.0(-2) 31 2.4(-3)
8 AB 8 2.1(-4) 14 7.6(-6) 27 3.4(-12)
AB' 8 1.2(-4) 13 7.9(-7) 31 1.2(-13)

of indicators {I ..}, associated with the BKM/MB, decreases at least as rapidly

as the sequence
INA" (5.33)
where, because of the form of the sets (5.27),N = 4n-1 and A= &' when a-1,

and N = 2n-1 and A = 8 > , when a >1. The values of A corresponding to a =1,2.4

and 8 are respectively

0.235 47 , 0374 74 , 0.222 22 and 0.138 91 . (5.34)

In Table 5.5 we list COMP3 values of the instability indicators INSn
associated respectively with the use of the basis sets (5.27), (5.30) and
(5.31). In the table we also compare the observed and theoretical rates of
decrease of the sequence {I ., }, associated with (5.27), by comparing the exact

values of A, given in (5.34), with the computed values A where, when a-1,

A={591,5,5 /991 5,5 3" (5.35a)
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and when a> 1,

A ={29T, ,, /49T, ' (5.35b)

TABLE 5.5

Instability -indicators TSn

a n MB AB AB’ A A
5 2.4(-2) 4.0(-7) _

1| 15 8.4(-10) 3.4(-25) - 0.236 0.235
. 8.3(-18) . }
5 3.2(-2) 3.5(-4) 3.0 (-2)

2| 15 1.6(-8) 5.1(-17) 2.2(-9) 0.377 0.375
25 2.5(-15) 3.7(-30) 2.8 (-16)
5 1.8(-3) 6.0(-5) 5.4(-3)

41 15 7.2(-13) 4.1(-21) 1.8(-12) 0.222 0.222
25 3.4(-22) * 3.1 (-22)
5 3.4 (-4) 2.1(-5) 2.8(-3)

8| 15 8.5(-16) 5.8(-24) 6.8(-15) 0.134 0.139
25 1.0(-29) * 3.4(-26)

* The value is less than ¢ ~ 3.1(-33),
Convergence.

and recall

the precision of COMP3.

Let fg be the exterior mapping function associated with Ext (0Q),

that the singularities of f

in comp () occur at the points (5.29).

Then, since f is analytic on 0CQ, the BKM/MB and BKM/AB approximations to

f satisfy respectively (5.21) and (5.22)

where, because of the form of the

sets (5.27), (5.30) and (5.31), the values of ﬁl and R, are as follows:

BKM/MB: R, =|fz(2i)|*when a=1and R | = |f;(2i)|> when a=2438.
BKM/AB: R, = [fp(2a+4i)|* when a=1, R, = |fz (2a+4i)]> when a=2, and
R, = |f £(6i)|> when a=4,8.

BKM/AB':

R, |f 5(2a)|> when a=2, and R,= |f (6i)|> when a=48.

In Table 5.6 we compare the values of Rl and Rz, determined from the

expressions given above, with the observed rates of convergence given by

the ratios



32

TABLE 5.6

Convergence ratios

a BKM/MB BKM/AB BKM/AB'
L e = 88820 ri = 257.5
R, = 8.8839 R, = 2059 -
R rys = 1.9866 r; = 1131 ri; = 4.623
R, = 1.989 R, = 10.45 R, = 4.664
. ry = 1.4839 ris = 5.600 r;; = 5.422
R, = 1.4862 R, =5.596 R, = 5.596
. rg = 1.2713 rig = 2.785 rg = 2.758
R, = 12422 R, = 2.813 R, = 2813
r ={Ey/E _6}1/6 . n= Nopt/2+3 , (5.36)
n

where the E; are COMP3 error estimates. (In this case, the mapping function
fg is not known in closed form. For this reason, the values of R listed in
the table are only estimates, obtained by computing BKM approximations to fg
in the manner described in [14,Ex.3.2].)

All the remarks made in connection with the results of Ex.5.1 also apply
to the results of the present example. In particular, we observe that in all
three cases where a> 1 the level of instability in the BKM/AB is substantially
higher than in the BKM/AB’, This is of course due to the fact that when a=2,4
and 8 the points £ 2a are "far" from 06, and there is near linear dependence
between the singular function n, in (5.30b) and the first few monomials in
(5.27). Furthermore, the convergence of the BKM/AB is noticeably faster than
that of the BKM/AB' only in the case a=2. However, even when a=2 the improve-
ment in convergence is not sufficient to overcome the increased instability and,
with the exception of the COMP2 results for a=2, all the BKM/AB' approximations

are more accurate than those obtained by the BKM/AB.
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Example 5.3 BKM for the L-shaped domain

Q ={xy):-1<x<3,[y[<1} U {xy) | x[<] -l<y <3} . (5.37)

Monomial basis. The monomial basis set used is

ni(z) =z'"; j = 1,2,3,... (5.38)
Augmented basis. In this case, the mapping function f has a serious branch
point singularity at the re-entrant corner of the L-shape, i.e. at the point
z =1 +1i. This follows from the results of Lehman [9], which show that in

the neighbourhood of 2, f has an asymptotic expansion of the form

f(z) - fz)) = £§1a£(2—20)2£/3, a0 ; (5.39)

see [18,84]. Furthermore, by the Schwarz reflection principle, f has simple

pole singularities at the points

pr=-2i, p>=-2, p3 =6 and p4 = 6i. (5.40)
Because of the above observations we consider the use of the following two
augmented basis sets:
AB(Sm): This basis set takes into account only the branch point singularity
of f at z,, and is constructed by introducing into the monomial set (5.38) the
first m functions of the set

Su(z) = (2-Zy)> V3", = 1,2,4,5,7.8,... ; (5.41)
see Eq. (5.39). The basis functions are ordered so that when k- 1 < (2£/3-1) <k

-1

the singular function S; lies between the monomials z "' and z".

AB(PSm): This set is the same as AB(Sm), except that here we also introduce

the singular functions

n(z2) = {z/(z-p,)})' and n,(z) = {z/(z-p,)}" , (5.42)
which reflect the poles of f at the two points p; and p; .(The other pole

singularities at the points p3z and p4 are "far" from 0, and are not considered

here.)
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Optimum results. The values of Nopt and E nope otained on COMP1, COMP2 and
COMP3 by using respectively the monomial basis (5.38) and the two augmented

sets AB(Sm) and AB(PSm), each with m= 1,3 and 6, are listed in Table 5.7.

TABLE 5.7

Values of Nopt and E yop:

COMPI COMP2 COMP3

g ~ 1.5(-8) g ~7.1(-15) e ~ 3.1(-33)
Method Nopt E Nopt Nopt E Nopt Nopt E Nopt
MB 13(S) 2.4(-1) 13(S) 2.4(-1) 13(S) 2.4(-1)
AB(S1) 13 2.3(-2) 16 5.7(-3) 27(S) 2.2(-3)
AB(PS1) 13 7.9(-3) 29 2.2(-3) 28(S) 2.1(-3)
AB(S3) 15 2.3(-2) 28 6.0(-4) 45(M) 5.9(-5)
AB(PS3) 15 1.3¢:3) 26 2.9(-4) 45(M) 2.2(-5)
AB(S6) 10(B) 22(-1) 26 114(-3) 45(M) 2.8(-6)
AB(PS6) 16 6.8(-4) 26 2.5(-5) 45(M) 7.8(-8)

(S): Slow convergence, i.e. the process terminates because criterion (5.6) is
satisfied.

M):  This is the maximum number of basis functions used, i.e. the process is
stopped at n =45, without (5.5) or (5.6) being satisfied.

(B): The orthonormalization process breaks down before nnin = 13 is reached.

Stability. Typical COMP3 values of the instability indicators TSH, associated

respectively with the use of the monomial basis (5.38) and the six augmented

sets AB(Sm) and AB(PSm); m = 1,3,6 are listed in Table 5.8.

TABLE 5.8

Instability indicators TSH

n MB AB(S1) | AB(PS1) | AB(S3) | AB(PS3) AB(S6) AB(PS6)

5 4.3(-2) 1.0(-1) 1.1(-1) 1.2(-3) 1.4(-2) 1.2(-3) 1.4(-2)
15 2.1(-7) 7.4(-7) 2.8(-7) 3.8(-6) 5.4(-6) 1.2(-11) 8.4(-11)
25 | 6.7(-13) 2.4(-12) | 4.8(-12) | 2.8(-11) | 3-0G-11) 1.1(-15) 1.1(-13)
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From Theorem 3.1 we know that the sequence of indicators{l ,, }, associated

with the monomial set (5.38), decreases at least as rapidly as the sequence
{(n-1)8"} where & = {cap(éQ)}?/5. Although cap(6€) is not known exactly, the
BKM/AB results of [14,Ex.3.4] give the estimate 6=0.4708. By comparison, the
COMP3 ratio {14125,25/24115,15}1/20 gives the value & = 0.4690. These two
estimates of O, in conjunction with the MB wvalues of IS, listed in Table 5.8,
indicate that the level of instability in the BKM/MB is not particularly high,
by comparison with the levels of instability associated with some of the geometries
considered in Exs. 5.1 and 5.2. Furthermore, the results of Table 5.8 indicate
that, in this example, the introduction of singular functions does not affect

significantly the stability properties of the orthonormalization process.

Convergence, In this example, it is very difficult to draw precise conclusions,
concerning the convergence of the BKM approximations, from the behaviour of the
error estimates E,. We can only make the following general remarks:

(i) The results of Table 5.7 indicate that the convergence of all BKM
approximations is slow.

(ii) Theorem 4.3 of Simonenko [20] applies to the L-shaped geometry con-

sidered here, i.e. there exist constants C>0 and I'>0 such that

max | f,, (z) — f(z) | < C/n?, (5.43)
VAS

where f,is the nth BKM/MB approximation to f. Furthermore, the result of
Kulikov [11] shows that (5.43) holds for all ye(0,y;) where, in this case,
v1 = 1/480. Here, we attempt to provide some further information about the
rate of convergence by computing values of the quantity

Yo :{log(]::n_lo/]::n)}/{log(n/(n—10)} , Eq zlénkiélnEk , (5.44)
where the Ey are the BKM/MB(COMP3) error estimates. (We use E,, rather than

E,, to take into account the possibility of non-monotonic convergence.) Typical

results are as follows:

Y25 = 0.23 5 Y35 = 0.26 5 Yas5 = 0.20
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These results suggest that the exponent y in (5.43) is approximately 0.2 and,

as we remarked in Section 4, the value y; of Kulikov appears to be very pessimistic.
(ii1))  The results of Table 5.7 indicate clearly that the introduction of

singular functions into the basis set improves considerably the accuracy of

the BKM approximations. In this example, the dominant singularity is due to

the re-entrant corner at zy = 1+ 1i, and for improved approximations the augmented

basis must contain functions that reflect this corner singularity; see also

the examples in [10] and [13,14],

(iv)  The results indicate that the AB(PSm) approximations are, in general,
at least as accurate as those obtained by using the basis AB(Sm). However, the
COMP3 results suggest that the introduction of the "pole" singular functions
(5.42) does not improve the asymptotic rate of convergence of the BKM/AB(Sm).
(The reason for the improved approximations, which are sometimes obtained by
the AB(PSm), appears to be that the introduction of the functions (5.42) causes
a noticeable initial improvement.)

(v) In this case, we do not have any theoretical results concerning the
rate of convergence of the AB(Sm) and AB(PSm) approximations. In Section 4 we
speculated that the improved accuracy achieved by the BKM/AB is due to a larger
exponent y in (5.43). We performed several numerical experiments for testing

this speculation, but our numerical results were not conclusive.

Example 5.4 ONM for the mapping of an equilateral triangle with a circular

hole. Here, Q is the doubly-connected domain bounded internally by the circle
o0Q,={z : |z| =a, a<1}, (5.45)

and externally by the equilateral triangle 0, with vertices at the points

1+iV3and-2

Monomial basis. Because Q2 has three-fold rotational symmetry about the origin

the monomial basis is taken to be

N2i1(2) =227 mai(z) = 1/2°7" ; j=1,2,3,...... (5.46)
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Augmented basis. The domain Q has no corner singularities and for this reason,
an augmented basis need only reflect any singularities that the function

H(z) =1 (2)/f(z) -1/z may have in comp (QUOQ) .As is shown in [17], the
function H does in fact have such singularities at the common symmetric points
associated with the circle 0Q; and each of the three sides of the triangle oQ ,

i.e. at the points

(D g wi ™ ana B - w12,
| (5.47)

1 1
6 =6 =1- 1-ahH)?2 gy =i =14 (1-a7)?

and w=exp(2 wi/3) It is also shown in [17] that these singularities can be
reflected, but only approximately, by introducing into the monomial set (5.46)
functions corresponding to simple poles at the points (5.47). The use of
augmented basis sets constructed in this manner leads to improved ONM approx-
imations, especially when the radius a of 0Q; is close to unity. However,

since the singularities of H at the points (5.47) can only be reflected approx-
imately, we do not have any theoretical results concerning the rate of convergence
of the ONM/AB. For this reason, in this example we consider only the use of

the ONM/MB and refer the reader to [15] and [17], where several examples in-
volving the use of the ONM with augmented basis sets are considered.

Optimum results. The COMP1, COMP2 and COMP3 values of Nopt and EL nop ;0btained
by applying the ONM/MB to the three domains corresponding to a=0.3,0.5 and 0.8,
are listed in Table 5.9. (When a=0.5 the COMP2 values of Nopt and E nope given
in Table 5.9 differ somewhat from the corresponding values obtained in [17],
also on COMP2. This discrepancy is due to slightly different implementation

details regarding the calculation of inner products.)

Stability. From Theorem 3.2 we know that the subsequence of indicators
{I 2n+1.2n+1rdecreases at least as rapidly as the sequence {NA "} where, because
the set (5.46) reflects the symmetry of Q, N=3n+1 and A = {cap(0Q,)/2}°. Here

cap(0Q ,) can be determined from the exact formula of Po6lya and Szegd [19.,p.256].
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TABLE 5.9

Values of Nopt and E o,

COMPI1 COMP2 COMP3
g = 1.5(-8) e =7.1(-15) e =3.1(-33)
a Nopt ENopt Nopt ENopt Nopt ENopt
0.3 15 3.1(-5) 26 2.2(-8) 45 (M) 6.1(-4)
0.5 15 2.5(-5) 28 3,9(-8) 45 (M) 5.5(-3)
0.8 18 1.8(-4) 25 2.1(-6) 45 (M) 5.5(-10)

(M): This is the maximum number of basis functions used, i.e. the process
is stopped at n =45, without (5.5) or (5.6) being satisfied.

This gives A = 0.151 96. By comparison, the COMP3 ratios{(2815030)/(58110.10)}""°,
associated with the application of the ONM to the three domains with a =0.3,
0.5 and 0.8, are
0.151 76 , 0.151 76 and O0.151 77 ,
respectively.

Regarding the subsequence of indicators {l,,+22n+2 }, the ratio d;/R; in
(3.20) is, in this case, d;/R; =1 for all values of a. Because of this, we do
not expect the size of the circular hole to affect the stability of the ortho-
normalization process. This is confirmed by our numerical results. For example,
the COMP3 values of the indicators TS 15 TS 25 TS 35 are respectively

1.5(-6) , 1.6(-11) and 1.2(-16) ,
in all three cases a=0.3, 0.5 and 0.8. Furthermore, our experiments show that
for "large" n the introduction of basis functions of the form 1/z°""' does not
affect the stability of the method. In fact, as n increases the indicators

Ion2.2n+2 appear to aproach the value unity. For example, the COMP3 wvalues

of 166 corresponding to a=0.3,0.5 and 0.8, are

1.000 00 , 1.000 00 and 0.999 91 ,

respectively.
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Convergence. Since f is analytic on 0Q = 0Q; U 0Q,, Theorem 4.4. applies.

That is, because of the form of the set (5.46), the ONM approximations to f

satisfy
|f(z)~f, ()] =0(I/R™™) , YR, 1<R <min(IR.R,) , (5.48)

where Rl and liz are defined by (4.27) and(4.28). Therefore lil =a/{; and

A

R2 = fg ({;) where the singular points {; and {, are given by (5.47), and fg;
is the exterior mapping function associated with the outer triangular boundary 0Q,

TABLE 5.10

Convergence ratios

a=0.3 a= 0.5 a = 0.8
I 2 1.902 1.760 1.517
T 30 1.867 1.751 1.503
Rz 32 1.811 1.720 1.465
5 16.622 7.210 2.828
1

In Table 5.10 we compare the observed rate of convergence with that pre-

dieted by (5.48) by listing the COMP3 wvalues
ro={Es/Enuo}’ : n = 20,30,

and comparing them with min {ﬁ1—3/2 , ﬁ%/Z }.(It should be observed that, as in

Ex.5.2, the mapping function fg, is not known exactly. For this reason, the
values of R%/Z listed in the table are estimates computed by using BKM/AB
approximations to fg, ; see [14,Ex.3.3].)

The results of Table 5.10 reflect the theory, and indicate that rate of

convergence of the ONM decreases as the radius a of the circular hole increases,
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