7,777 research outputs found

    SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression

    Full text link
    This paper deals with the problem of finding the globally optimal subset of h elements from a larger set of n elements in d space dimensions so as to minimize a quadratic criterion, with an special emphasis on applications to computing the Least Trimmed Squares Estimator (LTSE) for robust regression. The computation of the LTSE is a challenging subset selection problem involving a nonlinear program with continuous and binary variables, linked in a highly nonlinear fashion. The selection of a globally optimal subset using the branch and bound (BB) algorithm is limited to problems in very low dimension, tipically d<5, as the complexity of the problem increases exponentially with d. We introduce a bold pruning strategy in the BB algorithm that results in a significant reduction in computing time, at the price of a negligeable accuracy lost. The novelty of our algorithm is that the bounds at nodes of the BB tree come from pseudo-convexifications derived using a linearization technique with approximate bounds for the nonlinear terms. The approximate bounds are computed solving an auxiliary semidefinite optimization problem. We show through a computational study that our algorithm performs well in a wide set of the most difficult instances of the LTSE problem.Comment: 12 pages, 3 figures, 2 table

    Least quantile regression via modern optimization

    Get PDF
    We address the Least Quantile of Squares (LQS) (and in particular the Least Median of Squares) regression problem using modern optimization methods. We propose a Mixed Integer Optimization (MIO) formulation of the LQS problem which allows us to find a provably global optimal solution for the LQS problem. Our MIO framework has the appealing characteristic that if we terminate the algorithm early, we obtain a solution with a guarantee on its sub-optimality. We also propose continuous optimization methods based on first-order subdifferential methods, sequential linear optimization and hybrid combinations of them to obtain near optimal solutions to the LQS problem. The MIO algorithm is found to benefit significantly from high quality solutions delivered by our continuous optimization based methods. We further show that the MIO approach leads to (a) an optimal solution for any dataset, where the data-points (yi,xi)(y_i,\mathbf{x}_i)'s are not necessarily in general position, (b) a simple proof of the breakdown point of the LQS objective value that holds for any dataset and (c) an extension to situations where there are polyhedral constraints on the regression coefficient vector. We report computational results with both synthetic and real-world datasets showing that the MIO algorithm with warm starts from the continuous optimization methods solve small (n=100n=100) and medium (n=500n=500) size problems to provable optimality in under two hours, and outperform all publicly available methods for large-scale (n=n={}10,000) LQS problems.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1223 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Robust variable screening for regression using factor profiling

    Full text link
    Sure Independence Screening is a fast procedure for variable selection in ultra-high dimensional regression analysis. Unfortunately, its performance greatly deteriorates with increasing dependence among the predictors. To solve this issue, Factor Profiled Sure Independence Screening (FPSIS) models the correlation structure of the predictor variables, assuming that it can be represented by a few latent factors. The correlations can then be profiled out by projecting the data onto the orthogonal complement of the subspace spanned by these factors. However, neither of these methods can handle the presence of outliers in the data. Therefore, we propose a robust screening method which uses a least trimmed squares method to estimate the latent factors and the factor profiled variables. Variable screening is then performed on factor profiled variables by using regression MM-estimators. Different types of outliers in this model and their roles in variable screening are studied. Both simulation studies and a real data analysis show that the proposed robust procedure has good performance on clean data and outperforms the two nonrobust methods on contaminated data

    Deterministic Sampling and Range Counting in Geometric Data Streams

    Get PDF
    We present memory-efficient deterministic algorithms for constructing epsilon-nets and epsilon-approximations of streams of geometric data. Unlike probabilistic approaches, these deterministic samples provide guaranteed bounds on their approximation factors. We show how our deterministic samples can be used to answer approximate online iceberg geometric queries on data streams. We use these techniques to approximate several robust statistics of geometric data streams, including Tukey depth, simplicial depth, regression depth, the Thiel-Sen estimator, and the least median of squares. Our algorithms use only a polylogarithmic amount of memory, provided the desired approximation factors are inverse-polylogarithmic. We also include a lower bound for non-iceberg geometric queries.Comment: 12 pages, 1 figur

    Bayesian Model Averaging and Weighted Average Least Squares: Equivariance, Stability, and Numerical Issues

    Get PDF
    This article is concerned with the estimation of linear regression models with uncertainty about the choice of the explanatory variables. We introduce the Stata commands bma and wals which implement, respectively, the exact Bayesian Model Averaging (BMA) estimator and the Weighted Average Least Squares (WALS) estimator developed by Magnus et al. (2010). Unlike standard pretest estimators which are based on some preliminary diagnostic test, these model averaging estimators provide a coherent way of making inference on the regression parameters of interest by taking into account the uncertainty due to both the estimation and the model selection steps. Special emphasis is given to a number practical issues that users are likely to face in applied work: equivariance to certain transformations of the explanatory variables, stability, accuracy, computing speed and out-of-memory problems. Performances of our bma and wals commands are illustrated using simulated data and empirical applications from the literature on model averaging estimation.Model uncertainty;Model averaging;Bayesian analysis;Exact computation
    • …
    corecore