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Abstract

This article is concerned with the estimation of linear regression models with uncertainty
about the choice of the explanatory variables. We introduce the Stata commands bma and wals
which implement, respectively, the exact Bayesian Model Averaging (BMA) estimator and the
Weighted Average Least Squares (WALS) estimator developed by Magnus et al. (2010). Unlike
standard pretest estimators which are based on some preliminary diagnostic test, these model
averaging estimators provide a coherent way of making inference on the regression parameters
of interest by taking into account the uncertainty due to both the estimation and the model
selection steps. Special emphasis is given to a number practical issues that users are likely to face
in applied work: equivariance to certain transformations of the explanatory variables, stability,
accuracy, computing speed and out-of-memory problems. Performances of our bma and wals
commands are illustrated using simulated data and empirical applications from the literature
on model averaging estimation.
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1 Introduction

Economic theory provides, in general, some information on the empirical model specification but

it offers little guidance on how to specify the exact data generating process for the outcome of

interest. The lack of a one-to-one link between theory and empirical model specification thus

generates uncertainty regarding, for example, which explanatory variables must be included in the

model, which functional forms are appropriate, or which lag length captures dynamic responses. In

econometrics, all these problems are known as problems of model uncertainty. Standard econometric

practice consists of using the same data for model selection and for estimation and ignoring that

the resulting estimators are in fact pretest estimators (i.e. estimators based on some preliminary

diagnostic test) and hence traditional statistical theory is not directly applicable. As shown by

Magnus and Durbin (1999) and Danilov and Magnus (2004), the model selection process matters

and it is likely to have non-negligible effects on the statistical properties of our estimators.

This article is concerned with model uncertainty in the context of linear regression models. We

focus on uncertainty about the choice of the explanatory variables because this representation of

the problem is also suitable for many other forms of model uncertainty. Following Danilov and

Magnus (2004), we distinguish between focus regressors that are always included in the model and

auxiliary regressors of which we are less certain. Model uncertainty arises because different subsets

of auxiliary regressors can be excluded from the model to improve the statistical properties of the

estimated focus parameters (for example their mean squared error). One of the main attractions

of the Bayesian model averaging techniques discussed in this article is that they provide a coherent

method of inference on the regression parameters of interest by taking explicit account of the

uncertainty due to both the estimation and the model selection steps. The literature on model

averaging estimation is vast and we refer the reader to Hoeting et al. (1999) for a general discussion.

Here, our attention is focused on the exact Bayesian Model Averaging (BMA) estimator developed

by Leamer (1978, Chapter 4, Sections 4–6) and the Weighted Average Least Squares (WALS)

estimator developed by Magnus et al. (2010). The basic idea of these estimators is computing

a weighted average of the conditional estimates across all possible models because each of them

provides some information on the focus regression parameters. In the spirit of Bayesian inference,

the weight given to each model and the conditional estimates of its parameters are determined on

the basis of data and priors.

Although our Stata implementation of BMA and WALS is based on the original Matlab com-

mands associated with Magnus et al. (2010), the new Stata commands bma and wals also introduce
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some improvements. Specifically, our bma command is more stable, is considerably faster and re-

quires much less memory than the original Matlab command. As for WALS, we modified the

estimation procedure by introducing a preliminary scaling of the explanatory variables. The aim

of this preliminary scaling step is twofold: making the WALS estimator scale-equivariant and im-

proving accuracy of the WALS estimates. In addition, our wals command is more flexible than the

original Matlab command in the specification of the prior distributions.1

The remainder of this article is organized as follows. Section 2 formalizes our statistical frame-

work. Section 3 describes the theoretical background of BMA and WALS estimators. Section 4

discusses the property of equivariance with respect to ordering, centering and scale transformations

of the explanatory variables. Section 5 describes the syntax of our bma and wals commands, while

Section 6 provides some additional remarks on the Stata and Matlab commands for BMA and

WALS. Sections 7, 8 and 9 illustrate the performances of our bma and wals commands using sim-

ulated data and empirical applications from the literature on model averaging estimation. Finally,

Section 10 offers some conclusions.

2 The statistical framework

Our statistical framework is a linear regression model of the form

y = X1β1 + X2β2 + u, (1)

where y is an n× 1 vector of observations on the outcome of interest, the Xj , j = 1, 2, are n× kj

matrices of observations on two subsets of deterministic regressors, the βj are kj × 1 vectors of

unknown regression parameters, and u is an n × 1 random vector of unobservable disturbances

whose elements are i.i.d. N(0, σ2). We assume that k1 ≥ 1, k2 ≥ 0, k = k1 + k2 ≤ n− 1 and that

the design matrix X = (X1, X2) has full column-rank k. The reason for partitioning the design

matrix X in two subsets of regressors is that X1 contains explanatory variables which we want

in the model because of theoretical reasons or other considerations about the phenomenon under

investigation, while X2 contains additional explanatory variables of which we are less certain. Using

the terminology of Danilov and Magnus (2004), the k1 columns of X1 are called focus regressors

and the k2 columns of X2 are called auxiliary regressors.

Our primary interest is the estimation of the vector of focus parameters β1, while β2 is treated

as a vector of nuisance parameters. By the properties of partitioned inverses, the unrestricted
1 Updated versions of the Matlab commands for BMA and WALS are can be downloaded free of charge from the

website www.janmagnus.nl/items/BMA.pdf.
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ordinary least squares (OLS) estimators of β1 and β2 are given by

β̂1u = β̂1r −Qβ̂2u, β̂2u = (X>
2 M1X2)

−1X>
2 M1y,

where β̂1r = (X>
1 X1)

−1X>
1 y is the restricted OLS estimator from a regression of y on X1 (with

β2 restricted to zero), Q = (X>
1 X1)

−1X>
1 X2 is the multivariate OLS estimator from a regression

of X2 on X1, and M1 = In −X1(X
>
1 X1)

−1X>
1 is a symmetric and idempotent matrix. Within

this framework, model uncertainty arises because different subsets of auxiliary regressors could

be excluded from X2 to improve, in the mean squared error (MSE) sense, the unrestricted OLS

estimator β̂1u of β1. It is a basic results from least squares theory that by restricting some elements

of β2 to zero we can indeed obtain an estimator of β1 which is subject to omitted variable bias but

is also more precise than the unrestricted OLS estimator β̂1u. The choice of excluding different

subsets of auxiliary regressors is therefore motivated by a trade-off between bias and precision in

the estimators of the focus regression parameters.

Since model uncertainty is confined to the k2 variables of X2, the number of possible models

to be considered is I = 2k2 . In what follows, we denote by Mi the ith model in the model space

which is obtained by including only a subset of k2i (with 0 ≤ k2i ≤ k2) auxiliary regressors. Model

Mi is represented as follows

y = X1β1 + X2iβ2i + εi, i = 1, . . . , I, (2)

where X2i is an n × k2i matrix of observations on the included subset of k2i auxiliary regressors,

β2i is the corresponding subvector of auxiliary parameters, and εi is the new vector of disturbances

after excluding k2 − k2i auxiliary regressors.

3 Model averaging estimators

The basic idea of model averaging estimators is that one first estimates the parameters of interest

conditional on each model in the model space, and then computes the unconditional estimate as a

weighted average of these conditional estimates. A model averaging estimate of β1 is given by

β̂1 =
I∑

i=1

λiβ̂1i, (3)

where the λi are non-negative random weights that add up to one, and β̂1i is the estimate of β1

obtained by conditioning on model Mi. Below, we discuss two model averaging estimators.

3



3.1 Bayesian model averaging

The Bayesian Model Averaging (BMA) estimator developed in Magnus et al. (2010) generalizes

the framework used in standard BMA estimation by introducing the distinction between focus and

auxiliary regressors. Like other Bayesian estimators, this estimator combines prior beliefs on the

unknown elements of the model with the additional information coming from the data. Its key

ingredients are the sample likelihood function, the prior distributions on the regression parameters

of model Mi, and the prior distributions on the model space.

If we assume thatMi is the true model, then the sample likelihood function implied by model (2)

can be written as

p(y |β1, β2i, σ
2,Mi) ∝ (σ2)−n/2 exp

(
−ε>i εi

2σ2

)
. (4)

Prior beliefs on the regression parameters of modelMi are introduced by imposing conventional

non-informative priors on the focus parameters β1 and the error variance σ2, plus an informative

Gaussian prior on the auxiliary parameters β2i. This leads to a conditional joint prior distribution

of the form

p(β1, β2, σ
2 |Mi) ∝ (σ2)(k2i+2)/2 exp

(
−β>2iV

−1
0i β2i

2σ2

)
, (5)

where V0i is the variance-covariance matrix of the prior distribution of β2i which takes the standard

form proposed by Zellner (1986) and Fernández et al. (2001)

V −1
0i = g X>

2iM1X2i,

and g = 1/max(n, k2
2) is a constant scalar for each model Mi.

In Bayesian inference, we would like to combine the likelihood function (4) with the conditional

joint prior distribution (5) to obtain the conditional posterior distribution p(β1, β2i, σ
2 |y,Mi).

As argued by Magnus et al. (2010), this task is complicated by the fact that the assumed prior

distribution involves partially proper and partially improper priors. To overcome this problem,

they use a more general proper prior that admits the improper prior in (5) as a limiting case.

After computing the conditional posterior distribution on the basis of this more general prior and

specializing the results to the assumed prior, Magnus et al. (2010) show that the conditional

estimates of β1 and β2i under model Mi are given by

β̂1i = E(β1 |y,Mi) = (X>
1 X1)

−1X>
1 (y −X2iβ̂2i),

β̂2i = E(β2i |y,Mi) = (1 + g)−1 (X>
2iM1X2i)

−1X>
2iM1y.

(6)
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Provided that n > k1 + 2, the elements of the variance-covariance matrix are given by

V̂ 1i = Var(β1 |y,Mi) = s2
i (X

>
1 X1)

−1 + QiV̂ 2iQ
>
i ,

V̂ 2i = Var(β2i |y,Mi) = s2
i (1 + g)−1 (X>

2iM1X2i)
−1,

V̂ 12i = Cov(β1,β2i |y,Mi) = −QiV̂ 2i,

(7)

where s2
i = (y>M1AiM1y)/(n−k1−2) is the estimate of σ2 under modelMi, Qi = (X>

1 X1)
−1X>

1 X2i

is the multivariate OLS estimator from a regression of X2i on X1, and

Ai =
g

1 + g
M1 +

1
1 + g

[
M1 −M1X2i(X

>
2iM1X2i)

−1X>
2iM1

]
.

Prior beliefs on the model space are introduced by assuming that each model is weighted by its

posterior probability

λi = p(Mi | y) =
p(Mi)p(y |Mi)∑I

j=1 p(Mj)p(y |Mj)
,

where p(Mi) is the prior probability of model Mi and p(y |Mi) is the marginal likelihood of y

given model Mi. By assigning equal prior probabilities p(Mi) = 2−k2 to each model and exploiting

the above assumptions on the joint prior distribution, one can show that

λi = p(y |Mi) = c

(
g

1 + g

)k2i/2

(y>M1AiM1y)−(n−k1)/2, (8)

where c is a normalizing constant chosen to guarantee that the λi add up to one (see Section 6).

Given the conditional estimates β̂1i and β̂2i of the regression parameters of model Mi and the

model weights λi, the unconditional BMA estimates of β1 and β2 are computed as follows

β̂1 = E(β1 |y) =
I∑

i=1

λiβ̂1i, β̂2 = E(β2 |y) =
I∑

i=1

λiT iβ̂2i, (9)

where the T i are k2 × k2i matrices defined by T>
i = (Ik2i

,0), or a column-permutation thereof,

that transform the conditional estimates β̂2i in k2× 1 vectors by setting to zero the elements of β2

which are excluded from model Mi. The elements of the posterior variance-covariance matrix are

given by

Var(β̂1 |y) =
I∑

i=1

λi

(
V̂ 1i + β̂1iβ̂

>
1i

)
− β̂1β̂

>
1 ,

Var(β̂2 |y) =
I∑

i=1

λiT i

(
V̂ 2i + β̂2iβ̂

>
2i

)
T>

i − β̂2β̂
>
2 ,

Cov(β̂1, β̂2 |y) =
I∑

i=1

λi

(
V̂ 12i + β̂1iβ̂

>
2i

)
T>

i − β̂1β̂
>
2 .

(10)
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Notice that, unlike pretest estimators, these variances take into account the uncertainty due to

both the parameter estimation step and the model selection step. The elements of the variance-

covariance matrix consist indeed of two components: the weighted average of the conditional

variance-covariance matrices in each model and the weighted variance-covariance matrix of the

conditional estimates across all possible models.

Although BMA is a widely used technique, it suffers from two major problems. First, the

computational burden required to obtain an exact BMA estimate is proportional to the dimension

of the model space I = 2k2 . Thus, unless the number of auxiliary regressors is small or moderate,

this computational burden can be substantial. Second, the choice of the prior distribution on β2

may not be attractive in situations where no prior information is indeed available. Furthermore,

the chosen priors imply that the risk of the BMA estimator is unbounded and that our prior beliefs

on the same parameters vary across models.

3.2 Weighted average least squares

Weighted Average Least Squares (WALS) is an alternative model averaging technique that was

originally introduced by Magnus and Durbin (1999) and Danilov and Magnus (2004) to investigate

the statistical properties of pretest estimators.

Unlike BMA, WALS relies on preliminary orthogonal transformations of the auxiliary regres-

sors and their parameters which greatly reduce the computational burden of this model averaging

estimator and allow exploiting prior distributions corresponding to a more transparent concept of

ignorance about the role of the auxiliary regressors. The first step of WALS consists of computing an

orthogonal k2×k2 matrix P and a diagonal k2×k2 matrix Λ such that P>X>
2 M1X2P = Λ. These

matrices are then used to define Z2 = X2PΛ−1/2 and γ2 = Λ1/2P>β2 such that Z>
2 M1Z2 = IK2

and Z2γ2 = X2β2. Notice that the original vector of auxiliary parameters β2 can be always

recovered from β2 = PΛ−1/2γ2.

After applying these orthogonal transformations to model (1), the unrestricted OLS estimators

of β1 and γ2 from a regression of y on X1 and Z2 are given by

β̂1u = β̂1r −Rγ̂2u, γ̂2u = Z>
2 M1y,

where R = (X>
1 X1)

−1X>
1 Z2 is the multivariate OLS estimator from a regression of Z2 on X1. If

we also define the k2×(k2−k2i) selection matrix Si by S>i = (Ik2−k2i
,0), or a column-permutation

thereof, so that Si captures the restrictions placed on γ2 under model Mi, then the restricted OLS
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estimators of β1 and γ2i are given by

β̂1i = β̂1r −RW iγ̂2u, γ̂2i = W iγ̂2u,

where W i = Ik2
− SiS

>
i is a diagonal k2 × k2 matrix whose jth diagonal element is equal to zero

if γ2j is restricted to zero and is equal to one otherwise.

The key advantage of these transformations lies in the fact that γ̂2u ∼ Nk2
(γ2, σ

2Ik2
). This

result has a number of implications on the computational aspects and the statistical properties of

the WALS estimator. First, under some minimal regularity conditions on the model weights λi,

the WALS estimator of β1 is of the form

β̃1 =
I∑

i=1

λiβ̂1i = β̂1r −RWγ̂2,

where W =
∑I

i=1 λiW i is a k2 × k2 diagonal random matrix (because the λi are random). This

shows that, even if the model space contains 2k2 models, the computational burden of the WALS

estimator β̃1 is of the order k2 because we need only consider the diagonal elements of W , that is

k2 linear combinations of the model weights λi.

Second, the equivalence theorem proved in Danilov and Magnus (2004) implies that the MSE

of the WALS estimator β̃1 of β1 is crucially related to the MSE of the less complicated shrinkage

estimator W γ̂2 of γ2,

MSE(β̃1) = σ2 (X>
1 X1)

−1 + R MSE(Wγ̂2) R>.

Thus, if we can find the diagonal elements of W such that the shrinkage estimator Wγ̂2 is an

optimal estimator of γ2, then the same estimator will also provide the optimal WALS estimator

β̃1 of β1.

Third, since the k2 components of γ2 are independent, they can be estimated separately by

exploiting the information that γ̂2j ∼ N(γ2j , σ
2). In Magnus et al. (2010), this problem is addressed

using a Laplace estimator η̂j for the theoretical t-ratio ηj = γ2j/σ. This choice is motivated by the

results in Magnus (2002) who shows that η̂j is admissible, has bounded risk, has good properties

around | η | = 1 and is nearly optimal in terms of a well-defined regret criterion.2 Furthermore,

this Bayesian estimator is based on a Laplace prior distribution

π(ηj ; c) =
c

2
exp(−c | ηj | ), (11)

2 Notice that, in estimating ηj , the unknown parameter σ2 is replaced by the unbiased estimator s2 obtained from
the unrestricted model. The results in Danilov (2005) show that this approximation has only marginal effects on the
statistical properties of this estimator.
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with c = log 2 to satisfy the property of neutrality (i.e. the prior median of ηj is zero and the

prior median of η2
j is one) which reflects our notion of ignorance in situations where we do not

know whether the t-ratio ηj is larger or smaller than one in absolute value. The WALS estimator

proposed by Einmahl et al. (2011) uses instead an estimator η̃j of ηj based on the Subbotin density

π(ηj ; q, c) =
qc1/q

2Γ(1/q)
exp(−c | ηj | q), (12)

with c > 0 and q > 0.3 This prior allows obtaining a class of estimators η̃j(q, c) with better

properties than the Laplace estimator η̂j , especially when ηj is large. As for the choice of the

parameters q and c, Einmahl et al. (2011) show that q must belong to the interval (0, 1) in order

to obtain a well-behaved estimator of ηj . Given q = q̄, the parameter c can be chosen implicitly by

solving the non-linear equation ∫ 1

0
π(η; q̄, c) dη =

1
4
, (13)

to satisfy neutrality. Figure 1 plots a neutral Subbotin density with free parameter q = 0.5 together

with a Laplace density (q = 1) and a Gaussian density (q = 2). We can see that a value of q < 1

corresponds to a density which is less flat in the interval (0, 1) and has thicker tails. For empirical

applications, Einmahl et al. (2011) recommend using a Subbotin prior with q = 0.5.

Let us denote by η̄ the Laplace or the Subbotin estimator of η = (η1, . . . , ηk2
). Magnus et al.

(2010) show that the WALS estimators of the regression parameters β1 and β2 are given by

β̃1 = (X>
1 X1)

−1X>
1 (y −X2β̃2),

β̃2 = sPΛ−1/2η̄,
(14)

and the elements of their variance-covariance matrix are

Var(β̃1) = s2(X>
1 X1)

−1 + QVar(β̃2)Q
>,

Var(β̃2) = s2PΛ−1/2ΩΛ−1/2P ,

Cov(β̃1, β̃2) = −QVar(β̃2),

(15)

where Q = (X>
1 X1)

−1X>
1 X2 and Ω is the diagonal variance-covariance matrix of η̄. It is worth

noticing that this model averaging technique can also be generalized to non-spherical errors (see

Magnus et al. 2011). Thus, the assumption of homoskedastic and serially uncorrelated regression

errors is not crucial for WALS.
3 The Gaussian and the Laplace densities can be obtained as special cases of the Subbotin density by setting

(q = 2, c = 1/2) and (q = 1, c = log 2) respectively.
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4 Equivariance

An estimator may be equivariant to a certain transformation or not.4 If the transformation is

considered to be ‘trivial’, then we prefer the estimator to be equivariant, that is, not to change

other than in a trivial fashion. For example, in the basic regression model

y = Xβ + u,

with E(u) = 0 and Var(u) = σ2In, we generally do not want the ordering of the columns in X to

influence the outcome. If we find β̂2 = 2 and β̂3 = 3, and then estimate again but now interchanging

x2 and x3, then we expect to find β̂2 = 3 and β̂3 = 2 in the new ordering. Hence, the estimates

have changed but in a trivial fashion. It is also possible that the estimates change in a non-trivial

fashion. An example is given by sequential model selection procedures based on a hierarchical

order of the regressors. In general, BMA and WALS estimators are equivariant with respect to the

ordering of focus and auxiliary regressors. However, if we interchange a focus regressor with an

auxiliary regressor, then estimates change in a non-trivial fashion because such a transformation

corresponds to a different model specification.

Another common transformation is shift. If we consider, instead of β, a translation β − β0,

then the regression equation can be written as

y −Xβ0 = X(β − β0) + u,

and the quadratic estimator y>Ay of σ2 is shift-equivariant if

(y −Xβ0)
>A(y −Xβ0) = y>Ay, for all β0.

This is the case if and only if we restrict A to satisfy AX = 0. On the other hand, if we require that

the estimator y>Ay has minimum variance in the class of unbiased estimators, then we obtain the

conditions X>AX = 0 and tr(A) = 1; see Magnus and Neudecker (1988, Chapter 14, Sections 1–

8). These are not the same conditions, and hence we obtain different estimators. This shows that

two reasonable requirements (unbiasedness and shift-equivariance) may not be possible at the same

time.

A special case of shift is centering. If there is no constant term in the regression and we center

the regressors, then the OLS estimates are affected, and the same is true for BMA and WALS. If

there is a constant term among the focus variables in the regression and we center the regressors,
4 For a formal treatment of the principle of equivariance see Lehmann and Casella (1998, Chapter 3).
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then neither M1 nor X>
2 M1X2 is affected, so that BMA and WALS estimates are both equivariant

to centering. The reason is simple. Suppose that the first column of X1 is ı, the vector of ones.

After centering, we can write the centered matrix as Xc
1 = X1E, where E is the non-singular

k1 × k1 matrix

E =
(

1 −µ>1
0 Ik1−1

)
,

and µ1 is a (k1 − 1) × 1 vector containing the sample means of the focus regressors (except the

constant term). Hence,

M c
1 = In −Xc

1(X
c
1
>Xc

1)
−1Xc

1
>

= In − (X1E)
(
(X1E)>(X1E)

)−1(X1E)>

= In −X1E(E>X>
1 X1E)−1E>X>

1

= In −X1(X
>
1 X1)

−1X>
1 = M1.

Also, if µ2 is a k2 × 1 vector containing the sample means of the auxiliary regressors, then

M1X
c
2 = M1(X2 − ıµ>2 ) = M1X2,

because M1ı = 0. This shows that M1 and X>
2 M1X2 are both invariant to centering.

A third ‘trivial’ transformation is scaling. If we measure each component of one regressor, say

x2, in kilos rather than in grams, then we expect nothing to change other than that β̂2 is multiplied

by 1000. In a standard (non-Bayesian) context the OLS estimator is scale-independent, but in a

Bayesian context, this is so only if data and priors are scaled correspondingly. This is automatically

achieved in BMA, but not in WALS. Scaling the focus regressors X1 will have no effect on the

WALS estimates, but scaling the auxiliary regressors X2 will have an effect, unless k2 = 1. The

reason lies in the semi-orthogonalization, which gives us great benefits, but at the same time make

the estimator scale-dependent, because the orthogonal matrix P and the diagonal matrix Λ will

depend on the scaling in a non-trivial (non-linear) fashion. This property of WALS has not been

noticed before, so we emphasize it here and propose a simple remedy. Specifically, we scale the

regressors in X1 and X2 such that the diagonal elements of the matrices X>
1 X1 and X>

2 M1X2

are all one. Notice that this also stabilizes both matrices so that inversion and eigenvalue routines

are numerically more stable. The effect of the scaling in X1 is only for numerical stability, but the

scaling in X2 has two effects: numerical stability and scale-independence.
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5 Stata commands

The new Stata commands bma and wals provide BMA and WALS estimates, respectively, of linear

regression models with uncertainty about the choice of the explanatory variables. The syntax of

these commands is as follows:

bma depvar
[
varlist

] [
if

] [
in

]
, auxiliary(varlist)

[
nodots notable noconstant

]

wals depvar
[
varlist

] [
if

] [
in

]
, auxiliary(varlist)

[
q(#) intpoints(#) eps(#) iterate(#)

noconstant
]

where depvar is the dependent variable, varlist is the optional list of focus regressors (including

the constant term, if any) which are included with certainty in the model, and auxiliary is the

required list of auxiliary regressors of which we are less certain. Both commands are programmed

in Mata on the basis of the original Matlab commands associated with Magnus et al. (2010). The

earliest version of Stata that can be used to run our commands is version 11.1. Factor variables,

time-series operators and weights are not allowed.

5.1 Options for BMA

nodots suppresses the display of the dots to track the progress of bma estimation. Dots are displayed

only if the model space consists of more than 128 models (i.e. at least 7 auxiliary regressors).

One dot means that 1% of the models in the model space has been estimated.

notable suppresses the display of the table of results.

noconstant specifies that constant term must excluded from the model. By default the constant

term is included and the corresponding vector of ones is treated as a focus regressor.

5.2 Options for WALS

q(#) specifies the free parameter 0 < q ≤ 1 of a Subbotin prior distribution under neutrality. The

default is q = 1 which corresponds to a neutral Laplace prior, while any real value of q in the

interval (0, 1) corresponds to a neutral Subbotin prior.

intpoints(#) defines the number of data points used by the built-in Stata command integ when

approximating numerically the integral involved in the non-linear equation for the constrained

parameter c of a Subbotin density under neutrality. The default uses 10000 data points. Notice

that, for q = 1 and q = 0.5, this option is ineffective because the solution of the constrained

parameter c is determined analytically. Similar considerations hold for the options eps(#) and

iterate(#).
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eps(#) specifies the convergence criterion used by the built-in Stata command nl when solving

the non-linear equation for the constrained parameter c of a Subbotin density under neutrality.

The default is 1e-8.

iterate(#) specifies the maximum number of iterations used by the built-in Stata command nl

when solving the non-linear equation for the constrained parameter c of a Subbotin density

under neutrality. The default is 16000.

noconstant same as the noconstant option of bma command.

6 Additional remarks

1. The Stata command bma improves the original Matlab command for BMA estimation in

two respects. First, our command uses a more stable normalization of the model weights

to avoid numerical problems in the computation of BMA estimates. In the original Matlab

command, the model weights are normalized with respect to the weight of the restricted

model by imposing that λi = λ∗i /Λ∗, Λ∗ =
∑

i λ
∗
i , λ∗1 = 1 and

λ∗i =
(

g

1 + g

)k2i/2 (
y>M1AiM1y

y>M1y

)−(n−k1)/2

, i = 2, . . . , I.

Notice that, if the sample size is large, this normalization may lead to numerically too large

model weights because (y>M1y) > (y>M1AiM1y) for each i = 2, . . . , I. In our bma com-

mand, the model weights are instead scaled with respect to the weight of the unrestricted

model by imposing that λ∗I = 1 and

λ∗i =
(

g

1 + g

)k2i/2 (
y>M1AiM1y

y>M1AIM1y

)−(n−k1)/2

, i = 1, . . . , I − 1.

Given that (y>M1AIM1y) < (y>M1AiM1y) for each i = 1, . . . , I − 1, this normalization

guarantees that the λ∗i are always bounded in the (0, 1) interval. Second, whenever the sample

size is moderately large (say n > 100), our command is considerably faster and requires much

less memory than the corresponding Matlab command because it avoids computing matrices

of order n× n.

2. The Stata command wals improves the original Matlab command for WALS estimation in

two respects. First, it introduces a preliminary scaling of the regressors in X1 and X2 to

ensure scale-equivariance and greater accuracy of the WALS estimates. Second, it allows

specifying neutral Subbotin priors with any real value of q in the interval (0, 1) instead of a
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list of nine focal values q = (.1, .2, . . . , .9). Our wals Stata command also differs from the

Matlab command because moments of the Subbotin density are calculated by Gauss-Laguerre

quadrature methods with 100 data points instead of high-order global adaptive quadrature

methods.5

3. The Stata commands bma and wals also improve the corresponding Matlab commands because

they use listwise deletion of missing values to deal with problems of missing data in the

dependent and the explanatory variables, they do not require any specific ordering of focus

and auxiliary regressors within the data set, and they compute estimated covariances between

focus and auxiliary parameters.

4. The Stata commands bma and wals differ from other Stata estimation commands because they

do not provide p-values of the t-ratios for testing the significance of the estimated regression

parameters and their confidence intervals. The Bayesian counterparts of these quantities

cannot be easily computed because these estimators are biased and their distributions are

not Gaussian. On the other hand, a regressor may be considered to be robustly correlated

with the dependent variable if the corresponding t-ratio is greater than one in absolute value,

in which case the MSE of the unrestricted OLS estimator is lower than MSE of the restricted

OLS estimator (see Magnus 2002). On the basis of this criterion, our commands provide

two-standard error bands of the estimated regression parameters.

7 Example

This section uses the growth data analyzed by Magnus et al. (2010) and Einmahl et al. (2011)

for illustrating our bma and wals commands, validating their estimation results and investigating

equivariance of the BMA and WALS estimators to shift and scale transformations of the explanatory

variables.6 Data constitute a cross section of the average growth rate of the per-capita GDP between

1960–1996 for 74 countries worldwide.

. use Data_MPP_small, clear

. describe

Contains data from Data_MPP_small.dta
obs: 74
vars: 11 30 May 2011 08:55
size: 4,514 (99.9% of memory free)

storage display value

5 A description of these alternative quadrature methods can be found in Cheney and Kincaid (2008).
6 Data can be downloaded from the website www.janmagnus.nl/items/BMA.pdf.
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variable name type format label variable label

country str17 %17s Country
growth float %9.0g Growth GDP per capita 1960-1996
gdp60 float %9.0g Log of GDP per capita 1960
equipinv float %9.0g Real equipment investment/GDP

1960-1985
confuc float %9.0g Fraction of Confucian population
school60 float %9.0g Enrollm. rate primary school 1960
life60 float %9.0g Life exp. at age zero 1960
law float %9.0g Rule of law index
tropics float %9.0g Fraction tropical area
avelf float %9.0g Ethnolinguistic fragmentation
dpop float %9.0g Population growth rate 1960-1990

Sorted by:

. summarize

Variable Obs Mean Std. Dev. Min Max

country 0
growth 74 .01985 .0186466 -.0318 .0691
gdp60 74 7.525295 .8612332 5.549076 9.199785

equipinv 74 .0432353 .0344413 .00135 .1482
confuc 74 .0185135 .0862726 0 .6

school60 74 .7806757 .2555753 .07 1
life60 74 56.06757 11.56578 36.1 73.4

law 74 .5518018 .3332485 0 1
tropics 74 .5480932 .4709772 0 1

avelf 74 .2984383 .2797776 0 .8722529

dpop 74 .0205902 .0099794 .0023685 .0356537

Magnus et al. (2010) and Einmahl et al (2011) provide BMA and WALS estimates of different

model specifications to test the implications of alternative growth theories. Here, for simplicity,

we focus on Set-up 1 of their Model 1 which allows testing the neoclassical growth theory against

the new growth theories of institutions, geography, fractionalization, and religion. The outcome

variable of interest is growth, the subset of focus regressors includes the constant term and five

‘Solow’ determinants derived from the neoclassical growth theory, while the subset of auxiliary

regressors includes four growth determinants derived from the other theories.

. local y "growth"

. local X1 "gdp60 equipinv school60 life60 dpop"

. local X2 "law tropics avelf confuc"

The BMA estimates of this growth regression model are given by

. bma `y´ `X1´ , aux(`X2´)

BMA estimates Number of obs = 74
k1 = 6
k2 = 4

growth Coef. Std. Err. t pip [2-Std. Err. Bands]

_cons .0492403 .0229036 2.15 1.00 .0263367 .0721439
gdp60 -.0138652 .0034982 -3.96 1.00 -.0173633 -.010367

equipinv .1643892 .0614866 2.67 1.00 .1029026 .2258758
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school60 .0160304 .0101594 1.58 1.00 .005871 .0261898
life60 .0008443 .0003635 2.32 1.00 .0004809 .0012078

dpop .1654229 .2769833 0.60 1.00 -.1115604 .4424063

law .01089 .009329 1.17 0.68 .001561 .020219
tropics -.0035352 .0047221 -0.75 0.45 -.0082574 .0011869

avelf -.0020815 .0046928 -0.44 0.25 -.0067743 .0026114
confuc .0611861 .0185069 3.31 0.99 .0426791 .079693

The output of the bma command provides information on estimated coefficients and their standard

errors (i.e. mean and standard deviation of the posterior distribution), t-ratios, posterior inclusion

probabilities (i.e. the posterior probability that a variable is included in the model) and two-

standard error bands. Estimation results for the focus and the auxiliary parameters are displayed

in the upper and the lower panels of the table respectively. We notice that estimated coefficients

and standard errors coincide exactly with those reported in Table 2 of Magnus et al. (2010) under

BMA. An auxiliary regressor is considered to be robustly correlated with the outcome if either the

t-ratio on its coefficient is greater than one in absolute value or, equivalently, the corresponding

two-standard error band does not include zero. Alternatively, robustness of the auxiliary regressors

can be judged on the basis of their posterior inclusion probabilities. As a rough guideline, Raftery

(1995) and Masanjala and Papageorgiou (2008) suggest that a posterior inclusion probability of 0.5

corresponds approximately to a t-ratio of one in absolute value.

Our validation of the estimation results for WALS is carried out in two steps. First, we present

the estimates from a fictitious command walsns which implements the original WALS procedure

without any preliminary scaling of focus and auxiliary regressors. After showing that we can

replicate the original WALS estimates, we present the estimates from our wals command which

introduces a preliminary scaling of the variables in X1 and X2 such that the diagonal elements

of the matrices X>
1 X1 and X>

2 M1X2 are all one. The estimates from these commands with a

neutral Laplace prior are given by

. walsns `y´ `X1´ , aux(`X2´)

WALS estimates - Laplace prior Number of obs = 74
k1 = 6
k2 = 4
q = 1.0000
c = 0.6931
kappa = 4.3

growth Coef. Std. Err. t [2-Std. Err. Bands]

_cons .059387 .0220668 2.69 .0373202 .0814538
gdp60 -.0156304 .0032695 -4.78 -.0188999 -.0123608

equipinv .1555044 .055129 2.82 .1003754 .2106333
school60 .0174593 .0096968 1.80 .0077625 .0271561
life60 .0008557 .000351 2.44 .0005047 .0012067

dpop .2650796 .2486804 1.07 .0163993 .51376
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law .0146823 .006536 2.25 .0081462 .0212183
tropics -.0055319 .0037127 -1.49 -.0092446 -.0018193

avelf -.0053315 .0048132 -1.11 -.0101447 -.0005183
confuc .0443343 .0163147 2.72 .0280196 .060649

. wals `y´ `X1´ , aux(`X2´)

WALS estimates - Laplace prior Number of obs = 74
k1 = 6
k2 = 4
q = 1.0000
c = 0.6931
kappa = 1.3

growth Coef. Std. Err. t [2-Std. Err. Bands]

_cons .0617514 .0217909 2.83 .0399605 .0835422
gdp60 -.0156501 .0031439 -4.98 -.018794 -.0125062

equipinv .1582128 .054421 2.91 .1037918 .2126339
school60 .0166758 .009667 1.73 .0070088 .0263429
life60 .0008515 .0003505 2.43 .000501 .0012019

dpop .2713869 .2425285 1.12 .0288584 .5139153

law .0134105 .0058037 2.31 .0076069 .0192142
tropics -.0059973 .0034556 -1.74 -.0094529 -.0025417

avelf -.0076757 .0050657 -1.52 -.0127414 -.00261
confuc .046455 .0142765 3.25 .0321785 .0607316

The output of the wals command is similar to that of bma. The main difference is that WALS

does not allow computing the posterior inclusion probabilities because this model averaging tech-

nique considers only k2 linear combinations of the model weights λi. We can see that the estimates

from the fictitious walsns command coincide exactly with those reported in Table 2 of Magnus et

al. (2010) under WALS. The estimates from our wals command are slightly different because the

orthogonal transformations applied in this technique depend on scaling of the auxiliary regressors

in a non-linear way. As argued in Section 4, the aim of this preliminary scaling step is twofold:

(i) to make the WALS estimator equivariant to scale transformations of the auxiliary regressors

and (ii) to improve accuracy of the WALS estimates. As measure of inaccuracy, the output of our

command provides the square root of the condition number of the matrix X>
2 M1X2

κ =

√
λmax(X>

2 M1X2)
λmin(X>

2 M1X2)
≥ 1,

where λmax and λmin denote, respectively, the maximum and minimum eigenvalues of X>
2 M1X2.

The larger is κ the more ill-conditioned is the matrix X>
2 M1X2. In other words, a large value of

κ indicates that this matrix is almost singular and the inverse and eigenvalue routines used in the

orthogonal transformations of the auxiliary regressors and their parameters can be prone to large

numerical errors. Although in the empirical application under examination numerical problems are
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not worrisome, we can see that after scaling κ decreases from 4.3 to 1.3.

Before investigating the effects of scale transformations, we show that the estimators considered

in this article are equivariant to shift transformations of focus and auxiliary regressors. In what

follows, we compare estimates from bma, walsns and wals after centering either the focus regressor

gdp60 or the auxiliary regressor law to their sample means.

. local method "bma walsns wals"

. use Data_MPP_small, clear

. quietly summarize gdp60

. quietly replace gdp60=gdp60-r(mean)

. foreach m of local method {
2. quietly `m´ `y´ `X1´ , aux(`X2´)
3. estimates store `m´1
4. }

. use Data_MPP_small, clear

. quietly summarize law

. quietly replace law=law-r(mean)

. foreach m of local method {
2. quietly `m´ `y´ `X1´ , aux(`X2´)
3. estimates store `m´2
4. }

. estimates table bma1 bma2 walsns1 walsns2 wals1 wals2, ///
> b(%7.4f) se(%7.4f)

Variable bma1 bma2 walsns1 walsns2 wals1 wals2

_cons -0.0551 0.0552 -0.0582 0.0675 -0.0560 0.0692
0.0195 0.0243 0.0184 0.0228 0.0183 0.0221

gdp60 -0.0139 -0.0139 -0.0156 -0.0156 -0.0157 -0.0157
0.0035 0.0035 0.0033 0.0033 0.0031 0.0031

equipinv 0.1644 0.1644 0.1555 0.1555 0.1582 0.1582
0.0615 0.0615 0.0551 0.0551 0.0544 0.0544

school60 0.0160 0.0160 0.0175 0.0175 0.0167 0.0167
0.0102 0.0102 0.0097 0.0097 0.0097 0.0097

life60 0.0008 0.0008 0.0009 0.0009 0.0009 0.0009
0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

dpop 0.1654 0.1654 0.2651 0.2651 0.2714 0.2714
0.2770 0.2770 0.2487 0.2487 0.2425 0.2425

law 0.0109 0.0109 0.0147 0.0147 0.0134 0.0134
0.0093 0.0093 0.0065 0.0065 0.0058 0.0058

tropics -0.0035 -0.0035 -0.0055 -0.0055 -0.0060 -0.0060
0.0047 0.0047 0.0037 0.0037 0.0035 0.0035

avelf -0.0021 -0.0021 -0.0053 -0.0053 -0.0077 -0.0077
0.0047 0.0047 0.0048 0.0048 0.0051 0.0051

confuc 0.0612 0.0612 0.0443 0.0443 0.0465 0.0465
0.0185 0.0185 0.0163 0.0163 0.0143 0.0143

legend: b/se

As expected, estimates of the slope coefficients are invariant to centering, while the estimate of the

intercept coefficient changes in a trivial fashion. For example, after centering the focus regressor

gdp60, the new BMA estimate of the intercept coefficient in bma1 is given by .0492403+7.525295 ∗
(−.0138652) = −.05509942. The effects of scale transformations can be assessed in a similar way.

Below, we compare estimates from bma, walsns and wals after dividing either the focus regressor
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gdp60 or the auxiliary regressor law by 100.

. use Data_MPP_small, clear

. quietly replace gdp60=gdp60/100

. foreach m of local method {
2. quietly `m´ `y´ `X1´ , aux(`X2´)
3. estimates store `m´3
4. }

. use Data_MPP_small, clear

. quietly replace law=law/100

. foreach m of local method {
2. quietly `m´ `y´ `X1´ , aux(`X2´)
3. estimates store `m´4
4. }

. estimates table bma3 bma4 walsns3 walsns4 wals3 wals4, ///
> b(%7.4f) se(%7.4f)

Variable bma3 bma4 walsns3 walsns4 wals3 wals4

_cons 0.0492 0.0492 0.0594 0.0577 0.0618 0.0618
0.0229 0.0229 0.0221 0.0221 0.0218 0.0218

gdp60 -1.3865 -0.0139 -1.5630 -0.0152 -1.5650 -0.0157
0.3498 0.0035 0.3270 0.0033 0.3144 0.0031

equipinv 0.1644 0.1644 0.1555 0.1605 0.1582 0.1582
0.0615 0.0615 0.0551 0.0550 0.0544 0.0544

school60 0.0160 0.0160 0.0175 0.0173 0.0167 0.0167
0.0102 0.0102 0.0097 0.0097 0.0097 0.0097

life60 0.0008 0.0008 0.0009 0.0009 0.0009 0.0009
0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

dpop 0.1654 0.1654 0.2651 0.2452 0.2714 0.2714
0.2770 0.2770 0.2487 0.2485 0.2425 0.2425

law 0.0109 1.0890 0.0147 1.2971 0.0134 1.3411
0.0093 0.9329 0.0065 0.6405 0.0058 0.5804

tropics -0.0035 -0.0035 -0.0055 -0.0056 -0.0060 -0.0060
0.0047 0.0047 0.0037 0.0038 0.0035 0.0035

avelf -0.0021 -0.0021 -0.0053 -0.0047 -0.0077 -0.0077
0.0047 0.0047 0.0048 0.0051 0.0051 0.0051

confuc 0.0612 0.0612 0.0443 0.0472 0.0465 0.0465
0.0185 0.0185 0.0163 0.0164 0.0143 0.0143

legend: b/se

These results show that estimates from bma and wals are equivariant to scale transformations of

focus and auxiliary regressors. On the other hand, the original WALS estimates (i.e. the estimates

from the fictitious command walsns) are equivariant to scale transformations of the focus regressors,

but not to scale transformations of the auxiliary regressors. Obviously, similar considerations hold

for the WALS estimator based on Subbotin prior. As an example, we show the two variants of the

WALS estimates using a neutral Subbotin prior with q = 0.5.

. use Data_MPP_small, clear

. walsns `y´ `X1´ , aux(`X2´) q(.5)

WALS estimates - Subbotin prior Number of obs = 74
k1 = 6
k2 = 4
q = 0.5000
c = 1.6783
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kappa = 4.3

growth Coef. Std. Err. t [2-Std. Err. Bands]

_cons .0585353 .0222 2.64 .0363352 .0807353
gdp60 -.0155704 .0033093 -4.70 -.0188797 -.012261

equipinv .1497584 .0556538 2.69 .0941045 .2054122
school60 .01755 .0096988 1.81 .0078512 .0272488
life60 .0008474 .0003515 2.41 .0004959 .0011989

dpop .2777177 .2523091 1.10 .0254086 .5300268

law .0158902 .0068449 2.32 .0090454 .0227351
tropics -.0055956 .0039901 -1.40 -.0095856 -.0016055

avelf -.0049763 .0046098 -1.08 -.0095861 -.0003665
confuc .0467552 .0174805 2.67 .0292747 .0642357

. wals `y´ `X1´ , aux(`X2´) q(.5)

WALS estimates - Subbotin prior Number of obs = 74
k1 = 6
k2 = 4
q = 0.5000
c = 1.6783
kappa = 1.3

growth Coef. Std. Err. t [2-Std. Err. Bands]

_cons .062339 .0217092 2.87 .0406298 .0840482
gdp60 -.0156395 .0031042 -5.04 -.0187437 -.0125353

equipinv .1546535 .054792 2.82 .0998615 .2094456
school60 .0162502 .0096439 1.69 .0066064 .0258941
life60 .0008451 .0003503 2.41 .0004947 .0011954

dpop .2825158 .2411789 1.17 .0413369 .5236948

law .0138898 .0058776 2.36 .0080122 .0197673
tropics -.0060841 .0034191 -1.78 -.0095031 -.002665

avelf -.0087563 .0049474 -1.77 -.0137037 -.0038088
confuc .0494225 .0140466 3.52 .0353759 .0634692

The estimates from the walsns command coincide exactly with those reported in Table 3 of Einmahl

et al. (2011) under WALS (q = 0.5). The estimates from our wals command have the advantage

of being scale-equivariant. An additional advantage of our command for WALS with a neutral

Subbotin prior is that it allows specifying any real value of the free parameter q in the interval

(0, 1). Furthermore, for values of q 6= 1 and q 6= 0.5, one can also control accuracy the numerical

processes required to compute the constrained parameter c of a Subbotin prior under neutrality.

8 BMA with many auxiliary regressors

As discussed in the previous sections, the computational burden of an exact BMA estimator in-

creases exponentially with the number of auxiliary regressors. This section provides some additional

insights on this topic by focusing on two issues. First, we would like to assess whether our bma

command can only support a limited number of auxiliary regressors. Notice that, when k2 is large,
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the most binding constraint is expected to be computing time. BMA estimates are indeed obtained

by partial sum over the entire model space but without computing matrices or vectors of dimensions

2k2 . Nevertheless, we cannot exclude a priori that for some large value of k2 our bma command

also suffers from out-of-memory problems and numerical errors in the computation of the model

weights λi. Accordingly, we want to test our bma command for a moderately large value of k2.

Given that computing time is expected to be a crucial element to establish what is computation-

ally feasible, the second purpose of our analysis is to provide an ex-ante evaluation of the effective

time needed for exact BMA estimation of a model with a certain number of auxiliary regressors.

For estimating a model with n observations, k1 focus regressors and k2 auxiliary regressors, we

suggest the approximation

t(k2) = 2k2t0, t0 = exp
(
τ0 + τ1 k2 + τ2 k2

2

)
. (16)

The computing time t depends on the number of auxiliary regressors k2, conditional on n, k1,

and of course the type of computer. The term 2k2 is the dimension of the model space, and the

term t0 represents an average measure of the computing time needed for estimating a single model.

The latter is expressed as a quadratic function of k2 to capture the effects of operations that

are independently, linearly and quadratically related to the number of auxiliary regressors. The

parameters τj , j = 0, 1, 2, can be easily estimated by non-linear least squares using information

on the effective computing time for a range of feasible values of k2. These estimates can then be

used to predict the computing time needed for estimation of a model with the desired number of

auxiliary regressors.

To shed some light on these two topics, we use the same data set analyzed by Sala-I-Martin

et al. (2004), Ley and Steel (2007) and Magnus et al. (2010) which includes 67 determinants of

the average GDP growth per-capita between 1960 and 1996 for 88 countries.7 In the spirit of the

BMA approach advocated by Magnus et al. (2010), we treat 7 of the 67 growth determinants as

focus regressors and the remaining as auxiliary regressors. The dimension of the underlying model

space is I = 260 = 1.15× 1018. Even if we assume that each model could be estimated in 1× 10−9

seconds, exact BMA estimation over all possible models would require more than 1000 years. We

must necessarily consider a smaller subset of auxiliary variables. In order to select the auxiliary

regressors which are more robustly correlated with growth, we first ordered these variables by the

WALS estimates of their t-ratios in absolute value. Then, we carried out exact BMA estimation
7 Data can be downloaded from the website www.janmagnus.nl/items/BMA.pdf. For a description of the data

see Sala-I-Martin et al. (2004) and Magnus et al. (2010).
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with k2 ranging from 10 to 20 for estimating the parameters τj and so the maximum number of

auxiliary regressors allowed in a certain amount of time. Using a desktop computer with two quad-

core Intel Xeon E5504/2 GHz processors and Stata MP4 version 11.2, we obtained τ̂0 = −17.19,

τ̂1 = .06 and τ̂2 = −.35 × 10−3. On the basis of these estimates, we decided to set the maximum

value of k2 at 30 with an expected computing time of 153 hours (i.e. 6 days and 9 hours).

Predicted and effective computing time for k2 ranging from 20 to 30 are plotted in Figure 2. We

can see that the proposed approximation allows predicting the effective computing time accurately.

The time needed for estimating the model with k2 = 30 was 157 hours (i.e. 6 days and 13 hours).

BMA and WALS estimates of the focus parameters for the specifications with k2 equal to 20, 25

and 30 are presented in Table 1. For WALS, we also provide estimates of the specification with

k2 = 60 and estimates based on different prior distributions (Laplace and Subbotin with q = 0.5).

A number of interesting findings are worth noticing. First, our bma command allows performing

exact BMA estimation with a moderately large set of auxiliary regressors (at least k2 = 30). We do

not exclude that our command works properly with k2 > 30, but this would require either a faster

computer or a considerably larger amount of computing time. Second, BMA and WALS estimates

can be subject to non-negligible differences. For example, in the specification with k2 = 30, we

find that the estimate and the standard error of the constant term in WALS are two times larger

than those obtained in BMA. On the other side, differences between WALS estimates based on

Laplace and Subbotin priors appear to be negligible. Third, the precision of these model averaging

estimators decreases with the number of auxiliary variables because of both the greater model

uncertainty and the higher degree of collinearity among explanatory variables. A comparison of

the WALS estimates for the model with k2 = 30 and k2 = 60 also suggests that selecting smaller

subsets of auxiliary regressors may lead to severely understated standard errors.

9 BMA with many observations

So far, we considered two empirical applications on GDP growth which typically involve a relatively

small sample size. In this section, we investigate performances of our bma command for empirical

applications involving a considerably larger sample size. When the sample size is large, the first

important improvement of our bma command is related to the normalization of the model weights.

In order to emphasize this issue, we consider a simulated experiment involving two designs with

different sample size: n = 100 in the first design and n = 1000 in the second design. The true data

generating process for the outcome variable is always an intermediate model between the restricted
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and the unrestricted models.

. local sampsize 100 1000

. foreach n of local sampsize {
2. clear all
3. quietly set obs `n´
4. set seed 123
5. drawnorm x1 x2_1 x2_2 x2_3 x2_4 x2_5 ///

> x2_6 x2_7 x2_8 x2_9 eps, n(`n´)
6. gen y = 1 + x1 + x2_1 + x2_2 + x2_3 + x2_4 + x2_5 ///

> + x2_6 + x2_7 + eps
7. bma y x1, aux(x2_*) nodots
8. }

BMA estimates Number of obs = 100
k1 = 2
k2 = 9

y Coef. Std. Err. t pip [2-Std. Err. Bands]

_cons .7781606 .1057033 7.36 1.00 .6724573 .8838639
x1 1.183032 .1115203 10.61 1.00 1.071512 1.294552

x2_1 .9805816 .1099803 8.92 1.00 .8706013 1.090562
x2_2 .9353698 .1070002 8.74 1.00 .8283696 1.04237
x2_3 1.055535 .1139422 9.26 1.00 .9415929 1.169477
x2_4 .9668652 .1105861 8.74 1.00 .8562791 1.077451
x2_5 .9973639 .0973275 10.25 1.00 .9000364 1.094691
x2_6 .9370233 .1106242 8.47 1.00 .8263992 1.047648
x2_7 .9637105 .0925731 10.41 1.00 .8711374 1.056284
x2_8 .0032232 .0323011 0.10 0.10 -.0290779 .0355243
x2_9 .0662094 .1046876 0.63 0.37 -.0384782 .170897

BMA estimates Number of obs = 1000
k1 = 2
k2 = 9

y Coef. Std. Err. t pip [2-Std. Err. Bands]

_cons .9929054 .0318054 31.22 1.00 .9611001 1.024711
x1 .9600091 .031499 30.48 1.00 .9285101 .9915081

x2_1 .9592167 .0331751 28.91 1.00 .9260416 .9923918
x2_2 .9642845 .0301792 31.95 1.00 .9341053 .9944636
x2_3 1.009436 .03134 32.21 1.00 .9780958 1.040776
x2_4 .9992829 .0327001 30.56 1.00 .9665828 1.031983
x2_5 .9458756 .0328291 28.81 1.00 .9130465 .9787048
x2_6 .9940521 .0320843 30.98 1.00 .9619678 1.026136
x2_7 1.01109 .0327991 30.83 1.00 .9782904 1.043889
x2_8 .00065 .0067813 0.10 0.04 -.0061313 .0074314
x2_9 -.0002898 .0060394 -0.05 0.03 -.0063292 .0057496

Our simulated data consist of 10 explanatory variables and a random error independently drawn

from standardized Gaussian distributions. The true model for the outcome variable includes a

constant term and only 8 of the 10 explanatory variables available in the data. All regression

parameters are set to 1. BMA estimation is carried out by treating the constant term and x1

as focus regressors and x2 1–x2 9 as auxiliary regressors. Our bma command is not affected by

numerical problems and provides satisfactory estimates in both designs. If we try to estimate

the same model with the original Matlab command for BMA estimation, then we obtain the same
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estimates when n = 100 but unfeasible estimates when n = 1000. In the second design, the residual

sum of squares from the restricted model is numerically too large and so the λ∗i explode.

To show the other computational advantages of our bma command in cases where the sample

size is large, we consider the empirical application of Dardanoni et al (2011b) who apply BMA

and WALS in the context of a linear regression model where some covariate values are missing

but imputations are available to fill-in the missing values.8 In this context, the availability of

imputations generates a trade-off between bias and precision: the complete cases are often too

few, so precision is lost, but filling-in the missing values with the imputations may lead to bias.

Dardanoni et al. (2011b) show that this bias-precision trade-off is equivalent to that arising in

an extended regression model with two subsets of regressors: the focus regressors corresponding

to the observed and imputed covariates, and the auxiliary regressors corresponding to all possible

interactions between the focus regressors and a set of indicators for the missing-data patterns.

Their empirical application focuses on a linear regression model for the body mass index (BMI)

of 50+ European men using a sample of 11475 observations from the Survey of Health, Ageing,

and Retirement in Europe (SHARE).9 The model includes 6 focus regressors, of which 4 are fully

observed (the constant term, age, age squared and a dummy for not having a high school degree)

and 2 are imputed (household income and food expenditure). In addition to the subsample with

complete data, there are 3 missing data patterns and so 18 auxiliary regressors. Our BMA estimates

(not presented here) coincide exactly with those obtained by Dardanoni et al. (2011b) using the

original Matlab command for BMA estimation. The WALS estimates are slightly different because

of the preliminary scaling step introduced by our wals command. We also notice that, in this

application, κ decreases from 202.3 to 23.3. Thus, our WALS estimates are also more accurate

than those obtained with the original Matlab command.

Finally, we want to investigate the relationship between computing time and sample size in

BMA estimation. Accordingly, we randomly drew from the original data 10 subsamples of sizes

ranging from a minimum of n = 500 to a maximum of n = 5000. For each subsample, we computed

BMA estimates in Stata and Matlab using the same desktop computer.10 The effective computing

time required by the Stata and the Matlab commands for BMA estimation are plotted in the left
8 For a Stata implementation of this approach see the gmi command of Dardanoni et al (2011a).
9 Data can be downloaded from the SHARE Research Data Center: http://www.share-project.org/. To get access

to the data, researchers have to complete a statement concerning the use of the microdata.
10 This exercise was performed on a desktop computer with one dual-core Intel GX620/3.4 GHz processor. The

operating system is Microsoft Windows XP Home edition. For Stata, we used version 11.2 - MP2. For Matlab, we
used version 7.8.0.
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subpanel of Figure 3. The right subpanel of the same figure shows the relative performances of

Matlab versus Stata. We can see that the effective computing time required by the original Matlab

command increases quadratically with the sample size, while the effective computing time required

by our Stata command increases linearly. For the subsample with n = 5000, our bma command is

about 35 times faster than the original Matlab command. Because of out-of-memory problems, we

cannot obtain the Matlab estimates of this model on the entire sample with n = 11475. The Stata

estimates are obtained in 2 hours.

10 Conclusions

In this article, we have introduced the new Stata commands bma and wals which implement the

BMA and WALS estimators developed by Magnus et al. (2010). Unlike standard pretest estimators,

these model averaging techniques allow estimating linear regression models with uncertainty about

the choice of the explanatory variables by taking into account both the model selection and the

estimation steps. Although the bma and wals commands are written on the basis of the original

Matlab commands, the BMA and WALS algorithms have been improved in several respects. The

bma command is faster than the corresponding Matlab command, especially when the sample size

is large, and it uses a more stable normalization of the model weights. The wals command is scale-

equivariant, is more accurate than the corresponding Matlab command, and allows using more

flexible specifications of the prior distributions. The empirical applications considered in the article

suggest that performances of the our Stata commands are superior to those of the original Matlab

commands.
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Table 1: BMA and WALS estimates (and standard errors in parentheses) of focus coefficients using
increasing numbers of auxiliary regressors.

Number of auxiliary variables
Method Variable k2 = 20 k2 = 25 k2 = 30 k2 = 60
BMA constant 0.053 (0.017) 0.056 (0.019) 0.059 (0.019)

p60 0.021 (0.007) 0.020 (0.007) 0.021 (0.007)
iprice1 −0.000 (0.000) −0.000 (0.000) −0.000 (0.000)
gdpch60l −0.010 (0.003) −0.010 (0.003) −0.010 (0.003)
tropicar −0.009 (0.004) −0.009 (0.004) −0.008 (0.005)
life060 0.001 (0.000) 0.001 (0.000) 0.001 (0.000)
confuc 0.039 (0.020) 0.040 (0.021) 0.041 (0.021)
avelf −0.005 (0.006) −0.005 (0.006) −0.006 (0.006)

WALS constant 0.069 (0.029) 0.095 (0.036) 0.108 (0.038) 0.125 (0.070)
(Laplace) p60 0.022 (0.007) 0.020 (0.007) 0.022 (0.007) 0.027 (0.017)

iprice1 −0.000 (0.000) −0.000 (0.000) −0.000 (0.000) −0.000 (0.000)
gdpch60l −0.009 (0.003) −0.009 (0.003) −0.008 (0.003) −0.010 (0.007)
tropicar −0.011 (0.005) −0.010 (0.006) −0.009 (0.006) −0.012 (0.015)
life060 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.001)
confuc 0.050 (0.016) 0.055 (0.016) 0.052 (0.017) 0.049 (0.038)
avelf −0.000 (0.006) 0.003 (0.006) 0.001 (0.006) −0.002 (0.012)

WALS constant 0.068 (0.027) 0.093 (0.034) 0.103 (0.037) 0.118 (0.065)
(Subbotin) p60 0.023 (0.007) 0.021 (0.007) 0.022 (0.007) 0.026 (0.016)

iprice1 −0.000 (0.000) −0.000 (0.000) −0.000 (0.000) −0.000 (0.000)
gdpch60l −0.008 (0.003) −0.009 (0.003) −0.008 (0.003) −0.010 (0.007)
tropicar −0.011 (0.005) −0.011 (0.006) −0.010 (0.006) −0.011 (0.014)
life060 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.001)
confuc 0.048 (0.016) 0.052 (0.016) 0.051 (0.017) 0.048 (0.036)
avelf −0.001 (0.005) 0.002 (0.006) 0.001 (0.006) −0.003 (0.011)
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Figure 1: Gaussian, Laplace and Subbotin (q = 0.5) densities.
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Figure 2: Effective and predicted computing time of the bma command as function of the number
of auxiliary variables. The dots denote the effective computing time, while the dash-dot line and
the shaded area denote the predicted computing time with 95 percent symmetric confidence bands.
The sample size is n = 88.
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Figure 3: Effective and relative computing time of the Stata and Matlab commands for BMA
estimation as function of the number of observations. In each subsample, the number of auxiliary
regressors is k2 = 18.
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