38 research outputs found

    Route recovery schemes for link and node failure and link congestion

    Get PDF
    Link/Node failure occurs frequently causing service disruption in computer networks. Hardware techniques have been developed to protect the network from Link/Node failure. These techniques work in physical layer, therefore their convergence time is very small. On the other hand, many schemes have been proposed to mitigate the failure influence on the network. These schemes work in upper layers such as the network layer. However, hardware solutions faster than other schemes, but they are expensive. Link/Node failure causes all flows which were using the failed link/node are temporarily interrupted till a new path reestablished. Three recovery algorithms have been proposed that mitigate the changes occur in the network. These changes are link/node failure and link congestion. The algorithms mainly pre-compute a backup next hop for each destination in the network. This path is feasible to accommodate re-routed traffic when a failure occurs without causing congestion or loops. Simulations have been conducted to show the performance of the proposed algorithms using ns2 network simulation tool. The results show fast recovery for all flows were using the link/node failure. Furthermore, the throughput per node also increases due to decrease interruption service time

    A multi-exchange heuristic for formation of balanced disjoint rings

    Get PDF
    Telecommunication networks form an integral part of life. Avoiding failures on these networks is always not possible. Designing network structures that survive these failures have become important in ensuring the reliability of these network structures. With the introduction of SONET (Synchronous Optical Network) technology, rings have become the preferred survivable network structure. This network configuration has a set of disjoint rings (each node being a part of single ring), and these disjoint rings are connected via another main ring. In this research, we present a mathematical model for the design of such disjoint rings with node number balance criterion among the rings. When, given a set of nodes and distances between them, the Balanced Disjoint Rings (BDR) problem is the minimum total link length clustering of nodes into a given number of disjoint rings in such a way that there is almost the same number of nodes in each ring. The BDR problem is a class of the standard Traveling Salesman Problem (TSP). It is clear from this observation that the BDR problem becomes a TSP when the number of rings required is set to one. Hence BDR is NP-Hard, and we do not expect to obtain a polynomial time algorithm for its solution. To overcome this problem, we developed a set of construction heuristics (Break-MST, Distance Method, Hybrid Method, GRASP-Based Distance Method) and improvement heuristics (Multi-Exchange, Single Move). Different combinations of construction and improvement heuristics were implemented and the quality of solution thus obtained was compared to the standard Branch and Cut Technique. It was found that the algorithm with GRASP-Based Distance Method as the construction heuristic and multi-exchange - single-move combination as the improvement heuristic performed better than other combinations. All combinations performed better in general than the standard Branch and Cut technique in terms of solution time

    TOPOLOGICAL PLANNING OF COMMUNICATION NETWORKS

    Get PDF
    In this paper, we concentrate on topological planning process of large-scale communication networks such as those used by telecom operators. Such networks are usually spread over large geographical area, and finding an optimal topology is very important part of the planning process. Network equipment used in such network is very expensive, and two connection points can be hundreds of kilometers apart. These networks, in most cases, form a backbone network of telecom operator, meaning that majority of traffic is carried through high-speed communication links of such network. Any cable cuts or equipment malfunctions could result in huge data losses. Therefore, such networks require high degree of availability and fault resistance, which must be considered during the planning process. Network topology providing fault resistance should offer at least two separate communication paths between any pair of network nodes. Most important issue in network topology planning is finding topology with lowest possible overall network price, while keeping all requirements (such as fault tolerance, availability, maximal number of hops, maximal blocking probability etc.) satisfied. Network design process can be divided into three stages. First step is making decisions about which network elements (nodes, existing edges) should be included in a backbone network (for instance, one of sub-problems appearing in this phase is facility location problem). Second step includes selection of network topology, so that all elements selected in first step will be interconnected satisfying given requirements. Last phase is used to determine node and link capacities needed for successful traffic transport as well as routings of traffic demands, including protection. Depending on technologies used in network, different routing and protection mechanisms, as well as specific topology models, can be used (e.g. SDH/WDM SHR, mesh, dual-homing etc.)

    A stochastic intra-ring synchronous optimal network design problem

    Get PDF
    We develop a stochastic programming approach to solving an intra-ring Synchronous Optical Network (SONET) design problem. This research differs from pioneering SONET design studies in two fundamental ways. First, while traditional approaches to solving this problem assume that all data are deterministic, we observe that for practical planning situations, network demand levels are stochastic. Second, while most models disallow demand shortages and focus only on the minimization of capital Add-Drop Multiplexer (ADM) equipment expenditure, our model minimizes a mix of ADM installations and expected penalties arising from the failure to satisfy some or all of the actual telecommunication demand. We propose an L-shaped algorithm to solve this design problem, and demonstrate how a nonlinear reformulation of the problem may improve the strength of the generated optimality cuts. We next enhance the ba-sic algorithm by implementing powerful lower and upper bounding techniques via an assortment of modeling, valid inequality, and heuristic strategies. Our computational results conclusively demonstrate the efficacy of our proposed algorithm as opposed to standard L-shaped and extensive form approaches to solving the problem

    Design of a fast and resource-efficient fault management system in optical networks to suit real-time multimedia applications

    Get PDF
    Today\u27s telecommunications networks are relying more and more on optical fibers as their physical medium. Currently the Wavelength Division Multiplexing technology enables hundreds of wavelengths to be multiplexed on a single fiber. Using this technology capacity can be dramatically increased, even to the order of Terabits per second. While WDM technology has given a satisfactory answer to the ever-increasing demand for capacity, there is still a problem which needs to be handled efficiently: survivability. Our proposed fault restoration system optimized between restoration cost and speed. We extended the concept of Forward Equivalence Class (FEC) in Multi Protocol Label switching (MPLS) to our proposed fault restoration system. Speed was found to be in the order of 1 to 3 microseconds using predesigned protection, depending on the configuration of the system. Optimization was done between restoration speed and cost by introducing a priority field in the packet header

    Design of survivable WDM network based on pre-configured protection cycle

    Get PDF
    Wavelength Division Multiplexing (WDM) is an important technique which allows the trans- port of large quantities of data over optical networks. All optical WDM-based networks have been used to improve overall communication capacity and provide an excellent choice for the design of backbone networks. However, due to the high traffic load that each link can carry in a WDM network, survivability against failures becomes very important. Survivability in this context is the ability of the network to maintain continuity of service against failures, since a failure can lead to huge data losses. In recent years, many survivability mechanisms have been studied and their performance assessed through capacity efficiency, restoration time and restorability. Survivability mechanisms for ring and mesh topologies have received particular attention

    TOPOLOGICAL PLANNING OF COMMUNICATION NETWORKS

    Get PDF
    In this paper, we concentrate on topological planning process of large-scale communication networks such as those used by telecom operators. Such networks are usually spread over large geographical area, and finding an optimal topology is very important part of the planning process. Network equipment used in such network is very expensive, and two connection points can be hundreds of kilometers apart. These networks, in most cases, form a backbone network of telecom operator, meaning that majority of traffic is carried through high-speed communication links of such network. Any cable cuts or equipment malfunctions could result in huge data losses. Therefore, such networks require high degree of availability and fault resistance, which must be considered during the planning process. Network topology providing fault resistance should offer at least two separate communication paths between any pair of network nodes. Most important issue in network topology planning is finding topology with lowest possible overall network price, while keeping all requirements (such as fault tolerance, availability, maximal number of hops, maximal blocking probability etc.) satisfied. Network design process can be divided into three stages. First step is making decisions about which network elements (nodes, existing edges) should be included in a backbone network (for instance, one of sub-problems appearing in this phase is facility location problem). Second step includes selection of network topology, so that all elements selected in first step will be interconnected satisfying given requirements. Last phase is used to determine node and link capacities needed for successful traffic transport as well as routings of traffic demands, including protection. Depending on technologies used in network, different routing and protection mechanisms, as well as specific topology models, can be used (e.g. SDH/WDM SHR, mesh, dual-homing etc.)

    Survivable network design with stepwise incremental cost function

    Get PDF
    Modern society has become more and more dependent on information services, transferred in both public and private network, than ever before. The use of integration of computers with telecommunications has created a so-called “Information Age”. The advent of high capacity digital telecommunication facilities has made it possible for the huge amount of traffic to be carried in an economical and efficient method, in recent years. These facilities, which are used to carry much higher capacities than the traditional ones, also result in the network’s vulnerability to the failure of network facilities, i.e. a single link failure. This thesis is concerned with the technology by which the spare capacity on the link of mesh networks is placed in order to protect the active traffic from network failure with a minimal cost. Although there have been many works to address the issue all of these works have been developed based on the assumption that the link cost with its capacity is linear. In fact, the linear cost functions does not reflect the reality that optic fiber cables with the specific amount of capacities are only available, in other words, the link cost function is stepwise rather than linear. Therefore, all existing algorithms developed for the linear assumption may not be applicable properly for the stepwise case. A novel heuristic algorithm is proposed to solve the problem in this thesis. The algorithm is composed of two parts as follows. In part one, a maximum flow algorithm is employed to work out the maximal amount of feasible spare paths consisting of spare capacities in the network to re-route the disrupted traffic at the event of network failure. In part two, a newly proposed algorithm is used to find an alternative path on which to place the non-rerouted traffic on the failed link with the minimum network cost increment. The superiority of the algorithm is presented over other algorithms published in this area
    corecore