
A MULTI-EXCHANGE HEURISTIC FOR FORMATION OF

BALANCED DISJOINT RINGS

A Thesis

by

SARATH K. SASI KUMAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2005

Major Subject: Industrial Engineering

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&amp;M Repository

https://core.ac.uk/display/4271399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A MULTI-EXCHANGE HEURISTIC FOR FORMATION OF BALANCED

DISJOINT RINGS

A Thesis

by

SARATH K. SASI KUMAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Halit Uster
Committee Members, Sila Cetinkaya

Michael A. Bevan
Head of Department, Brett A. Peters

August 2005

Major Subject: Industrial Engineering



iii

ABSTRACT

A Multi-Exchange Heuristic for Formation of

Balanced Disjoint Rings. (August 2005)

Sarath K. Sasi Kumar, B.E., Regional Engineering College, Trichy, India

Chair of Advisory Committee: Dr. Halit Uster

Telecommunication networks form an integral part of life. Avoiding failures on

these networks is always not possible. Designing network structures that survive these

failures have become important in ensuring the reliability of these network structures.

With the introduction of SONET (Synchronous Optical Network) technology, rings

have become the preferred survivable network structure. This network configuration

has a set of disjoint rings (each node being a part of single ring), and these disjoint

rings are connected via another main ring. In this research, we present a mathemat-

ical model for the design of such disjoint rings with node number balance criterion

among the rings. When, given a set of nodes and distances between them, the Bal-

anced Disjoint Rings (BDR) problem is the minimum total link length clustering of

nodes into a given number of disjoint rings in such a way that there is almost the

same number of nodes in each ring. The BDR problem is a class of the standard

Traveling Salesman Problem (TSP). It is clear from this observation that the BDR

problem becomes a TSP when the number of rings required is set to one. Hence

BDR is NP-Hard, and we do not expect to obtain a polynomial time algorithm for

its solution. To overcome this problem, we developed a set of construction heuristics

(Break-MST, Distance Method, Hybrid Method, GRASP-Based Distance Method)

and improvement heuristics (Multi-Exchange, Single Move). Different combinations
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of construction and improvement heuristics were implemented and the quality of solu-

tion thus obtained was compared to the standard Branch and Cut Technique. It was

found that the algorithm with GRASP-Based Distance Method as the construction

heuristic and multi-exchange - single-move combination as the improvement heuris-

tic performed better than other combinations. All combinations performed better in

general than the standard Branch and Cut technique in terms of solution time.
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CHAPTER I

INTRODUCTION

Telecommunication networks form an integral part of life. The links and nodes which

form the backbone of such networks however, are susceptible to failures. These failures

create a disruption in the flow of data which could be unacceptable for the user.

Considering the wide usage of telecommunication networks, resilience, i.e. the ability

of the network to quickly recover from a failure, has become a key element in the

design of these networks in order to ensure user satisfaction and quality service.

As a matter of fact, avoiding failures on networks is not always possible. Design-

ing network structures that survive these failures have become the order of the day.

If a network structure, with spare or excess capacity, is able to remove interrupted

traffic by the failure of some its elements, then the network is said to be survivable

(Soriano et al., 1998). Also, if the rerouting of traffic is automated and the net-

work reconfigures itself in case of failure, then the network is said to be self-healing

(Soriano et al.,1998). With the introduction of SONET (Synchronous Optical Net-

work) technology, rings have become the preferred survivable network structure. The

SONET network planning is usually performed in 3 stages:(1) Logical Ring Design

(2) Mapping the logical rings onto the existing fiber optic network (3) Connecting

the rings and routing the traffic effectively. The set of nodes in the network are opti-

mally grouped into rings with each node being a part of a ring, and each ring being

connected to at least one other ring at two or more nodes. This network structure

ensures faster recovery from a single link or single node failure (Laguna, 1994; Luss

et al., 1998; Soriano et al., 1998).

This thesis follows the style of European Journal of Operational Research.
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A network structure that incorporates rings (cycles connecting a set of terminals

or central locations given as nodes) can be designed in two stages. In the first stage,

a set of disjoint rings (each node being a part of a single ring) is formed in such a

way that the total link length of cycles is minimized, and in the second stage, these

disjoint rings are connected via another main ring. In both stages, several different

criteria can be considered depending on the design requirements. With this kind of

application in mind, we focus on the first stage problem with a node number balance

criterion among the rings. Specifically, given a set of nodes and distances between

them, the Balanced Disjoint Rings (BDR) Problem is the minimum total link length

clustering of nodes into a given number of disjoint rings in such a way that there is

almost the same number of nodes in each ring.

The BDR problem is related to the well-known traveling salesman problem (TSP)

in which, given a set of nodes and distances, one seeks to find the minimum length

tour that visits each node exactly once. In BDR, if the balance requirement among

the rings is relaxed and the number of rings required is set to one, then we obtain

the TSP. It can easily be argued that the BDR problem is also NP-hard, and hence

we do not expect to obtain a polynomial time algorithm for its solution.

Therefore, we are motivated to develop an efficient heuristic solution approach,

which finds close to optimal solutions in reasonable amount of time. In general,

a neighborhood search based heuristic algorithm starts with an initial solution and

utilizes a neighborhood function to generate improving solutions around the current

solution. The algorithm accepts the new neighborhood solution if it improves the

current best objective value. This process of finding the neighborhood solutions,

replacing the current solution with a neighborhood solution that has a better objective

value is repeated until a termination criterion is reached.

During the design of a heuristic, the decision about the structure of the neighbor-
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hood function is of strategic importance. As the size of the neighborhood increases,

the longer it takes to solve the problem resulting in fewer iterations per unit time

(Ahuja et al., 2000). Hence, to develop accurate solutions with lesser number of it-

erations, we need to search the large neighborhood in an efficient manner. In this

study, a solution construction heuristic and a solution improvement heuristic with a

multi-exchange neighborhood generation and search procedure (based on very large

scale neighborhood search) will be considered. The technique produces improved

neighborhood solutions without enumerating and evaluating all neighbors in the large

neighborhood. The results obtained by the standard Branch and Bound Technique

and the multi-exchange heuristic approach for randomly generated problem instances

will then be compared.

I.1. Motivation and Objective

An analytical model to help design good survivable networks and effective solution

methodologies to solve these problems could be of immense help to the telecommu-

nication industry. We will formulate our problem of interest that has applications in

this area. One specific feature of the model is that it incorporates constraints for a

balanced distribution of load across the network. This ensures that the rings in the

network would have a uniform load pattern. We develop effective solution method-

ologies and test their efficiency via an experimental set-up that considers parameter

values varying both in problem input data and solution procedure parameters. This

experimentation helps us to observe the trade offs one would have to make while

solving such difficult problems.

The objectives of this research are to (i) formulate a mathematical model for

the Balanced Disjoint Ring problem, (ii) provide heuristic solution methodologies
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that performs better than the standard Branch-and-Cut technique that can be im-

plemented using powerful readily available software such as CPLEX 9.01.

I.2. Organization of the Thesis

This thesis is structured as follows. The next section gives the literature review.

Chapter II gives the notation, definition and problem formulation. Following that,

in chapter III, we present various heuristic solution procedures to solve our model

efficiently. Chapter IV provides computational results for comparison of exact and

heuristics methods, and finally, in chapter V, conclusion and recommendations for

future research are discussed.

I.3. Related Literature

This chapter provides a summary of the literature in two areas with respect to the

problem in hand. The literature related to the problem definitions and solution

methodologies similar to the BDR problem are summarized.

The BDR is related to the well-known TSP. TSP has several variations and one

of them, multiple TSP (m-TSP), generates multiple cycles similar to BDR. In m-TSP,

a given number of salesmen are located at a specified base node and the problem is

to find a tour for each salesman to cover a portion of a given graph so that each

node of the graph is visited only once.Solution approaches to m-TSP was developed

by Bellmore and Hong (1974). They transformed the m-TSP to a standard TSP for

which standard algorithms are available. They represented the system as an expanded

graph with (m − 1) more nodes than the original graph. Hong and Padberg (1977)

showed that symmetric m-TSP (symmetric cost or distance structure) is equivalent to

1CPLEX is a trademark of ILOG, Inc.
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the standard symmetric TSP involving n+m+4 cities (n is the number of cities). In

addition to this, Jonker and Volgenat (1986) presented an improved transformation

for the undirected single depot m-TSP to symmetric TSP by making m-1 copies of the

depot. The results were also computationally verified. Gavish and Srikanth (1986)

formulated the problem as integer linear program with fixed and variable number of

salesmen and provided an efficient branch-and-bound scheme with lagrangian bounds.

More information about the TSP variants could be found in Gutin and Punnen (2002).

Another related problem is the multi-depot location-routing problem (MDLRP).

MDLRP involves solving a facility location-allocation problem (i.e., identifying open

depot locations from the set of candidate locations and assigning customer demands

to these depots) and vehicle routing problem (routing of vehicles from the depots to

the assigned customers) simultaneously. Perl and Daskin (1983) proposed a heuristic

approach to solve the problem by decomposing the original problem to subproblems.

Another heuristic approach for the same problem was provided by Hansen et al.

(1994). Wu et al. (2002) developed a heuristic method to solve the multi depot

location routing problem. They decomposed the problem into Location-Allocation

and Vehicle Routing Problems. Some approximate algorithms for solving the MDLRP

are described in the literature (Laporte, 1988; Madsen, 1983; Jacobsen and Madsen,

1980; Srivastava, 1993; Tuzun and Burke, 1999; Lin et al., 2002; Salhi and Rand,

1989; Min et al., 1998).

The most related study to the problem under consideration found in the litera-

ture is the Hamiltonian p-median problem (HPMP) which is obtained by combining

the p-median location and TSP problems (Branco and Coelho, 1990). In a typical

p-median problem, given a set of candidate locations and customer nodes, we are

interested in locating p new facilities and assigning the customers to these facilities

to be served directly. The objective is to minimize the total transportation cost. The
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only difference between p-median and HPMP is that, in HPMP, the customers are

not served directly. There is a route for each new facility and the customers on a

route are served by the corresponding facility. Branco and Coelho (1990) provided

two formulations for this problem. The HPMP is also an NP-hard problem. Branco

and Coelho (1990) provided four heuristics to solve HPMP. The clustering heuristic is

a construction heuristic. It selects the seed nodes based on the farthest distance and

groups the remaining nodes under the seed nodes to form the clusters. The TSP is

solved for each cluster. The 3-optimal method starts with an initial feasible solution

and tries to find an improving solution by changing three links systematically. The

shrinking heuristic starts by solving the 2- matching problem and then shrinks the

solution to obtain a feasible solution. 3-optimal algorithm is applied to this solution.

The authors also provided details about the spanning walk heuristic. Glaab and Pott

(2000) considered a similar version of the problem on a directed graph, providing

good, but rather limited polyhedral results without any valid inequalities that can be

employed.

In terms of the solution methodology, literature related to construction and im-

provement heuristics are summarized. The clustering heuristic given by Branco and

Coelho (1990) relates closely to the construction heuristic requirements for the BDR

problem. Multi-Exchange heuristic is a neighborhood search based improvement

heuristic. Multi-Exchange falls into the class of the very large scale neighborhood

search (VLSN) algorithms and is based on the cyclic transfer of nodes between rings.

Cyclic exchange produces more neighbors than the conventional two-exchange neigh-

borhood where assignments of pairs of nodes are exchanged between two rings. The

theory of cyclic transfer was first introduced by Thompson and Orlin (1989). The

authors discuss assignment of nodes to clusters and configuration of nodes within

clusters for various well-known problems such as facility location and vehicle rout-
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ing problems. A network optimization based cyclic exchange neighborhood search

methodology was described by Ahuja et al. (2000) with specific application to the

capacitated minimum spanning tree problem. For this problem, Ahuja et al. (2003)

introduced a better performing composite VLSN structure where there is at least one

node subject to the cyclic transfers between subtrees. Thompson and Psaraftis (1993)

investigated the application of cyclic transfer algorithms for multi-vehicle routing and

scheduling problems. They analyzed the worst case performance for various problem

instances and proposed a computationally efficient method for finding negative cost

(the ones providing improvement over the current solution) cyclic transfers. Ahuja et

al. (2004) explored the neighborhood induced by customer multi-exchanges and facil-

ity moves for the single source capacitated facility location problem. Finally, Ahuja

et al. (2002) provided a detailed survey about the following neighborhoods search

techniques used in VLSN search algorithms: (1) Variable Depth Method (2) Large

neighborhood searched using network flow techniques or dynamic programming, and

(3) large neighborhoods generated by restrictions of the original problem.
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CHAPTER II

PROBLEM DEFINITION AND FORMULATION

We first define the notation used in the mathematical formulation of BDR. Let G =

(N, E) be a complete graph with a node set of N and edge set of E where the

length of edge (i, j) is δij. Let n be the number of nodes, and c be the number of

disjoint rings to be formed. We introduce a binary variable xijk that represents the

assignment of edges to rings, i.e., xijk = 1 if edge (i, j) is in ring k for i, j = 1, . . . , n

and k = 1, . . . , c, and xijk = 0, otherwise. Additionally, we introduce a set of binary

variables yik for the assignment of nodes to rings, i.e., yik = 1 if node i is assigned to

ring k for i = 1, . . . , n and k = 1, . . . , c, and yik = 0, otherwise. Let Nk be the set of

nodes in ring k; Sk be a nonempty subset of Nk; and K be the index set for rings,

K = {1, . . . , c}. Then,

Min
c∑

k=1

n−1∑
i=1

n∑
j=i+1

δij xijk (2.1)

subject to
v−1∑
j=1

xjvk +
n∑

j=v+1

xvjk = 2 yvk ∀ v ∈ N, ∀ k ∈ K, (2.2)

n∑
i=1

yik ≥ bn/cc − 1 ∀ k ∈ K, (2.3)

n∑
i=1

yik ≤ bn/cc+ 1 ∀ k ∈ K, (2.4)

c∑

k=1

yik = 1 ∀ i ∈ N, (2.5)

∑
i∈Sk

∑
j∈Sk
j>i

xijk ≤ (|Sk| − 1) yvk + |Sk| (1− yvk) ∀Sk, ∀ v ∈ N \ Sk, ∀ k ∈ K, (2.6)

xijk, yik ∈ {0, 1} ∀ i, j ∈ N, ∀ k ∈ K. (2.7)
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The objective function (2.1) minimizes the total edge length over the rings. Con-

straints (2.2) state that each node has a degree of 2, this is required for the proper

formation of rings. We impose the constraints (2.3) and (2.4) in order to obtain a

balanced formation of disjoint rings. The left hand side of these constraints represents

the number of nodes assigned to a ring k. On the right hand side, bn/cc represents

the rounded down value of the average number of nodes per ring in a completely

balanced design. Therefore, we require the number of nodes in any ring to be within

∓1 range of this integral average node count. Constraints (2.5) guarantees that each

node is assigned to exactly one ring. Finally, constraints (2.6) are for elimination of

sub-rings within rings. Specifically, these constraints eliminate the situations such

as the one depicted in Figure 1 which shows a possible solution to a problem re-

quired to form two disjoint rings. The nodes 1, 2, 3, 4, 5 and 6 are considered to

be a part of the ring R1 and they actually form two sub-rings in R1. A sub-ring

elimination constraint that would avoid this particular situation can be obtained as

follows: Given that N1 = {1, 2, 3, 4, 5, 6} assume a subset selection as S1 = {1, 2, 3}
and a node in N \ S1 as v = 4 so that x121, x131, x231, y41 = 1. Then, the constraint

x121 + x131 + x231 ≤ (|S1| − 1) y41 + |S1| (1− y41) =⇒ 3 ≤ 2 is clearly violated.
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CHAPTER III

SOLUTION APPROACHES WITH LOCAL SEARCH

A neighborhood function is an important ingredient of a local search algorithm. Given

a feasible solution s, a neighborhood function defines a mechanism to generate other

feasible solutions, N (s). The solutions contained in N (s) are called the neighboring

solutions of s. Clearly, the set N (s) is a subset of the complete feasible solution

space to the problem at hand. We start each iteration of a local search improvement

algorithm with a feasible solution, whose goodness value (this is usually its associated

objective value) is calculated, and generate its neighborhood solutions. We pick the

neighboring solution with the best goodness value if it is better than the current

best solution and start the second iteration with this new improved solution. We

continue the iterations until there is no improving solutions in the neighborhood of

the current best solution. The initial feasible solution in a local search is obtained

via a construction heuristic. Further details and various approaches to local search

can be found in (Aarts and Lenstra, 1997; Michalewicz and Fogel, 2000).

If the neighborhood function is able to generate a large set of neighboring solu-

tions we have a better chance of obtaining good solutions, i.e., the solution space is

more explored. However, if an efficient neighborhood generation method is not avail-

able, the gain in solution quality comes at the expense of increased run time of the

algorithm. On the other hand, if we employ a neighborhood function that involves

less exploration and thus provide faster run times, this gain comes at the possibility

of not obtaining acceptably good solutions. That is, in general there is a trade off

between the solution quality and solution time when local search heuristics are used.

In this thesis, we investigate three alternative construction heuristics; and two

neighborhood functions that are to be used simultaneously in a local search frame-
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work. The first neighborhood function is multi-exchange neighborhood which gener-

ates a relatively large number of neighboring solutions. However, efficient techniques

exist for the generation of these solutions. The second one is a simple single-move

neighborhood, although generates a relatively small set of neighboring solutions, it

provides an opportunity for diversification in the solution space explored by the multi-

exchange. We give the details of the construction heuristics and the improvement al-

gorithm employing the neighborhood functions below. Since they will be used in the

subsequent discussions, we first review the related standard definitions from graph

theory. For a general graph G = (N,E) we define the following:

Path: A path between vertices s and t, (s, t)-path, is a sequence of arcs of the

form (s, i1), (i1, i2), . . . , (ik−1, (ik), (ik, t) where {s, t, i1, . . . , ik} are non-repeated

(distinct) vertices in the graph.

Cycle: A cycle containing a vertex s is the augmentation of an (s, t)-path and the

(t, s) arc. Informally, a cycle is a sequence of vertices that forms a path and

additionally the end vertex of the path is connected to the start one. In a

general graph, a cycle must contain at least three arcs.

Tree: A tree is a graph in which any two vertices are connected by exactly one path.

Spanning Tree: A spanning tree is a subgraph of G which is a tree and connects all

the vertices. A minimum spanning tree (MST) or minimum weight (total arc

cost) spanning tree of G is then a spanning tree with weight less than or equal

to the weight of every other spanning tree of G.

Travelling Salesman Problem (TSP): Finding the minimum weight cycle in G

that visits all the vertices. We represent the objective function value of a TSP

solution on G as t(G).
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III.1. Evaluating a Solution

In general, the quality of a solution is represented by the value of the objective function

or the cost it implies. The cost for the BDR problem is given by the sum of the

lengths of the links constituting the rings and the overall objective is to minimize this

cost. Let the set of nodes N be partitioned into c rings P = {N1, N2, . . . , Nc}, where

Ni, i = 1, . . . , c, represents the set of nodes in a ring i and |Ni| satisfies the constraints

(2.3) and (2.4) on allowable number of nodes in a ring. A given partitioning P , in

which
⋂

i=1,...,c Ni = ∅ and
⋃

i=1,...,c Ni = N , identifies a solution to our problem. Let

the associated cost of the partitioning P be Z(P). Z(P) is determined by solving

a TSP in each ring and then summing up the link lengths. We solve the TSP in

each ring i on the graph induced by its set of nodes Ni using the Christofides’ TSP

heuristic (Christofides, 1976). The Christofides’ heuristic is a 3/2-approximation

algorithm, i.e., it finds solutions whose objective values are at most 50% worse than

the optimum value. Our reason to employ the Christofides’ heuristic is that the

cost evaluations are heavily used in the course of the algorithm mostly to compare

the solutions in a neighborhood and it provides the means of doing this quickly and

effectively. However, we also consider finding optimum TSP tours in rings once a final

solution is reached.

III.2. Multi-Exchange Neighborhood

Various very large scale neighborhood functions are given by Ahuja et al. (2002).

For our problem, a multi-exchange neighboring solution can be obtained by shifting a

subset of nodes on a cycle that contains exactly one node from the rings that it visits.

Each ring is visited at most once on such a cycle, and thus, it is called a subset-disjoint

cycle. Let the number of visited rings on a subset-disjoint cycle be V , V ≤ c, and let
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ni be a node in Ni for i = 1, . . . , c. Given P , an example subset-disjoint cycle of size

V can be given as n1 − n2 − n3 − . . .− nV − n1 and it represents the multi-exchange

operation in which the node n1 moves from ring N1 to N2, the node n2 moves from

ring N2 to N3 and so on until the node nV moves from ring NV to N1. Although c−V

partitions are not affected with this cyclic change, in general, this results in a new

partition of the nodes with the following rings P ′
= {N ′

1, N
′
2, . . . , N

′
V , . . . , Nc} and

associated cost of Z(P ′
). The cost of this exchange is given by Z(P ′

)−Z(P). If this

difference is negative then the exchange cycle is called “negative cost subset-disjoint

cycle”.

For the given partition P , N (P) is the set of neighboring solutions obtained

by the subset-disjoint cyclic exchanges. This can yield a very large neighborhood.

Assuming that n/c is an integer and each ring includes the same number of nodes

the cyclic exchange neighborhood size is c! (n/c)c which is of order nc. As c, the

number of rings included in the exchange, increases the neighborhood size increases

exponentially. Explicitly evaluating all such possible subset-disjoint cycles would be

computationally prohibitive. However, the improvement graph described below, could

be used to implicitly search the neighborhood.

An improvement graph I(P) is a directed graph that can be generated for a

given solution P . The vertices of I(P) are given by N and the directed arcs are

constructed between every pair of nodes that are in different rings Ni, i = 1, . . . , c.

Each arc (i, j) on I(P) represents a feasible move of node ni from its current ring(Ni)

to the ring containing the node nj(Nj). The node nj subsequently leaves the ring Nj.

The cost on a such a directed arc (i, j) is given by t(Nj \ {j} ∪ {i})− t(Nj), i.e., the

change in the TSP value of ring containing nj after nj is excluded and ni is included

in that ring. A subset-disjoint cycle on I(P) with a negative total link cost is called

a negative cost subset-disjoint cycle, and henceforth such cycles will also be referred
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to as valid cycles since they represent the cyclic exchanges that provide improvement

over Z(P). Similarly, the negative cost subset-disjoint paths will be referred to as

valid paths.

It is easily observed that directed cycles can be obtained by joining the end points

of the directed paths and arcs suitably. For example, the directed cycle n1−n2−n3−
n4 − n1 could be obtained by combining the path n1 − n2 − n3 − n4 and arc n4 − n1.

Hence, all directed cycles could be enumerated by enumerating all directed paths in

the network. However, enumeration of all possible paths can be very time-consuming.

In order to generate paths efficiently, we utilize a result by Lin and Kernighan (1973)

which is also utilized by Ahuja et al. (2003) in solving capacitated minimum spanning

tree problem. This result is given in Lemma 1.

Lemma 1 If W = i1− i2− . . .− ic− i1 is a negative cost (directed) cycle, then there

exists a node ih in the cycle so that each partial (directed) path ih − ih+1; ih − ih+1 −
ih+2; . . . ; ih− ih+1− ih+2− . . .− ih+k−1 (where indexes are modulo c) is a negative cost

(directed) path.

Lemma 1 implies that for the valid cycle n1−n2−n3−n4−n1, there exists a node

in the cycle say n2, such that the paths n2−n3, n2−n3−n4, and n2−n3−n4−n1 are all

valid paths. This result gives us a way to enumerate all valid cycles by enumerating the

valid paths in the network. While enumerating the valid cycles, the nonnegative cost

paths are ignored. This also effectively helps us to avoid the generation of identical

cycles in terms of their formation such as the directed cycles n1 − n2 − n3 − n4 − n1

and n3 − n4 − n1 − n2 − n3. In addition, the enumeration is further improved by

eliminating dominated paths which will be explained in section III.5.1.

The figures provide a better understanding of the problem and solution method-

ology. Figure 2 provides the geographical distribution of the nodes and an initial
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solution for the problem which could be constructed using an initial construction

heuristic. Figure 3 shows a valid cycle that could be generated with this initial solu-

tion. Figure 4 illustrates the solution after the implementation of the valid cycle.
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Figure 2 Initial Ring Structure - Geographical Interpretation

III.3. Single Move Neighborhood

In single move neighborhood function, unlike multi-exchange, a node is transferred

to another ring without any node leaving the destination ring. Assuming the same

problem setting as explained in the previous section, n1 − n2 represents the transfer

of node n1 from N1 to the ring n2 belongs, i.e., N2. This results in a new partition

P ′
= {N ′

1, N
′
2, N3 . . . , Nc} with the associated cost of Z(P ′

). This single move is

accepted as a move that improves the current objective value of the solution if the

cost change Z(P ′
) − Z(P) is negative. Figure 5 depicts a possible move that could

exist in the solution after the implementation of the valid cycle. Figures 6 represents

the solution after the implementation of the move.
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Figure 3 Multi-Exchange - Valid Cycle (n3 − n8 − n5 − n3)

III.4. Construction Heuristics

In a construction heuristic for our problem, the given set of nodes have to be parti-

tioned into sets based on the number of rings that are required. Also, the partitioning

should be done in such a way that each partitioned set has almost the same number

of nodes. With n being the number of nodes and c the number of rings, n/c repre-

sents the average number of nodes per ring. However, this is not always an integer

value. The balanced distribution of nodes in each ring is then implemented by taking

the floor value of n/c and then introducing the range of bn/cc − 1 (lower bound) to

bn/cc+1 (upper bound). This range determines the number of nodes allowed in each

ring and as the range between upper and lower bound is two, the rings are forced

to have almost the same number of nodes. To start the improvement heuristic, one
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Figure 4 Ring Structure after Exchange - Geographical Interpretation

such feasible solution needs to be generated. We develop the following approaches to

generate the initial solution.

III.4.1. Break -MST Method

Break MST method uses the Kruskal’s algorithm to form the minimum spanning

tree (MST) (Ahuja et al., 1993). With the resulting MST, the required number of

partitioned set of nodes are formed by breaking the links on the MST in decreasing

order of their link lengths. The number of links that are broken is one less than

the number of required rings. In figure 7, the Minimum spanning tree is formed

for the whole problem using the Kruskal’s algorithm in step 0. In step 1, the end

nodes(LinkBegin, LinkEnd) of the longest link is found. This link is excluded from

the MST solution and the corresponding distance entry is set to zero in step 3. In step

4, with the broken MST solution, partitions are formed. If the number of partitions is
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less that the number of disjoint rings that are required, then the algorithm goes back

to step 2 to break more links in the decreasing order of their lengths. This algorithm

terminates when the number of partitions is equal to the number of rings. However,

this method does not always yield a balanced partition of nodes. This drawback

motivated the following two construction heuristics that would yield solutions with

a balanced partition of nodes. The second one of these next two heuristics utilizes

the Break-MST method. The overall algorithm for the Break-MST method is given

in figure 7. The parameters provided within the parenthesis following the function

names in pseudo-codes represent the important inputs for the function.

Step 0: mst sol = MST kruskal(Problem Data)
Step 1: [LinkBegin, LinkEnd] = Find Maximum Link(mst sol)
Step 2: Break Link(mst sol, LinkBegin, LinkEnd)
Step 3: new mst sol = Update mst sol
Step 4: Partition Sets = Make Partition(new mst sol)
if (Partition Sets.Size 6= NumberofRings) then

Step 5: mst sol = new mst sol
Step 6: GOTO Step 1

end if
Step 7: Return Partition Sets

Figure 7 Pseudo-code of the Break MST Construction Heuristic

III.4.2. Distance Method (DM)

In the first phase of the Distance Method we determine a set of “seed nodes”, each

representing a required ring, i.e., the number of seed nodes is equal to c. We choose

the seed nodes in an incremental way. We first find the longest link in the distance

matrix and assign its end nodes as the initial two seed nodes. The next seed node

is determined such that the sum of distance between this node and the seed nodes
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is maximum. This seed node is added to the set of seed nodes and this process is

repeated until the number of seed nodes determined is equal to the number of required

rings. Each seed node is assigned to a partition set Ni, i = 1, . . . , c, representing the

nodes in each ring. The nodes that are not yet included to a partition are called “free

nodes”, and in the second phase of the heuristic, we assign the free nodes to created

partitions based on the distance between the free nodes and the seed nodes. Since the

partitions are required to be balanced we assign free nodes to partitions in a cyclic

manner, selecting the seed nodes in sequence, one by one, and finding the closest free

node to the seed node. The free nodes are assigned to the seed nodes in this fashion.

Distance method is similar to the method discussed by Branco and Coelho (1990),

however since there is no balancing constraints in (Branco and Coelho, 1990), the

assignment are made on a free node basis where a free node is assigned to its closest

seed nodes. The overall algorithm for the Distance method is given in figure 8.

III.4.3. Hybrid Method (HM)

Hybrid method combines the above two methods. As the first step in this method,

the MST solution is formed by Kruskal’s algorithm. We pay special attention while

breaking the links to obtain partitions. In particular, the links are broken in the

decreasing order of their link lengths. Breaking a link yields two partitions. The first

partition is checked to validate if the number of nodes in the partition is less than

or equal to the allowed upper bound (bn/cc + 1). If this condition is satisfied, it is

made as one of the required partition set for the formation of rings and a new sorted

list of link lengths in the remaining MST is created. If the first partition does not

satisfy the condition, then the second partition is checked for the same condition. If

breaking the longest link does not yield any partition that satisfies the upper bound

condition, the broken link is rejoined and the next link in the sorted list is chosen.
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Step 0: Distance Matrix = Create Distance Matrix(Problem Data)
Step 1: [LinkBegin, LinkEnd] = Max Link Length(Dist Matrix)
Step 2: Update Distance Matrix

(i.e Set the Distance Matrix[LinkBegin][LinkEnd] = 0)
Step 3: Partition Set[1] = {LinkBegin}
Step 4: Partition Set[2] = {LinkEnd}
Step 5: Seed Set = {Partition Set[1],Partition Set[2]}
Step 6: Temp set = {LinkBegin, LinkEnd}
for i=3 : Number of Rings do

Step 7: Seed Node = Find the node that is farthest apart from Temp set
Step 8: Partition Set[i] = {Seed Node}
Step 9: Add Seed Node to Temp Set
Step 10: Add Partition Set[i] to Seed set
Step 11: Update Distance Matrix

end for
Step 12: i=1
Step 13: Number of iterations = Number of Nodes−Number of Rings
while Number of iterations > 0 do

if (i = Temp set.size) then
Step 14: i=1;

end if
for i=1 : Temp set.size do

Step 15: Free node = Find the node at minimum distance from Temp Set[i]
Step 16: Add Free node to Partition Set[i]
Step 17: Number of iterations = Number of iterations− 1
Step 18 :Update Distance Matrix
Step 19: i = i + 1

end for
end while
Step 20: Return Partition Sets

Figure 8 Pseudo-code of the Distance Method Based Construction Heuristic
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This is repeated until the number of links broken is equal to the number of rings that

are required for the problem.

Once the initial partition is obtained, the distance method is used to assign the

remaining nodes (free nodes) to the initial partition sets created in the previous step.

The assignment of a free node to the partition is decided based on the minimum

distance between this free node and the nodes already assigned to the partition.

Similar to the Distance Method, for each partition we find the free node that is

closest to its node set in a cyclic manner until no free nodes are left. While assigning

the free nodes, care is taken so that the number of nodes in each partition set does

not exceed the upper bound.

After all the nodes have been assigned, the lower bound (bn/cc - 1) condition is

validated for all partitions. If the number of nodes in any partition is less than the

lower bound, the nodes are arranged suitably among the rings (partitions) so that

the lower bound and upper bound conditions are simultaneously satisfied. This is

done by transferring the nodes from rings with number of nodes more than the lower

bound to the rings that need nodes to satisfy the lower bound condition. The overall

algorithm for the Hybrid method is given in figure 9.
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Step 0: Distance Matrix = Create Distance Matrix(Problem Data)
Step 1: MST Solution = Find MST (Distance Matrix)
Step 2: Sorted List = Sort Descending Link Lengths(MST Solution)
Step 3: Upper Bound = bNumber of nodes/number of ringsc + 1
Step 4: i=1
START:
if (i <= Number of Rings) then

for j=1 : Sorted List.size do
Step 5: [LinkBegin, LinkEnd] = Sorted List[j]
Step 6: [Set1, Set2] = Break the link
Step 7: Update MST Solution . . . (Set the link to zero)
Step 8: Update Dist Matrix . . . (set Dist Matrix[LinkBegin][LinkEnd] = 0)
if (Set1.size < Upper Bound) then

Step 9: Partition Set[i] = Set1
Step 10: i = i + 1
Step 11: Update Distance Matrix, MST Solution
Step 12: Sorted List = Sort Descending Link Lengths(MST Solution)
Step 13: GOTO START

else
if (Set2.size < Upper Bound) then

Step 14: Partition Set[i] = Set2
Step 15: i = i + 1
Step 16: Update Distance Matrix, MST Solution
Step 17: Sorted List = Sort Descending Link Lengths(MST Solution)
Step 18: GOTO START

else
Step 19: j = j + 1
Step 20: Rejoin the broken link

end if
end if

end for
end if

Figure 9 Pseudo-code of the Hybrid Method Based Construction Heuristic
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Step 21: Temp set =
{Partition Set[1],Partition Set[2],. . . ,Partition Set[Number of Rings]}

Step 22: i=1
Step 23: Number of iterations = Number of Nodes - Total number of nodes be-
longing to each Partition Set put together
while Number of iterations > 0 do

if (i = Temp set.size) then
Step 24: i=1;

end if
for i=1 : Temp set.size do

Step 25: Free node = Find the node at minimum distance from Temp Set[i]
Step 26: Add Free node to Partition Set[i]
Step 27: Number of iterations = Number of iterations− 1
Step 28 :Update Distance Matrix
Step 29: i = i + 1

end for
end while
Step 30: Return Partition Set

Figure 9 Continued

III.4.4. Greedy Randomized Adaptive Search Procedure (GRASP) with

Distance Method

GRASP framework can be utilized to generalize almost any construction heuristic

to a multi-start approach supported by randomization. The details of the overall

framework can be found in (Feo and Resende, 1995; Resende and Riberio, 2003). In a

general greedy construction heuristic, a feasible solution is generated in such a manner

that at each step of the procedure the most benefiting action taken. In that sense, our

distance method (DM) is essentially a greedy method where the seed nodes pick free

nodes to include in their partition in a greedy fashion. The first generalization that

GRASP brings is the randomization. For this purpose, instead of picking the best

free node for a partition, we generate cd number of best (again based on proximity)

free nodes and pick one of them randomly, where each has a probability of 1/cd to
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join the partition under consideration. The second generalization is the adaptiveness

which refers to modifying the data used to take actions at iterations so that the partial

solution obtained in the process is accounted for. For this purpose, we modify the

distance method in such a way that at each iteration while picking a free node for a

partition, we do not only consider the proximity of the free node to the seed node,

but its proximity to the existing set of nodes in that partition. The pseudo-code

for the distance method with GRASP is given in figure 10. In summary, at each

iteration (that is, a given partition under consideration), for each free node, we first

find a representative distance measure df where f is a free node and df is the distance

between f and the node closest to it in the partition. We later pick cd distinct free

nodes with the smallest df values and randomly choose one of them to be included

in that partition. We continue in this fashion, one partition at a time, until all the

free nodes are assigned. Towards the end of iterations, if the number of free nodes

left is less than the parameter cd we choose a free node in nonrandomized greedy

way, but still employing adaptiveness. A usually employed feature of GRASP is the

opportunity it provides for efficient multi-start. Since an initial feasible solution is

constructed via randomization each time the GRASP is applied it is likely to generate

a different initial solution. Thus, we start an improvement algorithm that employs

GRASP in the construction phase several times, each improvement routine is started

with a different initial solution.
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Step 0: Distance Matrix = Create Distance Matrix(Problem Data)
Step 1: [LinkBegin, LinkEnd] = Max Link Length(Distance Matrix)
Step 2: Update Distance Matrix

(i.e Set the Distance Matrix[LinkBegin][LinkEnd] = 0)
Step 3: Partition Set[1] = {LinkBegin}
Step 4: Partition Set[2] = {LinkEnd}
Step 5: Seed Set = {Partition Set[1],Partition Set[2]}
Step 6: Temp set = {LinkBegin, LinkEnd}
for i=3 : Number of Rings do

Step 7: Seed Node = Find the node that is farthest apart from Temp set
Step 8: Partition Set[i] = {Seed Node}
Step 9: Add Seed Node to Temp Set
Step 10: Add Partition Set[i] to Seed set
Step 11: Update Dist Matrix

end for
Step 12: i=1
Step 13: Number of iterations = Number of Nodes−Number of Rings

Figure 10 Pseudo-code of the GRASP Based Distance Method
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while Number of iterations > 0 do
for j=1 : Temp set.size do

if (i == Number of Rings) then
Step 14:i=0;

end if
if (Number of iterations > Buffer.size) then

for k=1 : Buffer.size do
Step 15: Free node = find the node that is minimum to all the nodes in
Partition Set[i]
Step 16: Add Free node to Buffer;
Step 17: Update Distance Matrix( avoids similar nodes in the Buffer)

end for
Step 18: Selected Node = Randomly select from a node from Buffer
Step 19: Add Selected Node to Partition Set[i]
Step 20: Update Dist Matrix (the selected node is not picked again)
Step 21: Number of iterations−−
Step 22: i = i + 1;
if (Number of iterations = 0) then

Step 23: Return Partition Set;
end if

else
Step 24: Free node = find the node that is minimum to all the nodes in
Partition Set[i]
Step 25: Add Free node to Buffer;
Step 26: Update Dist Matrix (the selected node is not picked again)
Step 27: Number of iterations−−
Step 28: i = i + 1;
if (Number of iterations == 0) then

Step 29: Return Partition Set
end if

end if
end for

end while
Step 30: Return Partition Set.

Figure 10 Continued

III.5. Complete Heuristic Algorithm

As mentioned before, the complete algorithm has two main components: an initial

solution construction heuristic which can be any one of the methods described in the
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previous section; and an improvement heuristic which is based on a combined use of

multi-exchange and single-move neighborhoods. In this section, we describe the over-

all solution heuristic algorithm with an emphasis on the improvement components.

The algorithm starts with a random generation of the problem which is used

to create the starting initial solution for the Multi-Exchange Heuristic. Improving

cycles (valid cycles), as explained above, are detected in the initial solution. The new

solution obtained by implementing the improving cyclic exchange is used as input for

finding more improving cycles in a following iteration, and this is repeated until there

are no improving cycles. This constitutes a multi-exchange improvement component

of the algorithm. The obtained solution is then used to find an improving single-move.

The best improving move is implemented on the solution and the solution is again

used as the starting point for a new multi-exchange improvement routine. The overall

algorithm terminates when there are no improving cycles and single-moves detected

in succession.

The algorithm is given in figure 11. Step 0 of the algorithm generates a random

problem based on the random seed and the number of nodes in the network. In step

1, based on the number of rings required and the problem data, an initial solution,

which is a feasible solution to the problem is generated. This initial solution is used

as input for the improvement heuristic. In step 3 we create a set of improving cycles

(cycle set) that was detected for the current solution and in step 4 and step 5 we

make the changes in the solution by implementing the cyclic exchange implied by the

best multi-exchange cycle from this cycle set and generate the new best solution and

its objective value. This new solution becomes the current solution and used as input

for next iteration of the improvement heuristic. Once there are no improving cycles

detected on the current solution, the inner while loop is exited. For the current best

solution, in step 6, the set of all improving single-moves are detected to form a move
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Step 0: Problem Data =
Generate Problem Data(Random Seed, Number of Nodes)

Step 1: Initial Solution =
Create Initial Solution(Number of Rings, Problem Data)

Step 2: Solution ← Initial Solution
Set Move Set.Size = 1 and Cycle Set.Size = 1

while Move Set.Size 6= 0 do
while Cycle Set.Size 6= 0 do

Step 3: Cycle Set = Generate Improving Cycles(Solution)
Step 4: Implement Multi Exchange(Cycle Set, Solution)
Step 5: Update Solution

end while
Step 6: Move Set = Generate Improving Moves(Solution)
Step 7: Implement Improving Moves(Move Set, Solution)
Step 8: Update Solution

end while
Step 8: Return Solution

Figure 11 Pseudo-code of the Complete Heuristic Algorithm
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Step 0: arc set=Create an Improvement Graph(Solution)
Step 1: cycle set=Create Initial Cycle Set(arc set)
for i = 1 : Number of Rings do

Step 2: cycle set = Merge Paths(cycle set,Number of Rings);
end for
if (cycle set.size! = 0) then

Step 3: Best Cycle = Sort Cost Cycle(cycle set);
Step 4: New Solution = Perform Exchg(Best Cycle,Solution);

end if
Step 5: tsp tours = Create TSP Tours(New Solution)
Step 6: Return New Solution

Figure 12 Pseudo-code of the Multi-Exchange Heuristic

set. In steps 7 and 8, the best improving move from the move set is implemented.

The new solution thus obtained is fed as input into the multi exchange heuristic again

(Step 3). The whole process terminates when the size of the move set and cycle set are

zero i.e., there are no improving moves and cycles detected for the current solution.

III.5.1. The Multi-Exchange Component

In this subsection, we give the details involved in steps 3, 4 and 5 of the complete

heuristic algorithm given in figure 11. The idea is to search the neighborhood of

the current solution for improving solutions by utilizing valid cycles. The various

functions in the enumeration of valid cycles and the algorithm are given in figure 12

and explained subsequently.
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III.5.1.1. Creation of Arc Set - Improvement Graph

The set of all arcs that represent the transfer of nodes from one ring to another

constitutes the arc set. These arcs and the corresponding nodes, which is the complete

set of nodes N , define the improvement graph associated with the current solution.

On this graph, arc (ni−nj) represents the transfer of node ni from the ring Ni to Nj

and the subsequent removal of nj from the ring Nj. The associated data structure

to represent this data was designed to have the following elements: (Node1, Node2,

ArccostNode1,Node2, RingFrom, RingTo). For a pair of nodes (ni, nj) the Arccostij is

calculated as t(Nj \ {nj} ∪ {ni}) − t(Nj) and the elements of the data-structure are

(ni, nj, Arccostij, Ni, Nj).

III.5.1.2. Creation and Update of a Cycle Set

Initially, the cycle set is equivalent to the arc set, however, in contrast to the arc

set, the cycle set changes in the course of the algorithm. For a fixed initial solution

and the corresponding improvement graph (arc set), cycle set evolves from containing

only the arc set initially to subset-disjoint negative cycles via generation of subset-

disjoint negative paths on the improvement graph. Accordingly, we define a new data

structure for an entry of cycle set. In general terms, each entry of the cycle set is

essentially a path from ni to nj. Once the path is closed to form a cycle, this entry

is not processed any further.

The data-structure has the following elements: (path, cost, tail, head, label set).

The path holds the nodes that constitute a valid path. Cost gives the savings in the

objective value once the valid path is implemented. The head and tail represents

the ending and the starting nodes of the valid path, respectively. The label set keeps

track of the rings that are involved in the construction of a valid path. For a directed
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path ni − nj − nk on the improvement graph, the elements of the data structure are

([i, j, k], (Arccostij + Arccostjk), ni, nk, {Ni, Nj, Nk}).
In order to update the cycle set in the course of obtaining valid cycles via gen-

eration of valid paths we proceed as follows. For each path type entry in the current

cycle set (cycles that are already formed are not processed) the set of all paths (A
′
)

emanating from its head improvement graph is created. Each of these paths in A
′

are evaluated for addition to the existing path, a path is only considered for addition

if the resulting path still has a negative cost. Furthermore, in the process, we make

sure that the label set of the processed path after the addition of the new path does

not contain any duplicate elements except the ones corresponding to the tail and the

head once the valid cycle has been formed. If this is the case, this entry becomes a

cycle type entry and is not further processed. Otherwise, this check makes sure that

the processed path entry stays subset-disjoint. Once a new path entry is obtained,

we check if it has any domination relationship with existing paths. If the cost of one

path, say (p1) is less than another path, say (p2), and the two paths have the same

tail,head and the label set, then P1 dominates P2, and hence only p1 is kept in the

cycle set. Finally, the total cost after combining the existing path with a new path

should continue to be negative.

If these conditions are satisfied simultaneously, then the new path is combined

with the existing path. For example, path (k − m) could be combined with path

i − j − k as the head of path i − j − k is same as the tail of (k − m). Assuming

that the cost remains negative and the new path is subset-disjoint with existing

path in the cycle set, the resulting path becomes ([i, j, k, m], (Arccostij +Arccostjk +

Arccostkm), ni, nm, {Ni, Nj, Nk, Nm}).
The method is repeated based on the number of rings that are required to be

formed to ensure the generation of all the valid cycles. The valid path that is formed
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at every iteration of this step finally evolves into valid cycle where the starting and

the ending node of the path are the same.

III.5.1.3. Implementation of the Cyclic Exchange

The best valid cycle, i.e., the valid cycle with the most negative cost is selected from

the cycle set and implemented. The exchange is done based on the value of path in

the data structure of the selected valid cycle. After the exchange is implemented, the

nodes for each ring are again configured by solving the TSP using the Christofides’

heuristic within each ring. As mentioned in the overall heuristic algorithm, the whole

process of finding the arc set, initial improvement graph and cycle set is repeated

until no improving cycles (valid cycles) are detected for a given solution. However,

we further the search by creating a new configuration of the solution determined till

now by detecting improving moves.

III.5.2. The Single-Move Component

The main motivation behind the single-move component is to consider different node

number configurations in the rings. Consider a BDR problem on a network with 21

nodes and 3 rings are to be formed. Then, the possible number of nodes in a cycle is (6,

7, 8). Then the possible configurations for 3 rings are (7,7,7), (6,7,8), (6,8,7), (7,6,8),

(7,8,6), (8,6,7) and (8,7,6). However, for example, if the initial solution is constructed

using the distance method, the solution will surely have a (7,7,7) configuration, and

this is very limiting in the search procedure. Since exchanges are performed in a cyclic

manner, the initial configuration will never change. To overcome this disadvantage,

we devise the single-move component. The formation of move set, the set of all

improving moves (valid paths of length one), is very similar to creating the cycle set

explained above. The improving move is represented by a node transfer from one ring
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to another without any node being removed from the destination ring. This is done

by creating the arc set as explained above. With this arc set, the move set is created

after checking the following conditions.

• After the move, the origin ring and destination ring should continue to have the

number of nodes within the range of bn/cc − 1 to bn/cc+ 1.

• The number of nodes in each ring should at least be 3 to be able to form rings.

• The move should improve the objective value.

The move set is represented by a data-structure which is the same as the cycle set

with the elements (path, cost, tail, head, label set) where the costij of moving ni into

the ring nj belongs is given by (t(Nj ∪ {i}) + t(Ni \ {i})) – (t(Nj) + t(Ni)) and the

elements of the data structure ([i, j], costij, ni, nj, {Ni, Nj})
The difference between the move set and cycle set is that, unlike the cycle set, the

elements of the move set are not combined any further. Once the move set is formed,

the best improving move is selected and implemented. The nodes of the rings are

again optimally configured by solving a TSP for each ring. With this new solution,

we proceed to find improving cycles and the whole procedure is thus repeated again.

The algorithm stops when for any given solution there are no improving moves and

cycles detected.
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CHAPTER IV

COMPUTATIONAL RESULTS

This section details the experimental set up and the results obtained for the BDR

problem using CPLEX and the Heuristic for the different test cases. The results

are consolidated and average gap and time analysis are done to compare the results

obtained by CPLEX and the various combinations of the Construction (Distance,

Hybrid and GRASP based Distance method) and Improvement Heuristics (Multi-

Exchange and Single-Moves).

IV.1. Experimental Set Up

The node locations are generated in such a way that their coordinates are uniformly

distributed between (0,1000). The variations to the problem set is induced by chang-

ing the number of nodes in the system. Also, for a specific number of nodes in the

system, the number of rings are also varied. Finally, for a specific number of nodes

and rings in the system, different problems are generated by varying the random seed

value for the random coordinate generator. To be more specific with the parameters,

the number of nodes in the system is varied from 15 through 24 in steps of 3. The

number of rings is varied from 2 through 5 in steps of 1 and the random seed value

for the random coordinate generator is varied between 10 and 100.

For GRASP, cd number of best free nodes selected during initial solution con-

struction could be varied. For providing multi-start approach, we generate different

initial solutions using GRASP by changing the random seed value used while picking

one of the best free nodes selected. Typically, for testing, cd was set to 3 and number

of multi-starts to the overall heuristic to 3.
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IV.2. Exact Solution Methodology Using CPLEX

CPLEX provides optimal solution to the problem using the standard Branch and

Cut technique. The formulation for the BDR problem as explained in chapter II, is

modeled using CPLEX. While modeling the constraints, constraint (3.3) is excluded

initially. The BDR problem is solved without constraint (3.3). The solution provides

information about the nodes in each ring and their configuration. The solution is

then examined for existence of sub-tours within each ring. The sub-tour detection

algorithm, using the configuration and the nodes in each ring as given by the solution,

constructs a tour with the nodes in a particular ring. If the number of nodes in the

tour is less than the number of nodes claimed to be in that ring as per the solution

then the solution has sub-tours. On detection of such sub-tours, constraint 3.3 is

added and the problem is solved again. This eliminates the sub-tours in the solution.

The parameters are varied as explained in section IV.1 and the final objective value

and the solution times are noted.

The CPLEX results, which are optimal, are used as bench mark solutions for the BDR

problem. Results obtained from the different heuristic approaches are compared with

CPLEX results to determine the quality of solution in terms of the deviation from

the optimal and the time taken arrive at the solution.

IV.3. Multi-Exchange Heuristic Results

The heuristic method which was developed with a view to produce good quality

solutions with a good trade off in solution time is applied to the same problems that

CPLEX solved. The Heuristic method is categorized into

• Distance Method (DM)
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• Hybrid Method (HM)

based on the type of construction heuristic used to create the initial solution. For

each of these methods, the number of nodes is again varied from 15 through 24 in

steps of 3 and the number of rings from 2 to 5 in steps of 1. The random seed value

for the random coordinate generator is varied between 10 and 100.

IV.4. DMopt Results

As a small modification to the DM method, the optimal arrangement of the nodes

in the final partition sets obtained at the end of the multi-exchange heuristic is done

using CPLEX instead of the Christofides’ heuristic approach. This is done to test the

quality of the partitions generated by the multi-exchange heuristic. From the tables,

it could be observed that the deviation of the solutions from the optimal is reduced

compared to the DM approach, without much increase in the solution time.

IV.5. GDM Results

The same set of problems solved by DM, are also solved using the GRASP based

DM approach (GDM). Solutions thus obtained are further improved by optimally

arranging the nodes in the final partition obtained from GDM using CPLEX resulting

in the GDMOpt class of solutions. The tables provides detailed information on these

results. It could be observed that the deviation of the solutions of GDMOpt from the

optimal is reduced compared to the GDM approach, without much increase in the

solution time. In GRASP, we also tested shorter valid cycles (less than the number

of rings) for multi-exchange neighborhood. For problems with c greater than 3, we

terminated the generation of the cycle set when the shortest valid path in the cycle

set is 3, instead of c. This modification helps to improve the solution time without
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degrading the solution quality.

IV.6. Analyses of Results

The results of CPLEX and the two heuristic methods are compared based on the

objective values and solving times. The deviation of the objective value obtained by

CPLEX from the heuristic is calculated by the following formula

Gap =100∗(Heuristic Obj V alue−CPLEX Obj V alue)/CPLEX Obj V alue

This is done for all test cases and the average of the deviation for each Node

number - Number of rings combination is found.

From Table I, it is observed that the average gap given by DM is better than

that given by HM. Also from Table II, it could be noted that the average solving

time increases as the number of rings, for specific number of node, increase. From

Table III it could be observed that the average gap for DMOpt approach is lower

than that obtained by the DM approach. However, the GDM performs the best com-

pared to DM and HM. Distance method solves the problem faster than the Hybrid

method. This is contributed by the fact that the Distance method produces better

initial solutions (Table IV) than the Hybrid method in most cases. The results of the

initial construction heuristic for all test cases are provided in tables V,VI. The GDM

approach takes longer to solve the problem because of the multi-start approach that

was adopted. Similar result is also observed for GDMOpt and GDM. The heuristic

approach, on the whole, performs much better than CPLEX in terms of the solu-

tion time. The deviation of the objective value, provided by the heuristic approach,

from the optimal is within the acceptable range. The percentage gaps and solution

times for the test cases explained in the above sections are summarized in Tables

VII,VIII,IX,X,XI,XII,XIII,XIV listed in the Appendix A.
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Table I Percentage Gaps between the Heuristics and Optimal Solutions

DM-Imp HM-Imp GDM-Imp
n c Ave. Max. Ave. Max. Ave. Max.
15 2 5.18 12.70 14.02 43.18 4.01 9.13
15 3 3.63 9.36 5.56 19.49 2.65 4.50
15 4 2.75 12.24 5.93 21.01 0.98 4.06
15 5 0.00 0.00 0.00 0.00 0.00 0.00
18 2 4.72 11.06 10.30 41.59 4.18 11.06
18 3 6.50 16.14 9.79 26.56 5.10 13.49
18 4 5.97 19.05 5.72 15.12 2.62 9.29
18 5 2.71 12.96 3.92 14.31 1.28 4.87
21 2 6.25 18.20 8.05 24.68 6.07 13.25
21 3 9.62 20.66 11.05 29.11 6.31 20.40
21 4 4.85 9.46 12.42 42.57 3.21 6.40
21 5 8.46 28.76 9.44 28.57 3.61 15.44
24 2 9.50 17.75 8.20 19.92 4.55 10.54
24 3 7.84 25.32 14.76 26.29 7.30 25.32
24 4 6.62 21.25 10.85 30.00 4.47 8.89
24 5 3.57 9.92 9.88 22.73 2.64 5.47

Table II Average Runtimes (Secs) for the Heuristics and Optimal Solutions

n c DM-Imp HM-Imp GDM-Imp CPLEX
15 2 2.47 2.90 4.87 21.79
15 3 5.67 5.25 9.63 66.76
15 4 4.58 11.91 15.95 6.41
15 5 15.33 90.97 34.31 21.12
18 2 5.01 7.20 14.76 112.60
18 3 8.35 11.08 34.65 451.48
18 4 11.04 31.93 70.16 84.46
18 5 68.21 441.82 136.97 52.90
21 2 8.42 8.30 38.61 192.86
21 3 19.60 22.67 72.96 1,307.93
21 4 23.00 112.38 225.63 3,903.00
21 5 58.81 1,207.46 588.05 696.06
24 2 15.18 13.83 38.87 1,634.94
24 3 36.07 32.58 170.62 16,147.61
24 4 76.57 246.78 418.97 29,586.14
24 5 490.71 2967.98 992.85 8,544.10
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Table III Percentage Gaps: DM-Imp, DMOpt-Imp, GDM-Imp, GDMOpt-Imp

DM-Imp DMOpt-Imp GDM-Imp GDMOpt-Imp
n c Ave. Max. Ave. Max. Ave. Max. Ave. Max.
15 2 5.18 12.70 2.45 11.30 4.01 9.13 1.78 6.18
15 3 3.63 9.36 1.67 8.05 2.65 4.50 0.69 4.28
15 4 2.75 12.24 1.76 12.21 0.98 4.06 0.04 0.40
15 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 2 4.72 11.06 2.05 8.48 4.18 11.06 1.64 8.48
18 3 6.50 16.14 4.67 15.33 5.10 13.49 3.08 10.58
18 4 5.97 19.05 4.71 18.48 2.62 9.29 1.02 5.85
18 5 2.71 12.96 2.01 12.90 1.28 4.87 0.59 3.18
21 2 6.25 18.20 2.78 14.32 6.07 13.25 2.38 12.72
21 3 9.62 20.66 6.84 20.66 6.31 20.40 3.99 20.30
21 4 4.85 9.46 3.39 9.46 3.21 6.40 1.40 4.95
21 5 8.69 28.76 7.82 28.14 3.61 15.44 2.50 14.80
24 2 9.50 17.75 4.62 12.41 4.55 10.54 1.47 4.57
24 3 7.84 25.32 4.70 21.83 7.30 25.32 4.82 21.83
24 4 6.62 21.25 4.57 19.04 4.47 8.89 2.32 7.14
24 5 3.57 9.92 1.88 9.41 2.64 5.47 0.70 3.17

Table IV Average Percentage Gaps of Construction and Improvement Heuristics

n c DM DM-Imp HM HM-Imp
15 2 11.13 5.18 31.06 14.02
15 3 36.68 3.63 48.78 5.56
15 4 29.15 2.75 52.57 5.93
15 5 30.83 0.00 51.14 0.00
18 2 12.43 4.72 32.28 10.30
18 3 32.33 6.50 48.60 9.79
18 4 39.66 5.97 63.42 5.72
18 5 57.24 2.71 72.58 3.92
21 2 15.89 6.25 24.50 8.05
21 3 38.68 9.62 48.74 11.05
21 4 33.51 4.85 64.38 12.42
21 5 51.42 8.46 88.79 9.44
24 2 14.65 9.50 20.63 8.20
24 3 44.53 7.84 49.05 14.76
24 4 47.96 6.62 71.14 10.85
24 5 39.08 3.57 81.95 9.88
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This research focused on development of Balanced Disjoint Rings, which forms the

basis for the construction of survivable network structures in the telecommunication

industry. The major emphasis was laid upon the development of the mathematical

model and solution methodology. The problem, even though is NP hard, was solved

using CPLEX solver with concert technology for smaller size problems. From the

various test cases it was noted that the solution time and memory usage increased

rapidly as the problem size increased. To overcome this problem, heuristic solution

methodology, utilizing the “Very Large Scale Neighborhood” concept, was proposed

for this problem. This heuristic methodology in addition to using the multi-exchange

and single-move neighborhood search methodology, also uses the two construction

heuristics, distance method (DM) and hybrid method (HM) to create starting solu-

tions for the heuristic. The results obtained by the heuristics are compared with that

of CPLEX. The results clearly indicated that the heuristic solutions are better than

that of CPLEX in terms of the average solution time. The average deviation of the

heuristic results from that of CPLEX were found to be within acceptable ranges. The

solutions provided by DM and HM were compared, and the DM was found to perform

better than the HM in terms of solution time and quality of solution. Encouraged by

these results, we devised a GRASP (Greedy Randomized Adaptive Search Procedure)

based DM (GDM), and employed it in a multi-start framework for the overall algo-

rithm. On the whole, GDM performs better than DM and HM in terms of solution

quality, but with longer solution times.

As stated in chapter I, design of SONET rings would involve formation of disjoint

rings and an interconnecting main ring that connects all the disjoint rings together.
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This research concentrated only on the formation of disjoint rings. To further the

scope of the problem, constraints to form the main connecting ring could be analyzed

as the next step in this field of research. Also, for the problem considered in this

research, the test data was created assuming 100 percent connectivity in the network.

Study could be made on a graph with less than 100 percent connectivity. Finally,

more extensive and rigorous experimentation with real time data could be performed

to have a better understanding of the results for the real world problems.
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APPENDIX A

INDIVIDUAL RESULTS FOR TEST PROBLEMS

Table V Percentage Gaps for Construction Heuristics - 15 and 18 Nodes

15 Node Problem
c = 2 c = 3 c = 4 c = 5

DM HM DM HM DM HM DM HM
14.02 49.56 36.34 52.16 45.58 68.04 57.39 90.51
2.79 27.04 21.98 46.70 38.45 14.07 54.31 23.83
28.69 60.01 54.69 44.78 54.24 66.77 36.16 70.93
22.54 34.60 36.90 27.90 27.40 59.91 16.13 20.95
1.61 18.16 23.30 70.47 19.65 84.69 4.15 34.44
12.75 22.69 13.46 34.45 23.79 52.04 4.43 65.34
3.00 25.29 67.02 90.65 11.78 35.72 42.80 61.39
3.14 3.14 26.44 30.97 19.43 24.93 26.06 0.00
15.01 21.55 34.68 52.54 6.59 71.25 10.33 76.74
7.76 48.52 51.97 37.23 44.60 48.30 56.54 67.29

18 Node Problem
c = 2 c = 3 c = 4 c = 5

DM HM DM HM DM HM DM HM
13.67 47.44 40.82 71.73 55.08 90.36 59.24 117.42
13.46 26.46 47.79 37.33 51.64 85.82 72.98 60.63
30.63 61.54 46.04 93.19 37.14 31.58 14.69 70.25
3.96 10.15 33.36 22.61 17.22 52.23 69.95 92.08
4.60 6.93 12.15 34.27 31.49 60.90 14.85 66.59
11.27 30.85 13.20 40.70 25.77 49.80 39.13 22.61
10.10 34.07 41.27 52.17 64.41 53.80 114.17 48.62
5.43 47.13 14.01 65.80 50.77 87.58 97.64 71.29
12.65 20.12 36.44 30.57 10.67 51.35 26.48 110.13
18.53 38.11 38.19 37.61 52.36 70.79 63.25 66.22
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Table VI Percentage Gaps for Construction Heuristics - 21 and 24 Nodes

21 Node Problem
c = 2 c = 3 c = 4 c = 5

DM HM DM HM DM HM DM HM
11.09 10.65 37.13 61.68 40.89 72.54 85.40 123.10
18.23 43.48 35.92 54.27 45.23 88.55 74.98 83.67
28.75 12.23 63.53 36.65 33.98 39.67 47.42 51.90
3.35 3.35 63.47 39.31 29.42 32.42 46.15 124.92
8.90 4.83 34.57 35.06 25.36 73.15 36.92 55.48
27.28 30.18 29.05 35.30 5.95 55.29 42.25 62.50
19.53 44.17 18.91 47.83 29.57 49.95 59.07 63.32
5.74 27.52 16.74 40.81 55.80 107.90 46.28 120.98
0.00 28.17 43.83 66.99 55.59 84.24 26.76 125.03
36.05 40.39 43.67 69.48 13.27 40.07 49.02 77.01

24 Node Problem
c = 2 c = 3 c = 4 c = 5

DM HM DM HM DM HM DM HM
9.47 24.93 51.27 78.96 54.43 94.89 22.33 114.13
15.31 37.86 59.18 46.96 53.75 72.95 NA NA
24.36 26.36 70.28 60.05 78.91 64.33 90.11 55.37
8.34 6.40 62.96 38.93 30.06 52.70 NA NA
8.20 13.93 26.20 20.07 29.78 49.35 30.21 60.69
24.94 22.92 50.19 35.03 44.55 66.62 45.90 70.48
15.39 4.62 18.32 58.60 41.95 48.60 36.87 56.87
12.35 33.25 14.96 31.39 45.19 84.42 2.85 93.10
4.88 6.34 43.24 67.82 65.06 93.10 47.27 117.61
23.21 29.70 48.66 52.70 35.94 84.48 37.09 87.39
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Table VII Percent Gaps and Run-times (Secs) for Improvement Heuristics (15 Node -

2 and 3 Rings)

HM-Imp DM-Imp GDM-Imp DMOpt-Imp GDMOpt-Imp
C = 2

20.56 3.44 0.00 1.91 0.00 7.89 0.00 3.34 0.00 8.00
21.72 2.83 2.42 1.59 2.42 3.73 0.39 3.45 0.39 3.84
43.18 3.03 4.44 3.60 4.44 4.25 0.95 3.69 0.00 4.31
11.26 3.74 11.26 3.77 9.13 4.78 0.00 2.39 6.18 4.92
12.04 4.22 1.61 2.89 1.61 4.66 0.00 3.78 0.00 4.78
9.17 2.30 5.98 1.97 5.98 3.66 5.98 2.47 5.98 3.75
3.00 1.47 3.00 1.72 3.00 2.92 0.00 2.36 0.00 3.06
3.14 0.98 3.14 1.16 3.14 4.17 0.00 1.56 0.00 4.27
11.06 1.45 12.70 4.23 5.30 6.25 11.30 5.28 5.30 6.31
5.09 5.50 7.22 1.83 5.09 6.38 6.84 1.95 0.00 6.70

C = 3
1.89 6.41 9.36 4.09 1.89 13.98 8.05 4.27 0.00 14.23
3.80 5.41 2.44 4.13 2.44 7.78 0.00 4.06 0.00 7.89
4.50 2.23 4.50 9.41 4.50 10.31 0.00 8.89 0.00 10.42
2.46 3.09 3.28 6.12 0.98 4.63 1.74 5.49 0.00 4.94
2.65 12.14 2.65 4.20 2.65 10.05 2.65 4.13 2.65 10.17
19.49 2.56 0.00 4.17 0.00 9.64 0.00 3.75 0.00 9.77
10.88 4.31 4.05 5.44 4.05 7.41 0.00 5.14 0.00 7.53
4.37 5.56 4.37 5.50 4.37 8.89 0.00 5.45 0.00 8.98
4.28 7.41 0.28 7.11 4.28 13.47 4.28 6.91 4.28 13.73
1.31 3.36 1.31 6.50 1.31 10.19 0.00 6.34 0.00 10.55
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Table VIII Percent Gaps and Run-times (Secs) for Improvement Heuristics (15 Node

- 4 and 5 Rings)

HM-Imp DM-Imp GDM-Imp DMOpt-Imp GDMOpt-Imp
C = 4

21.01 8.11 4.06 11.13 4.06 24.09 0.40 10.83 0.40 24.23
14.07 0.77 0.00 4.02 0.00 14.09 0.00 4.33 0.00 14.20
0.09 5.78 0.09 7.23 0.09 29.33 0.00 7.50 0.00 29.47
0.57 6.92 12.24 1.70 0.57 6.27 12.21 1.94 0.00 6.39
1.67 36.55 1.67 3.97 1.67 10.63 0.00 4.02 0.00 10.86
0.00 13.84 3.12 3.86 0.00 15.05 2.82 3.94 0.00 15.17
11.03 2.02 1.34 1.80 1.34 6.03 0.00 2.05 0.00 6.19
1.60 2.77 1.60 3.89 1.60 7.30 0.00 3.81 0.00 7.55
0.47 36.98 3.36 3.22 0.47 9.87 2.18 3.23 0.00 10.16
8.77 5.33 0.00 4.99 0.00 36.87 0.00 4.70 0.00 37.01

C = 5
0.00 379.96 0.00 85.75 0.00 82.58 0.00 81.25 0.00 82.69
0.00 1.25 0.00 8.66 0.00 62.80 0.00 7.92 0.00 62.91
0.00 52.91 0.00 4.08 0.00 10.69 0.00 4.13 0.00 10.77
0.00 2.67 0.00 2.15 0.00 5.92 0.00 2.21 0.00 6.05
0.00 13.28 0.00 1.63 0.00 20.56 0.00 1.77 0.00 20.81
0.00 158.56 0.00 1.63 0.00 2.56 0.00 1.74 0.00 2.66
0.00 7.05 0.00 2.45 0.00 7.86 0.00 2.92 0.00 7.95
0.00 0.52 0.00 4.45 0.00 35.86 0.00 4.59 0.00 35.95
0.00 209.51 0.00 1.31 0.00 11.17 0.00 1.56 0.00 11.25
0.00 84.01 0.00 41.15 0.00 103.15 0.00 51.09 0.00 103.26
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Table IX Percent Gaps and Run-times (Secs) for Improvement Heuristics (18 Node-2

and 3 Rings)

HM-Imp DM-Imp GDM-Imp DMOpt-Imp GDMOpt-Imp
C = 2

10.54 10.31 4.90 1.61 4.90 12.83 0.00 2.00 0.00 12.94
10.47 10.11 11.06 1.23 11.06 7.36 8.48 1.55 8.48 7.50
41.59 3.83 1.49 5.86 1.49 20.37 0.00 6.23 0.00 20.48
3.96 4.66 3.96 3.08 2.69 12.94 0.88 3.94 0.00 13.12
1.68 8.25 0.54 4.64 0.54 18.14 0.00 5.42 0.00 18.20
10.87 5.50 4.97 5.38 0.81 11.75 3.25 5.73 0.00 12.00
4.14 4.77 4.14 5.58 4.14 12.86 3.42 5.55 3.42 13.14
8.99 5.78 5.43 9.14 5.43 16.34 0.00 8.05 0.00 16.62
6.25 6.33 6.25 8.39 6.25 13.58 0.00 7.47 0.00 13.72
4.47 12.44 4.47 5.20 4.47 21.44 4.47 4.48 4.47 21.53

C = 3
4.29 22.38 16.14 9.77 4.29 36.14 15.33 8.83 0.00 36.26
21.78 7.56 6.24 13.81 6.24 22.98 3.56 12.59 3.56 23.38
10.88 18.19 12.37 7.52 12.37 23.06 10.58 7.52 10.58 23.20
5.99 2.50 1.57 5.20 1.57 14.30 0.10 4.64 0.10 14.45
1.80 4.86 0.83 6.16 0.83 33.69 0.83 5.58 0.83 33.84
1.31 16.66 1.31 5.95 1.31 36.12 0.51 5.64 0.51 36.28
26.56 12.36 13.49 7.33 13.49 48.66 10.15 7.27 10.15 49.17
12.34 12.41 6.56 11.12 6.56 45.59 0.71 12.14 0.71 45.81
10.69 5.91 4.14 6.31 2.00 37.92 2.57 7.58 2.00 38.12
2.31 7.98 2.31 10.30 2.31 48.00 2.31 10.78 2.31 48.19
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Table X Percent Gaps and Run-times (Secs) for Improvement Heuristics (18 Node-4

and 5 Rings)

HM-Imp DM-Imp GDM-Imp DMOpt-Imp GDMOpt-Imp
C = 4

2.28 83.90 9.29 17.55 9.29 192.81 5.85 17.08 5.85 192.96
15.12 36.39 5.08 8.78 5.08 57.89 0.00 8.72 0.00 58.03
2.69 7.05 2.12 9.61 2.12 31.08 1.29 9.17 1.29 31.23
0.55 6.94 0.55 2.08 0.55 23.47 0.00 2.50 0.00 23.61
8.99 45.80 4.87 12.63 0.38 34.05 4.87 13.06 0.38 34.34
12.14 10.72 1.58 6.00 1.58 94.23 0.93 6.92 0.93 94.33
4.22 14.36 7.26 28.96 6.60 33.06 6.90 30.98 1.69 33.20
0.00 41.53 19.05 11.68 0.00 27.03 18.48 11.91 0.00 27.22
10.10 26.36 7.97 2.36 0.00 32.86 6.79 2.42 0.00 33.06
1.15 46.22 1.95 10.75 0.55 175.17 1.95 14.00 0.00 175.34

C = 5
0.05 1476.93 12.96 78.66 0.42 243.09 12.90 89.97 0.42 243.35
4.79 38.37 4.68 73.17 4.68 67.22 3.18 80.72 3.18 67.64
0.08 160.90 0.08 6.72 0.08 34.03 0.00 7.53 0.00 34.25
0.61 266.37 0.61 68.40 0.61 98.12 0.00 70.62 0.00 98.53
0.16 171.14 0.79 3.89 0.16 90.97 0.00 5.86 0.16 91.19
4.08 4.89 1.91 13.27 0.83 88.31 1.91 19.66 0.00 88.51
14.31 6.42 4.87 307.28 4.87 466.30 2.09 329.16 2.09 466.49
5.11 40.155 0.00 87.92 0.00 74.80 0.00 94.16 0.00 74.97
10.04 2127.24 1.18 10.94 1.18 138.48 0.00 10.45 0.00 138.84
0.00 125.81 0.00 31.86 0.00 68.36 0.00 29.14 0.00 68.56
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Table XI Percent Gaps and Run-times (Secs) for Improvement Heuristics (21 Node -

2 and 3 Rings)

HM-Imp DM-Imp GDM-Imp DMOpt-Imp GDMOpt-Imp
C = 2

7.54 4.66 4.19 2.69 4.19 18.91 0.00 3.44 0.00 19.16
9.21 20.94 15.89 4.84 10.62 29.75 10.05 5.81 0.69 30.00
4.08 4.69 7.26 12.75 6.05 32.39 1.11 14.52 6.05 32.59
3.35 3.25 3.35 3.203 3.35 28.09 0.00 3.96 0.00 28.36
0.59 5.84 2.57 5.03 0.87 38.16 1.88 4.28 0.00 38.51
10.69 5.72 0.55 14.16 2.07 57.73 0.42 13.61 1.87 57.91
4.77 12.78 4.77 8.25 4.77 31.23 0.00 7.95 0.00 31.58
5.74 10.39 5.74 14.69 5.74 57.17 0.00 13.87 0.00 57.47
9.91 4.19 0.00 12.14 13.25 52.26 0.00 12.44 12.72 52.41
14.32 10.59 18.20 6.5 9.80 40.44 14.32 7.26 2.51 40.81

C = 3
4.53 20.11 16.34 18.72 4.53 104.31 10.96 18.28 0.00 104.72
7.64 21.75 9.01 15.77 7.64 81.62 1.99 15.03 0.00 81.86
24.82 9.84 4.18 39.92 4.18 68.45 0.36 38.52 0.36 68.75
2.44 6.00 20.40 21.34 20.40 43.80 20.30 22.37 20.30 44.45
7.02 12.91 2.80 21.61 2.80 40.41 2.49 21.38 2.49 40.53
6.42 23.00 3.93 13.80 3.93 65.00 3.16 13.97 3.16 65.11
23.57 26.53 8.16 9.11 8.16 74.26 4.93 8.63 4.93 74.48
2.52 22.73 8.25 18.15 4.45 70.28 1.40 18.17 3.05 70.48
2.43 61.44 2.43 27.30 2.43 112.26 2.16 31.50 2.16 112.43
29.11 22.36 20.66 10.31 4.58 69.20 20.66 12.28 3.41 69.37
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Table XII Percent Gaps and Run-times (Secs) for Improvement Heuristics (21 Node -

4 and 5 Rings)

HM-Imp DM-Imp GDM-Imp DMOpt-Imp GDMOpt-Imp
C = 4

1.94 115.31 9.08 14.19 1.94 488.68 7.64 15.34 0.00 488.88
42.57 40.81 4.38 12.99 4.38 405.97 3.46 13.17 3.46 406.13
12.86 16.55 6.34 14.50 4.72 122.98 4.59 14.48 1.89 123.15
29.71 3.97 1.43 10.11 1.43 45.67 0.00 8.84 0.00 45.84
2.16 261.09 7.47 13.71 6.40 140.86 7.39 12.03 4.95 141.17
14.34 39.56 2.64 7.61 2.64 22.58 0.00 6.41 0.00 22.75
7.33 31.98 5.09 13.41 6.35 143.15 1.37 11.41 0.00 143.28
0.53 297.65 0.53 24.93 0.53 101.09 0.00 25.55 0.00 101.20
5.55 298.18 2.07 110.38 2.06 545.06 0.01 113.47 2.06 545.22
7.23 18.73 9.46 8.16 1.63 240.24 9.46 8.75 1.63 240.40

C = 5
12.78 1664.54 28.76 152.06 15.44 2292.82 28.14 167.48 14.80 2293.11
9.07 338.05 1.71 191.84 1.71 344.35 0.00 204.15 0.00 344.62
4.61 86.65 22.86 31.99 2.50 286.73 21.12 38.78 1.25 287.10
28.57 1611.49 6.27 7.39 6.27 246.21 6.27 9.67 6.27 246.37
1.31 97.42 12.97 29.31 1.31 302.09 12.79 33.00 0.00 302.38
0.00 115.20 0.00 32.34 0.00 529.85 0.00 32.20 0.00 529.97
11.68 64.45 4.12 25.47 4.92 1252.08 2.09 27.70 0.63 1252.23
3.20 4758.97 6.31 58.46 2.34 206.66 5.70 61.21 2.05 206.77
14.71 4737.15 1.16 11.19 1.16 115.69 0.00 11.31 0.00 115.86
8.45 651.03 0.40 48.09 0.40 304.06 0.00 40.92 0.00 304.20
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Table XIII Percent Gaps and Run-times (Secs) for Improvement Heuristics (24 Node

- 2 and 3 Rings)

HM-Imp DM-Imp GDM-Imp DMOpt-Imp GDMOpt-Imp
C = 2

10.17 13.92 10.07 21.63 6.19 25.34 4.29 19.59 0.00 25.55
19.92 36.94 10.54 11.30 10.54 36.56 4.57 10.67 4.57 37.05
1.09 14.44 9.16 15.50 1.09 20.95 1.04 14.75 0.00 21.09
6.40 4.80 6.40 11.67 6.40 40.45 0.00 12.25 0.00 40.59
4.20 6.53 4.20 8.02 4.20 45.67 3.57 8.77 3.57 45.80
1.01 10.73 17.75 17.12 1.01 52.53 12.41 16.69 0.86 52.87
0.22 6.45 4.14 7.14 4.14 38.11 3.06 7.44 3.06 38.25
7.05 6.89 8.73 14.95 6.35 44.05 4.51 17.91 1.09 44.17
13.62 12.27 11.86 30.64 1.91 46.22 9.08 34.73 1.19 46.55
18.31 25.29 12.11 13.83 3.71 38.84 3.69 14.26 0.35 38.95

C = 3
16.53 3410.69 6.36 68.998 5.90 194.57 3.32 69.35 5.19 194.98
26.29 15.75 6.42 36.71 4.23 130.54 3.28 47.69 0.00 130.90
0.99 62.00 3.87 93.63 10.75 130.12 0.28 102.45 7.26 130.40
13.90 22.64 25.32 33.85 25.32 142.25 21.83 44.06 21.83 142.65
16.17 17.05 8.37 15.38 3.31 143.43 5.51 20.22 3.31 143.86
12.99 11.45 4.65 27.37 4.65 171.34 0.00 38.17 0.00 171.61
7.15 46.70 7.15 12.99 7.15 64.50 3.20 15.97 3.20 64.69
20.53 10.09 8.17 11.44 4.39 284.24 7.13 14.37 3.09 284.54
14.27 53.02 2.80 30.57 2.80 208.95 2.42 36.53 2.42 209.18
18.77 41.12 5.29 29.74 4.55 236.23 0.00 38.36 1.94 236.59
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Table XIV Percent Gaps and Run-times (Secs) for Improvement Heuristics (24 Node

- 4 and 5 Rings)

HM-Imp DM-Imp GDM-Imp DMOpt-Imp GDMOpt-Imp
C = 4

8.66 204.56 4.72 61.08 4.72 150.84 2.53 75.73 2.53 151.23
5.85 189.12 1.95 74.38 1.95 587.08 1.95 91.73 1.95 587.42
20.68 115.67 21.25 274.70 1.86 857.32 19.04 283.23 1.16 857.73
4.17 22.86 4.17 19.72 4.17 161.68 1.35 18.47 1.35 161.98
5.64 87.44 4.38 33.16 4.38 165.28 4.09 31.05 4.09 165.43
7.59 180.70 0.15 48.17 0.15 452.61 0.00 54.00 0.00 452.85
9.68 53.12 7.10 33.78 7.10 195.35 1.13 42.66 1.13 195.56
12.87 448.02 4.07 49.77 8.89 256.71 0.00 64.19 3.87 256.90
30.00 710.19 8.13 148.50 8.13 973.55 7.14 173.81 7.14 973.71
3.39 456.10 10.30 22.47 3.39 389.24 8.45 23.28 0.00 389.60

C = 5
22.73 2917.10 2.19 7.75 2.19 345.62 0.00 8.25 0.00 345.87
NA 3177.84 NA 4782.77 NA 1900.95 NA 4803.77 NA 1901.26
8.14 323.70 3.31 3087.05 3.31 3063.45 0.00 1643.02 0.00 3063.63
NA 5451.06 NA 5269.34 NA 233.90 NA 5378.94 NA 234.07

10.16 1379.45 9.92 73.25 2.42 418.29 9.41 41.56 0.00 418.69
4.60 1214.59 0.00 115.94 0.00 284.46 0.00 67.17 0.00 284.77
8.29 134.29 5.47 53.84 5.47 556.64 3.17 34.16 3.17 556.86
2.85 5348.63 2.85 3.48 2.85 158.87 0.00 2.45 0.00 159.03
4.61 10780.90 3.51 522.13 3.51 1420.10 2.43 394.43 2.43 1420.28
17.66 1645.16 1.33 62.26 1.33 1695.39 0.00 65.41 0.00 1695.58
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