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Abstract

We develop a stochastic programming approach to solving an intra-ring Synchronous

Optical Network (SONET) design problem. This research differs from pioneering

SONET design studies in two fundamental ways. First, while traditional approaches

to solving this problem assume that all data are deterministic, we observe that for

practical planning situations, network demand levels are stochastic. Second, while

most models disallow demand shortages and focus only on the minimization of capital

Add-Drop Multiplexer (ADM) equipment expenditure, our model minimizes a mix of

ADM installations and expected penalties arising from the failure to satisfy some or all

of the actual telecommunication demand. We propose an L-shaped algorithm to solve

this design problem, and demonstrate how a nonlinear reformulation of the problem

may improve the strength of the generated optimality cuts. We next enhance the ba-

sic algorithm by implementing powerful lower and upper bounding techniques via an

assortment of modeling, valid inequality, and heuristic strategies. Our computational

results conclusively demonstrate the efficacy of our proposed algorithm as opposed to

standard L-shaped and extensive form approaches to solving the problem.

1 Introduction

The last decade has witnessed a proliferation in the research and development of optical

telecommunication fiber. Modern optical fibers typically permit the simultaneous transmis-

sion of 2.4 Gbps (gigabits per second) of data over each strand of fiber. Additionally, optical

fibers are also preferred over copper wires due to their increased security and maintainabil-

ity. Specific advantages and technical details of fiber-optic technology may be found in Wu

(1992).



With the advent of this technology, the failure of a single optical fiber may result in a sub-

stantial loss of customer service. Several network topologies, including point-to-point diverse

protection (DP) and self-healing ring (SHR) architectures, have been proposed to sustain

the survivability of optical networks in the event of equipment failure. These topologies

consider a set of nodes, which usually represent voice/data traffic origins and destinations

in the network, and a set of arcs that represent connecting fibers. DP topologies enhance

network reliability by including protective lines within the network, which can be utilized

in the event of a facility failure (either a node or an arc) to re-route traffic. DP networks

may be cost-prohibitive if the number of protection lines that must be installed to ensure

a desired level of network survivability is too large. By contrast, in SHR architectures, the

nodes are connected by a ring of fibers, and traffic routed along the ring is automatically

re-routed in the case of equipment failure.

The Synchronous Optical Network (SONET) is a standard of transmission technology used

in optical fiber networks designed under SHR topologies (Wu (1992) and Wu and Burrowes

(1990) provide an in-depth description of the SONET ring architecture). The costliness of

constructing new SONET-based networks has spawned much interest in the optimization of

ring design problems. Prior approaches regarding the design of SONET systems have been

limited to deterministic settings with fully satisfied network demand. However, forecast

telecommunication demands among client nodes are actually quite stochastic in practice.

Moreover, it is often preferable for a network provider to partially satisfy certain demands

at the cost of a given shortage penalty, rather than expanding the telecommunication infras-

tructure and incurring additional capital equipment expenditures to satisfy some marginal

extra demand. We accommodate both the stochastic demand and shortage penalty features

within our design model by incorporating new modeling and algorithmic strategies within
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contemporary stochastic integer programming methods (Birge and Louveaux, 1997).

Within a SONET ring, voice and data streams may be multiplexed onto a fiber-optic

strand in order to more fully utilize its available bandwidth. The equipment responsible for

identifying traffic that should be added and dropped from the flow of ring traffic is called

an add-drop multiplexer (ADM). Thus, in order to route traffic between two nodes assigned

to a SONET ring, we must have an ADM installed at both nodes. Our study is motivated

by the relatively low cost of ADMs as compared with digital cross-connect systems (DCS),

which may transmit data between two nodes not placed on the same ring by acting as a hub,

or central connection, among the rings. As a result, we forbid inter-ring traffic, and focus

instead on networks in which all demands are satisfied via intra-ring routing. Each SONET

ring is capacitated by both the number of ADMs and the total amount of demand it can

support. The (deterministic) optimization problem seeks to construct a set of SONET rings

that can satisfy all demands subject to the foregoing restrictions. We choose to minimize the

total number of ADMs that must be installed in the network, as this specialized equipment

is the driving cost in the system. Note that we do not address node arrangement within a

particular ring, but rather focus on the assignment of a set of nodes to each ring.

Several researchers have investigated the use of mathematical modeling to optimize deter-

ministic aspects of SONET systems. Laguna (1994) develops a mixed-integer programming

model to solve a SONET design problem that permits inter-ring traffic (for example, by

DCS). Goldschmidt, Laugier, and Olinick (1998), who also consider inter-ring traffic, min-

imize the number of rings necessary to satisfy a given set of demands. Two deterministic

variants of the intra-ring problem considered in this paper have been investigated. When

demands between nodes must be fully placed on one ring and not split between two or
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more rings (non-split demand), Lee at al. (2000) present a branch-and-cut algorithm, and

Sutter, Vanderbeck, and Wolsey (1998) utilize a column generation methodology to mini-

mize the required number of ADMs that must be installed. When demands between nodes

may be placed across several rings (split demand), Sherali, Smith, and Lee (2000) provide

a preprocessing/cutting-plane technique for obtaining optimal solutions within reasonable

computational limits.

The remainder of this paper is organized as follows. In Section 2, we provide a mixed-

integer programming formulation for the deterministic variant of our problem. In Section

3, we introduce and formulate the stochastic version of this problem, develop a decomposi-

tion approach for its solution, and provide various modeling and algorithmic procedures to

improve the efficiency of our algorithm. In Section 4, we develop a heuristic for quickly ob-

taining tight upper bounds to the problem, and show how it may be integrated as an upper

bounding procedure within the exact solution algorithm. In Section 5, we demonstrate the

efficacy of the proposed approach on a set of realistic test instances. Finally, we conclude

our discussion in Section 6 by summarizing our research and providing directions for future

studies.

2 Deterministic Problem Statement

Consider a set N of client nodes, indexed by i ∈ N ≡ {1, ..., n}. Let dij be the number of

channels required to carry the traffic between node i ∈ N and node j (> i) ∈ N . Accordingly,

define an (undirected) edge set A = {(i, j) : i < j, dij > 0} comprised of such demand pairs.

A set of m rings exists on which this demand may be routed. No more than R (≥ 2) ADMs

may be installed on each ring, and each ring may carry no more than a total of b channels

of demand. A demand shortage penalty φij is assessed for every unsatisfied unit of demand
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between nodes i and j, ∀(i, j) ∈ A. These penalties are chosen based on their cost relative

to the cost of an ADM.

To model the deterministic version of our SONET ring design optimization problem, we

define a set of binary decision variables

xik =





1 if node i is assigned to ring k

0 otherwise

∀i ∈ N, k ∈ M ≡ {1, ...,m}.

We also define a set of continuous decision variables fijk ∀(i, j) ∈ A and ∀k ∈ M , representing

the fraction of demand between the node pair (i, j) that will be satisfied by ring k, and wij

∀(i, j) ∈ A, representing the fraction of demand between nodes i and j that is not satisfied

by the network. For notation convenience, we define the set of arcs incident to node i as

Si = {ρ ∈ A : ρ = (i, j) or ρ = (j, i) for some j}.

The deterministic ring design problem (DRD) can now be stated as follows.

DRD: Minimize
∑
i∈N

∑

k∈M

xik +
∑
ρ∈A

φρdρwρ (1a)

subject to

∑

k∈M

fρk + wρ = 1 ∀ρ ∈ A (1b)

∑
ρ∈A

dρfρk ≤ b ∀k ∈ M (1c)

∑
i∈N

xik ≤ R ∀k ∈ M (1d)

0 ≤ fρk ≤ xik ∀i ∈ N, k ∈ M, ρ ∈ Si (1e)

xik ∈ {0, 1} ∀i ∈ N, k ∈ M (1f)

wρ ≥ 0, ∀ρ ∈ A. (1g)
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The objective function (1a) minimizes the sum of the total number of node-to-ring assign-

ments (ADM installations), plus the total demand shortages weighted by their corresponding

penalties. Constraints (1b) define the fraction of demand between each node pair that is

not satisfied in the network, and (1c,d) impose the demand and ADM capacity restrictions

on each ring. Finally, (1e) states that demand between nodes i and j, (i, j) ∈ A, may be

satisfied on ring k ∈ M only if both nodes i and j are placed on ring k, while (1f,g) represent

logical variable restrictions.

3 SONET Ring Design with Stochastic Demands

In practice, customer demand may depend on several unknown factors, such as the state

of competing technology or economic conditions, and is not known with certainty when

the network is designed. In such cases a network design that considers this uncertainty

may perform better than one that does not. We present a stochastic programming model

designed to accommodate uncertain demands in designing the network, and then explore

several techniques for improving the computational efficiency of the algorithm.

3.1 An L-Shaped Approach

We will formulate this problem as a two-stage stochastic program. Such programs are char-

acterized by an initial first-stage decision, after which the true values of the random events

are realized, upon which a second-stage or recourse decision is made. The network design

problem serves as the first-stage problem, after which the second-stage problem determines

the optimal allocation of unmet demand. The first-stage decision is an integer program,

while the recourse decision can be solved as a network flow problem.
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Let ξ̃ be a discretely distributed random vector with finite support Ξ. In this problem,

a scenario ξ represents a realization of the demand requests across the arcs in the network.

Index the scenarios by κ = 1, ..., r, where r = |Ξ|. For all κ = 1, ..., r, define the parameters

pκ as the probability of realizing the κth scenario, and dκ
ρ as the number of channels requested

for demand pair ρ in scenario κ, ∀ρ ∈ A. The decision variables wκ
ρ are now defined to be

the fraction of demand pair ρ left unsatisfied in scenario ξκ, ∀ρ ∈ A and ∀κ = 1, ..., r.

The extensive form of the resulting two-stage stochastic program can be formulated as

SEF: Minimize
∑
i∈N

∑

k∈M

xik +
r∑

κ=1

∑
ρ∈A

φρd
κ
ρw

κ
ρ (2a)

subject to

∑

k∈M

fκ
ρk + wκ

ρ = 1 ∀ρ ∈ A, 1 ≤ κ ≤ r (2b)

∑
ρ∈A

dκ
ρf

κ
ρk ≤ b ∀k ∈ M, 1 ≤ κ ≤ r (2c)

∑
i∈N

xik ≤ R ∀k ∈ M (2d)

0 ≤ fκ
ρk ≤ xik ∀i ∈ N, k ∈ M, ρ ∈ Si, 1 ≤ κ ≤ r (2e)

xik ∈ {0, 1} ∀i ∈ N, k ∈ M (2f)

wκ
ρ ≥ 0, ∀ρ ∈ A, 1 ≤ κ ≤ r. (2g)

The deterministic equivalent formulation is given by

SRD: Minimize
∑
i∈N

∑

k∈M

xik + Q(x) (3a)

subject to

∑
i∈N

xik ≤ R ∀k ∈ M (3b)

x binary, (3c)
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where Q(x), the expected recourse function, is given by Q(x) =
∑r

κ=1 pκQ(x, ξκ), and

Q(x, ξκ) = Minimize
∑
ρ∈A

φρd
κ
ρw

κ
ρ (4a)

subject to

∑

k∈M

fκ
ρk + wκ

ρ = 1 ∀ρ ∈ A (4b)

∑
ρ∈A

dκ
ρf

κ
ρk ≤ b ∀k ∈ M (4c)

0 ≤ fκ
ρk ≤ xik ∀i ∈ N, k ∈ M, ρ ∈ Si (4d)

wκ
ρ ≥ 0, ∀ρ ∈ A. (4e)

Note that this problem is said to have relatively complete recourse, that is, there exists a

feasible solution to the second-stage problem for every feasible x to the first-stage problem.

Associate dual variables λ with equations (4b), −µ with equations (4c), and −π with the

upper bounding equations of (4d). For a given realization ξκ and a first-stage solution x̂, the

dual problem is given by

D(x̂, ξκ) : Maximize
∑
ρ∈A

λρ − b
∑

k∈M

µk −
∑
i∈N

∑

k∈M

∑
ρ∈Si

x̂ikπikρ (5a)

subject to

λρ − dκ
ρµk − πikρ − πjkρ ≤ 0 ∀k ∈ M, ρ = (i, j) ∈ A (5b)

λρ ≤ dκ
ρφρ ∀ρ ∈ A (5c)

µ, π ≥ 0. (5d)

We will decompose this extensive form (given by (2)) using a multicut version of the L-

shaped method with integer first-stage variables. Additional information on the multicut

L-shaped method for such stochastic programs can be found in Birge and Louveaux (1988),
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Van Slyke and Wets (1969), and Wollmer (1980). At any iteration, let L(κ) be the set of all

optimality cuts involving scenario ξκ, where the constraint coefficients of the `th optimality

cut are E` and the right-hand side is e`. Let Θκ represent the recourse cost under scenario

ξκ. Since this problem has relatively complete recourse, no feasibility cuts are necessary.

The multicut L-shaped reformulation is given by

Minimize
∑
i∈N

∑

k∈M

xik +
r∑

κ=1

pκΘκ (6a)

subject to

∑
i∈N

xik ≤ R ∀k ∈ M (6b)

Θκ +
∑
i∈N

∑

k∈M

E`
ikxik ≥ e` ∀` ∈ L(κ), κ = 1, ..., r (6c)

x binary. (6d)

Rather than generating and adding all optimality cuts, we will add them as necessary.

The restricted master problem is given by considering only a subset L′(κ) of the set L(κ) of

all optimality cuts for scenario ξκ. At an arbitrary iteration the restricted master problem

is given by

Minimize
∑
i∈N

∑

k∈M

xik +
r∑

κ=1

pκΘκ (7a)

subject to

∑
i∈N

xik ≤ R ∀k ∈ M (7b)

Θκ +
∑
i∈N

∑

k∈M

E`
ikxik ≥ e` ∀` ∈ L′(κ), κ = 1, ..., r (7c)

x binary. (7d)
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Let x̂ be a solution to the restricted master problem (7). For each scenario ξκ ∈ Ξ we solve

the subproblem D(x̂, ξκ) and obtain the optimal dual variables λ̂, µ̂ and π̂. The optimality

cut is then given by

Θκ +
∑
i∈N

∑

k∈M

(∑
ρ∈Si

π̂ikρ

)
xik ≥

∑
ρ∈A

λ̂ρ − b
∑

k∈M

µ̂k, (8)

so that E`
ik =

∑
ρ∈Si

π̂ikρ ∀i ∈ N and ∀k ∈ M , and e` =
∑

ρ∈A λ̂ρ − b
∑

k∈M µ̂k. If (8)

is violated by the current solution (Θκ, x̂), we add this optimality cut to L′(κ). If (Θκ, x̂)

satisfy the optimality cuts for each κ = 1, ..., r, then x̂ is an optimal solution. Otherwise,

the master problem is resolved, and another iteration is performed.

3.2 Subproblem Solution Procedure

We may garner some nominal computational improvements along with an insight into the

nature of the optimality cuts (8) by converting (4) to a network flow problem and utilizing

specialized network flow algorithms to obtain its solution. The solution of these subproblems

is the bottleneck operation in an upper bounding heuristic developed in Section 4, and thus

improving the speed of solving the subproblems provides an improvement in the efficiency

of that algorithm. For the following discussion, suppose we are examining (4) given some

binary network design solution vector x̂, under scenario κ ∈ {1, ..., r}.

Smith (2002) addresses the transformation of (5) to a minimum cost flow problem. Define

Pρ as the set of all rings on which demand pair ρ may be satisfied, that is, for ρ = (i, j) ∈ A,

Pρ = {k ∈ M : x̂ik = x̂jk = 1}. The minimum cost flow problem is then constructed with

m + |A| + 1 nodes. Nodes qρ correspond to each demand pair ρ ∈ A and have a surplus of

dκ
ρ units, nodes tk correspond to each ring k ∈ M and have a demand of b units, and node

u is an intermediate node with a surplus/demand of mb −∑
ρ∈A dκ

ρ units. For each ρ ∈ A,

an arc with cost 0 exists from qρ to all nodes tk such that k ∈ Pρ. An arc also exists from
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qρ to u with a cost of φρ for each ρ ∈ A. Finally, an arc with zero cost exists from u to

node tk ∀k ∈ M . Solving this network flow problem, we obtain the optimal f values on the

arcs from the q nodes to the t nodes, and optimal w values on the arcs from the q nodes to

node u. Consider the demand network depicted by Figure 1, and suppose that nodes 1, 2,

3, and 4 have been assigned to ring 1 and nodes 3, 4, 5, and 6 have been assigned to ring

2. The minimum cost flow network is shown in Figure 2, where the flow costs are displayed

alongside the arcs and all demand and surplus values are displayed alongside their respective

nodes.
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Figure 1: Minimum Cost Flow Demand Graph.

The dual formulation to this network flow problem can be stated as follows, where dual

variables αρ are associated with node qρ ∀ρ ∈ A, and variables βk are associated with

tk ∀k ∈ M . (The dual variable associated with u is arbitrarily set equal to 0.)

Maximize
∑
ρ∈A

dκ
ραρ − b

∑

k∈M

βk (9a)

subject to

αρ − βk ≤ 0 ∀ρ ∈ A, k ∈ Pρ (9b)

αρ ≤ φρ ∀ρ ∈ A (9c)

βk ≥ 0 ∀k ∈ M. (9d)
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Figure 2: Minimum Cost Flow Graph for the Demand Network Depicted in Figure 1.

It is not readily obvious how one can recover the optimal π variables to (5), since primal

constraints (4d) have been implicitly defined by the construction of the minimum cost flow

problem. The following proposition prescribes a fast method for determining the optimal

solution to (5) given an optimal dual basic feasible solution to (9).

Proposition 1. Given a binary network design vector x̂ and a corresponding optimal

basic feasible solution (α∗, β∗) to (9), there exists an optimal solution to (5) in which λ∗ρ =

dρα
∗
ρ ∀ρ ∈ A and µ∗k = β∗k ∀k ∈ M . The optimal values for

(
π∗ikρ, π

∗
jkρ

)
for ρ = (i, j) ∈ A are

12



determined as

(
π∗ikρ, π

∗
jkρ

)
=





(0, 0) if k ∈ Pρ or λ∗ρ ≤ dκ
ρµ

∗
k

(λ∗ρ − dκ
ρµ

∗
k, 0) if x̂ik = 0 and x̂jk = 1

(0, λ∗ρ − dκ
ρµ

∗
k) if x̂jk = 1 and x̂jk = 0

Any solution to π∗ikρ + π∗jkρ = λ∗ρ − dκ
ρµ

∗
k, π∗ikρ, π

∗
jkρ ≥ 0

if x̂ik = 0 and x̂jk = 0

(10)

Proof. Since models (5) and (9) are equivalent, we need to show that the objective function

value given by (5a) for (λ∗, µ∗, π∗) is the same as that given by (9a) for (α∗, β∗), and that

(λ∗, µ∗, π∗) is feasible to constraints (5b-d). The equivalence of the objective function values

is clear, noting that

∑
i∈N

∑

k∈M

∑
ρ∈Si

x̂ikπ
∗
ikρ = 0

due to the construction of π∗ values according to (10). For Constraints (5b) corresponding

to ρ ∈ A and k ∈ Pρ, feasibility of (λ∗, µ∗, π∗) is assured due to (9b). For (5b) corresponding

to ρ = (i, j) ∈ A and k /∈ Pρ, we must have by definition of Pρ that at least one of x̂ik = 0

or x̂jk = 0. Hence, (π∗ikρ, π
∗
jkρ) is defined according to one of the latter three cases of (10) in

order to ensure feasibility to (5b). Finally, Constraints (5c) and (5d) hold true due to (9c),

(9d), and (10). This completes the proof. 2

The dual value recovery process reveals that when λρ − dκ
ρµk > 0 for some demand pair

ρ = (i, j) ∈ A and k /∈ Pρ such that x̂ik = x̂jk = 0, we must choose between setting

πikρ or πjkρ to equal this difference. The outcome of this decision has a direct impact

on the optimality cut being passed back to the first-stage problem: if πikρ is set equal to

λρ−dκ
ρµk, it will encourage node i to be added to ring k in the next master problem iteration,

and vice versa if πjkρ is chosen to be positive. Magnanti and Wong (1981) underscore the
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importance of properly selecting dual solutions by investigating methods by which dual

solutions leading to nondominated Benders’ cuts may be identified. Unfortunately, each

choice of dual values gives rise to a nondominated cut in the context of our problem. Since

there are 2h nondominated optimality cuts that can be formulated, where h is the number of

“choices” as mentioned above, enumerating each possible cuts is computationally prohibitive.

We conducted a brief computational experiment to investigate the effectiveness of various

rules for choosing among setting πikρ and πjkρ such that πikρ +πjkρ = λρ− dκ
ρµk. The results

of this experiment indicate that setting either πikρ or πjkρ equal to λρ − dκ
ρµk when given a

choice is the best strategy. We arbitrarily select πikρ = λρ − dκ
ρµk for the last case of (10) in

our computational study in Section 5.

An alternative for resolving the choice in π-values is to consider the following problem

reformulation. Define variable vρk = xikxjk for ρ = (i, j) ∈ A and k ∈ M . We may resolve

this nonlinearity by enforcing the restrictions

vρk ≤ xik, vρk ≤ xjk, and vρk ≥ 0 ∀ρ ∈ A, ∀k ∈ M (11)

in (3) (and thus in (6) as well). Note that this technique is a subset of the linearization

strategy employed in the Reformulation-Linearization Technique of Sherali and Adams (1990,

1994). We omit the lower bounding constraint vρk ≥ xik + xjk − 1 since it will be implied at

optimality. The second-stage problem may now be modified by replacing (4d) with

0 ≤ fκ
ρk ≤ vρk ∀ρ ∈ A, ∀k ∈ M, given scenario κ ∈ {1, ..., r}. (12)
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The dual problem would now be modified as follows, noting that only v̂ values need to be

passed to the subproblem:

D(v̂, ξκ) : Maximize
∑
ρ∈A

λρ − b
∑

k∈M

µk −
∑
ρ∈A

∑

k∈M

v̂ρkπρk (13a)

subject to

λρ − dκ
ρµk − πρk ≤ 0 ∀k ∈ M, ρ ∈ A (13b)

λρ ≤ dκ
ρφρ ∀ρ ∈ A (13c)

µ, π ≥ 0. (13d)

Using this higher-dimensional formulation, we would compute λ and µ values as before. The

π values will now be set according to

πρk =





λρ − dκ
ρµk if λρ − dκ

ρµk > 0

0 otherwise

∀ρ ∈ A, ∀k ∈ M. (14)

Since no choice of optimality cuts are given, a unique dual solution exists to every nondegen-

erate primal problem. Moreover, it can be shown that this higher-dimensional representation

captures all of the exponentially many cuts that may be identified from the original model.

The proof, omitted here for brevity, constructs any dual solution that could be obtained in

the original model by surrogating (14) with negative multiples of the variable upper bounding

constraints in (11).

3.3 Valid Inequality Generation

An important consideration in constructing a Benders-type decomposition algorithm with

integer first-stage variables is the tightness of the master problem. If the master problem

formulation is weak, excessive computational effort must be expended in finding an optimal

solution to be passed to the second-stage subproblems. We thus develop classes of cutting
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planes to reduce both the effort required to solve the master problem and the number of

master problems that must be solved before the algorithm terminates.

Define a component Ĝ(N̂ , Â) of G(N,A) to be a connected subgraph such that if i ∈ N̂

then neither edge (i, j) nor (j, i) belongs to A ∀j ∈ N \ N̂ , that is, Ĝ is disconnected from

the rest of the graph. We may then execute the following procedure, which enumerates all

subsets of nodes in N̂ which may be placed on a ring, and evaluates whether the weighted

amount of demand that could be satisfied on a ring containing these nodes would justify the

requisite expenditure on ADM equipment.

Procedure 1. Consider the component Ĝ(N̂ , Â), and initially set v = min(R, |N̂ |).

Step 1. If v ≤ 1, go to Step 4. Else, select an ungenerated subset Ñ of N̂ such that |Ñ | = v.

Create the graph G̃(Ñ , Ã) by defining arc set Ã = {(i, j) ∈ Â : i and j ∈ Ñ}, i.e., Ã is the

set of arcs induced by Ñ on the graph Ĝ. Set maxc = 0.

Step 2. For each scenario ξκ, κ = 1, ..., r, solve the linear knapsack problem

cκ = max
∑

ρ∈Ã

φρd
κ
ρyρ (15a)

subject to
∑

ρ∈Ã

dκ
ρyρ ≤ b (15b)

0 ≤ yρ ≤ 1 ∀ρ ∈ Ã, (15c)

where yρ represents the fraction of demand satisfied for demand pair ρ. If
∑r

κ=1 pκcκ > maxc,

set maxc =
∑r

κ=1 pκcκ. If maxc > v, go to Step 3. Otherwise, if not all node subsets of size

v have been generated, go to Step 1. Else set v = d(maxc − 1)e and go to Step 1.

Step 3. If v < min{R, |N̂ |}, generate the constraint
∑

i∈N̂ xik ≤ v ∀k ∈ M . In either case,

terminate the procedure.

Step 4. Set xik = 0 ∀i ∈ N̂ , k ∈ M and terminate.
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The constraint generated in Step 3 is justified by observing that any solution containing

a subgraph having at least v + 1 of the nodes in Ĝ on one of its rings may be improved or

kept the same by removing those nodes from the ring. Hence, an optimal solution exists in

which no ring contains v + 1 nodes of Ĝ. The variable fixing in Step 4 is a special case of

the constraint in Step 3 in which v = 0.

Unfortunately, the algorithm must enumerate a exponential number of subgraphs, and

is not useful if R or |N̂ | is large. We thus limit the use of this preprocessing algorithm

to components having min(R, |N̂ |) ≤ 4, ensuring the polynomiality of our preprocessing

routine. (Note that Step 2 can be executed in O(r(n log n)) time, since we must solve r

linear knapsack problems, each requiring O(n log n) computations.) A further rationale for

limiting the size of subgraphs that may be enumerated is that the average number of arcs

that exist in a subgraph grows quadratically in terms of the size of the subgraph. It thus

becomes less likely to generate valid inequalities in Steps 3 or 4 as the size of the component

increases.

Next, recall that no node will be assigned to a ring in an optimal solution unless an

adjacent node in A is also assigned to the ring. (Otherwise, the node could be deleted

without affecting the amount of demand that could be satisfied.) We thus incorporate the

following connectivity constraints within the master problem.

xik ≤
∑
j∈Si

xjk ∀i ∈ N, ∀k ∈ M. (16)

Note that these constraints also implicitly require the valid restriction that each ring either

contains zero or at least two ADMs.

Now, observe that since each SONET ring is identical, any given solution in which some

m̂ rings are utilized to route demand has as many as (m̂!−1) alternatively optimal solutions
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that may be obtained by simply reindexing the rings. Sherali and Smith (2000) and Sherali

et al. (2000) have shown such symmetry unduly burdens a branch-and-bound approach to

solving these problems by requiring the enumeration of several symmetrical branches. We

state here two effective hierarchies for defeating this symmetry. The first requires that the

number of nodes placed on ring k is no less than the number of nodes placed on ring k + 1,

for k = 1, ..., m− 1, that is,

n∑
i=1

xik ≥
n∑

i=1

xi,(k+1) ∀k = 1, ..., m− 1. (17)

Note that although the hierarchy embodied by (17) is unlikely to completely break the

symmetry within the model, it contains a constraint structure with nonzeros equal to 1 or -

1, which tends not to create additional fractional solutions in a branch-and-bound framework.

Alternatively, we may impose the following hierarchy, which requires that the sum of the

node indices placed on ring k is no less than the sum of node indices placed on ring k + 1,

for k = 1, ..., m− 1:

n∑
i=1

ixik ≥
n∑

i=1

ixi,(k+1) ∀k = 1, ..., m− 1. (18)

This hierarchy is more likely to eliminate all symmetric solutions, but is more likely to cause

fractional solutions in addition to those that would normally be encountered in a branch-

and-bound algorithm. Note that we may replace the sum of the indices in (18) with the sum

squared of the indices, or any other reasonable exponent to further discourage symmetrical

solutions, at the possible expense of creating additional fractional solutions.

3.4 Incorporating Subproblem Data Within the Master Problem

If demand shortage penalties are large relative to the cost of installing ADMs, several master

problems must be solved before optimality cuts (8) relate ample information about demand

shortage penalties under various proposed node to ring assignments. In this case, the fore-
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going implementation of the decomposition algorithm will fail to converge in a reasonable

amount of time. We offer a modification to the master problem that captures a minimum

shortage penalty to be incurred for each demand pair given a proposed network design. First,

let us define baseline demands, d, as follows.

dρ = min
κ∈{1,...,r}

dκ
ρ ∀ρ ∈ A.

Proposition 2. Given some binary vector x∗, suppose (f ∗, w∗) is an optimal solution to

(3) with x ≡ x∗ and demands given by d. Then for all demand pairs ρ ∈ A : w∗
ρ > 0, an

optimal solution to each subproblem Q(x∗, ξκ) ∀κ = 1, ..., r exists in which the shortage for

pair ρ is at least dρw
∗
ρ +

(
dκ

ρ − dρ

)
.

Proof. We prove this proposition by induction, given any scenario κ ∈ {1, ..., r} and binary

vector x∗. Recall from the discussion of Section 3.2 that given the node-to-ring assignments

of a network, we may compute the optimal values for f and w by solving a minimum cost

flow problem. This proposition trivially holds true if dκ = d. Now, suppose that the result is

true for a set of demands d, where d ≤ d ≤ dκ, and define (f ∗, w∗) to be the optimal solution

to the minimum cost flow subproblem given x∗ and d. Recall that the arcs corresponding to

basic solution variables will form a tree with respect to the minimum cost flow graph.

Suppose that we seek a solution to the minimum cost flow problem in which the demands

have changed to d̂ = d + eρ̂, where eρ̂ is a vector of length |A| containing a 1 in the element

corresponding to some ρ̂ ∈ A and zeros elsewhere, for some ρ̂ ∈ A such that dρ < dκ
ρ . With

respect to the minimum cost flow subproblem, this change is akin to increasing the surplus

of qρ̂ by 1 and decreasing the surplus/demand of u by 1. Note that since the basic arcs of

(f ∗, w∗) form a tree, exactly one path (in the undirected sense) exists from qρ̂ to u. This

path consists of a (possibly null) series of arcs between the q-nodes and t-nodes, followed

19



either by an arc from some q-node to u (call this a path of Type I), or an arc from some

t-node to u (path of Type II).

Let us first consider the case in which all of the prior flow values along the arcs of the

path from qρ̂ to u oriented in the opposite direction of the path are positive. We retain an

optimal basic feasible solution with respect to demands d̂ by increasing the flows on arcs

oriented in the same direction of the path by one, and decreasing the flows of arcs oriented

in the opposite direction of the path by one. In particular, if w∗
ρ̂ > 0, then an arc exists

directly from qρ̂ to u, and flow is increased by one along this arc. However, if the path from

qρ̂ to u is another path of Type I, the f -values in the new solution are modified, and the

value of some other w-variable increases by one. If a Type II path exists, we will modify the

values of the f -variables, and will decrease the amount of unused capacity for some ring by

decreasing the flow from node u to some t-node. In any of these cases, the previous solution

continues to give rise to the same complementary slack primal and dual feasible bases. Since

the w-values are nondecreasing, and since wρ̂ increases by one if w∗
ρ̂ was a positive value, we

have that Proposition 2 holds true for this case.

We next discuss the case in which some arc oriented in the opposite direction of the path

from qρ̂ to u has a flow of zero. Note that since w∗
ρ̂ = 0 for this case, we must simply show

that no w-values will decrease in the new solution. Suppose we follow the path from qρ̂ to

u, and identify the first degenerate basic arc oriented in the opposite direction of the path.

Removing this arc from the basis, we now have two components of the minimum cost flow

graph with respect to the basic arcs. Note that the component containing node qρ̂ does

not contain node u, and thus a basic set of arcs is reconstituted by adding an arc from the

component containing qρ̂ to the component containing u. This connecting arc must either be
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from a q-node to a t-node, or from a q-node to u. A finite number of such degenerate pivots

may need to be performed before a nondegenerate iteration takes place, at which time the

situation reduces to the one addressed previously.

Note that we may iteratively construct any set of demands dκ for κ ∈ {1, ..., r} by inde-

pendently incrementing the baseline demands, with Proposition 2 holding true after each

such incremental step. This completes the proof. 2

Suppose the deterministic ring design problem (1) is solved using the baseline demands,

with one optimal solution having a set of shortages given by ŵ. The result of Proposition 2

implies that if ŵρ > 0 for some ρ ∈ A, then there will exist an optimal recourse decision in

which the shortage for demand pair ρ in scenario κ ∈ {1, ..., r} is at least dρŵρ +
(
dκ

ρ − dρ

)

units. The following baseline strategy explicitly solves the baseline demand problem in the

first stage, and relates a minimum penalty measure that will be incurred in the second-stage

problems to the first-stage variables. First, we include the following constraints within (6):

∑

k∈M

f 0
ρk + w0

ρ = 1 ∀ρ ∈ A (19a)

∑
ρ∈A

dρf
0
ρk ≤ b ∀k ∈ M (19b)

0 ≤ f 0
ρk ≤ xik ∀i ∈ N, ∀k ∈ M, ∀ρ ∈ Si, and w0

ρ ≥ 0 ∀ρ ∈ A. (19c)

To fully exploit the strength of Proposition 2, we introduce a new set of binary variables to

the problem. Define yρ to equal 1 if a shortage for demand pair ρ ∈ A exists in the solution

of the baseline demand, and 0 otherwise. We impose the following additional constraints in

(6):

yρ ≥ w0
ρ and yρ ∈ {0, 1} ∀ρ ∈ A (19d)
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Θκ ≥
∑
ρ∈A

φρ

[
yρ

(
dκ

ρ − dρ

)
+ dρw

0
ρ

] ∀κ = 1, ..., r. (19e)

Constraints (19d) state the lower bounds on the binary variables y, while constraints (19e)

state the lower limits for shortage penalties given the baseline scenario solution. We will

empirically examine the tradeoff between increasing the difficulty of the master problem by

employing the baseline strategy embodied by (19) and the decrease in the number of problem

iterations that must be executed.

4 Heuristic Procedure

Since finding an optimal solution to Problem SRD may be too difficult to achieve within

imposed computational limits, we may wish to quickly determine a heuristic solution to

SRD. This solution would also benefit the multicut L-shaped algorithm of Section 3 by

providing an upper bound to both the overall stochastic program and to each master integer

program, and by prescribing a solution from which an initial set of optimality cuts may

be obtained. We describe in this section the Greedy Augmenting Heuristic (GAH), which

operates by selecting initial node-to-ring assignments for each ring, and then identifying

promising augmentations of the proposed network design.

The logic of GAH is depicted as a flowchart in Figure 3. We first introduce a metric that

measures the benefit of adding a node to a particular ring. Assume we are given a set of

node-to-ring assignments previously prescribed by the heuristic. We define the utility of a

node i on a ring k as the additional amount of weighted demand that could be satisfied on k

with the addition of node i, minus the unit cost for including an extra ADM in the network.

GAH constructs one ring at a time by assigning to the ring currently under consideration a

node having the highest utility, until the ring cardinality restriction is met.
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Initialize: x∗ = x̂ = 0, z0 =
∑

ρ∈A

∑r
κ=1 pκdκ

ρφ
κ
ρ , k = 0.

k = k + 1. Determine (i∗, j∗) as given by (20).
Set E∗

k = Ek = {i∗, j∗}, x̂i∗k = x̂j∗k = 1, and
zk = q∗ = f(x̂).

Terminate with
solution x∗.

For each i ∈ N \ Ek define x̄i = x̂ modified by setting x̄i
ik = 1.

Let q∗ = mini∈N\Ek
f(x̄i) and let i∗ ∈ argmini∈N\Ek

f(x̄i).
Set x̂i∗k = 1, and let Ek = Ek ∪ {i∗}.

Set x∗ik = 1 ∀i ∈ E∗
k .

Set zk = q∗,
E∗

k = Ek.
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Figure 3: Heuristic Procedure for Generating Node-To-Ring Assignment.

We initialize the algorithm by setting the solution vector x̂ik = 0 ∀i ∈ N and k ∈ M . For

some assignment vector x, define f(x) =
∑

i∈N

∑
k∈M xik +Q(x), that is, f(x) is the optimal

solution to SRD given x. We will denote by zk the best objective function value found after

constructing (nonempty) rings 1, ..., k.

Given an empty ring currently under consideration, the utility of each node must equal

zero. To prevent an arbitrary assignment of the initial node for an empty ring, we determine

two initial nodes by identifying the “best” demand pair that could be added to a new ring.

Define xij as x̂ modified by setting x̄ij
ik = x̄ij

jk = 1, where k is the new ring being constructed.
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We initialize ring k with nodes i∗ and j∗ satisfying

ρ∗ = (i∗, j∗) ∈ argminρ∈A

(
f(xij)

)
. (20)

We may now meaningfully compute the utility of each node i ∈ N = N \ {i∗, j∗}. Let x̄i be

the current vector, x̂, modified by setting x̄i
ik = 1, i.e., adding node i to the current ring k.

We compute the utility of node i on ring k as f(x̂)− f(x̄i), and identify the node with the

best utility as

i∗ ∈ argmini∈N

(
f(xi)

)
. (21)

Three properties of the behavior of GAH are discussed next that justify the remaining

steps of the algorithm.

Property 1. Consider the construction of ring k by GAH, and let f(xα
k ) be the objective

value obtained by the heuristic in constructing ring k, when ring k contained α nodes. Then

f(xα
k ) is not necessarily quasiconvex in terms of α.

Example. Consider the demand graph given by Figure 4 as a one-scenario (deterministic)

example whose penalties are given by the values alongside the arcs, and whose demands are

given by d1
ρ = 1 for all ρ ∈ A. Suppose that the demand capacity restriction is set to b = 5

channels and that the node cardinality restriction is set to R = 4 nodes. Table 1 describes

the construction of the first ring by GAH for this example. In this example, a two-node ring

is more expensive than either a zero-node ring or a three-node ring. However, assigning all

four nodes to the ring results in the least expensive design. 2

As a result of the foregoing property, GAH continues to add nodes to the current ring

until the node cardinality limit is reached in hopes of identifying improved solutions. It is

thus necessary to track the best objective value zk achieved in the construction of the ring,
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Figure 4: Illustration of Property 1.

Iteration Nodes Assigned Shortage Penalty Number of ADMs Ring Cost (q∗)

Initialize 1,2 2.6 2 4.6

1 1,2,3 1.7 3 4.7

2 1,2,3,4 0 4 4

Table 1: GAH Solution of Figure 4 Problem.

the set of nodes E∗
k assigned to ring k leading to that solution, and the current set of nodes

Ek assigned to ring k. At the end of the construction of this ring, we set x∗ik = 1 ∀i ∈ E∗
k .

Property 2 illustrates a similar behavior in the overall construction of the rings, wherein

a ring may be constructed that temporarily worsens the objective function value, but ulti-

mately leads to the construction of another ring that results in an improved solution.

Property 2. The sequence of objective function values zk, k = 1, ..., m is not quasiconvex

in terms of k.

Example. We again consider a one-scenario instance whose demand network is depicted

in Figure 5, where penalties are displayed alongside the arcs and d1
ρ = 1 for all ρ ∈ A, and

instance parameters are defined as b = 6, R = 4, and m = 3. Table 2 summarizes the

GAH steps for this example. Note that z2 > z1 and z2 > z3 for this example, justifying the

construction of new rings even if previously constructed rings are not cost-efficient. 2
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Figure 5: Illustration of Property 2.

Number of Rings (k) E∗
k Shortage Total Number of ADMs Total Cost (zk)

0 46.1 0 46.1

1 1,2,3,4 7.1 4 11.1

2 2,5 5.2 6 11.2

3 4,6,7 0 9 9

Table 2: GAH Solution of Figure 5 Problem.

Property 2 begs the question of whether or not a ring that leads to a temporary objective

function increase may be deleted from the final solution, improving the objective function

value. For instance, deleting ring 2 in the previous example would result in a solution with

objective function 8.9 (7 ADMs plus a penalty of 1.9 for not satisfying demand between

nodes 2 and 5). Proposition 3 answers this question affirmatively.

Proposition 3. Let z∗ = zm be the objective function value corresponding to the solution

x̂, let Qk(x̂) be the expected weighted amount of demand satisfied on ring k for k = 1, ...,m,

and let |E∗
k | be the number of nodes attached to ring k for k = 1, ..., m. If there exists a k

such that |E∗
k
| −Qk(x̂) > 0, then removing ring k from the current solution will decrease z∗

by at least |E∗
k
| − Qk(x̂).

Proof. Consider the solution x, given by x̂ modified by setting xik = 0 for all i = 1, ..., n.

Utilizing the same demand-to-ring assignments given by the f variables as before (except

with fρk = 0 for all ρ ∈ A), we obtain a feasible solution with objective function value
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z∗ − |E∗
k
| +Qk(x̂). As such, this solution is an upper bound to the problem of minimizing

the expected shortage penalty arising from the new network design given by x, and thus the

objective function decrease must be at least |E∗
k
| − Qk(x̂). This completes the proof. 2

Based on Proposition 3, we develop the following postprocessing procedure. Given a

current solution x̂, identify ring k ∈ argmaxk∈M(|E∗
k |−Qk(x̂)). If |E∗

k
|−Qk(x̂) > 0, delete ring

k, modify x̂ by setting x̂ik = 0 ∀i ∈ E∗
k
, determine the optimal f -variables given the remaining

node-to-ring assignments, and repeat. The heuristic is complete when |E∗
k | − Qk(x̂) ≤ 0

∀k ∈ M . Note that we do not simultaneously delete all rings meeting this criteria, as the

deletion of one ring may change the demand-to-ring assignments to make the inclusion of

each other ring cost-effective.

5 Computational Results

To test the computational efficacy of the procedures developed in this paper, we generated

three test sets, each containing 10 stochastic SONET instances. Each instance in Set 1

contains 10 scenarios, while Set 2 instances contain 20 scenarios, and Set 3 instances contain

30 scenarios. For each instance, b is set to 48, R is set to 5, and m = 4 SONET rings may

be constructed. Each demand graph consists of 10 nodes and has a 40% density, leading to

the random construction of 18 edges. For each demand pair ρ ∈ A, the shortage penalty

φρ is randomly generated according to a uniform distribution on the interval (0,1], and an

expected demand de
ρ is randomly generated as an integer according to a uniform distribution

on the interval [4,10]. Finally, the demands for each scenario κ = 1, ..., r are set equal to

dκ
ρ = de

ρ with probability 0.3, dκ
ρ = de

ρ + 1 or de
ρ − 1, each with probability 0.2, dκ

ρ = de
ρ ± 2

with probability 0.1, and dκ
ρ = de

ρ± 3 with probability 0.05. The demand graphs turn out to

be connected for each of these instances, and hence Procedure 1 of Section 3.3 is omitted in
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Instance Set Heur Soln Optimum # Opt Opt Gap CPU (secs)

Set 1 17.49 15.24 0 14.87% 1.56

Set 2 16.60 15.47 2 7.27% 3.12

Set 3 17.20 15.31 1 12.47% 4.82

# Opt: Number of times the heuristic identifies the optimal solution.

Opt Gap: Average (UB - Optimal Value)/(Optimal Value)*100%.

Table 3: Average Performance of the Greedy Augmenting Heuristic.

our implementations. All computations were executed on a SUN-Ultra 10 Workstation with

256 MB of RAM using the CPLEX 7.0 callable library to solve integer programming and

network flow problems.

We begin by testing the effectiveness of the Greedy Augmenting Heuristic. Table 3 com-

pares the average heuristic objective function value (“Heur Soln”) with the average optimal

solution over 10 instances in each of the three test sets, and provides the average CPU time

in seconds required to complete the heuristic. While GAH executes quickly and does manage

to identify the optimal solution in three of the thirty instances, the average optimality gap

is still large enough to warrant the use of an exact algorithm. For the remaining implemen-

tations of the L-shaped algorithm, we use GAH to obtain an initial upper bound as well as

an initial set of optimality cuts based on this heuristic solution.

Next, we analyze the effectiveness of incorporating the connectivity valid inequalities given

by (16) and the symmetry-breaking inequalities given by (17) within the master problem. (A

preliminary set of tests demonstrated that the node-based hierarchy (17) is more effective for

this class of problems than is the demand-based hierarchy (18).) Table 4 illustrates the av-

erage running times in terms of CPU seconds required by our algorithm using combinations

of the connectivity and symmetry-breaking constraints. All runs were performed with the

baseline demand scenario incorporated in the master problem. The symmetry-breaking con-
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(16) and (17) (17) Only (16) Only No VI’s

Instance Set CPU Iter CPU Iter CPU Iter CPU Iter

Set 1 34.18 2.5 33.44 2.1 136.61 10.0 147.42 9.6

Set 2* 36.61 2 45.94 2.22 482.03 16.11 483.45 15.11

Set 3* 68.25 2.89 73.87 3 834.71 30.22 1080.06 30.56

Iter: Average number of iterations required.

*One instance could not be solved within 3 hours for combinations not using (17).

Table 4: Effectiveness of Connectivity (16) and Symmetry-Breaking (17) Valid Inequalities.

straints are clearly vital to the efficiency of this algorithm, while the connectivity constraints

provide a slight improvement in the average running time. Without the symmetry-breaking

constraints (17), one instance in each of Set 2 and Set 3 could not be solved within the

imposed time limit of three hours. Hence, the averages listed for Sets 2 and 3 are only over

the 9 instances that all implementations could solve within 3 hours. The true benefit of

incorporating (17) within the master problem is dampened somewhat by disregarding the

two instances in which these cuts are most vital. The average CPU time over all Set 2 and

Set 3 instances using both (16) and (17) is 90.61 seconds and 129.30 seconds, respectively.

When only inequalities (17) are used, the CPU average for all Set 2 and Set 3 instances is

146.89 seconds and 131.97 seconds, respectively. We thus incorporate both of these sets of

valid inequalities within the master problem in all future computational tests.

Our next set of computational tests conclusively demonstrate the ineffectiveness of the

L-shaped method when the baseline demand scenario is not incorporated within the master

problem. Using only (16) and (17) in the master problem along with the initial optimality

cuts provided by the heuristic solution obtained from GAH, none of the thirty test instances

could be solved to optimality within three hours. In fact, Table 5 demonstrates that the

average final gap between the lower and upper bounds identified by the algorithm is consid-
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Instance Set Iter LB UB Relative Gap Opt. Gap

Set 1 43.6 12.73 17.46 26.96% 14.65%

Set 2 34.6 12.28 16.60 25.48% 7.27%

Set 3 31.1 12.09 16.97 28.44% 10.94%

Iter: Average number of iterations performed within the time limit.

LB: Average lower bound obtained after 3 CPU hours.

UB: Average best solution found within 3 CPU hours.

Relative Gap: Average (UB - LB)/UB*100%.

Opt. Gap: Average (UB - Optimal Value)/(Optimal Value)*100%.

Table 5: Algorithmic Performance without Baseline Demands After 3 CPU Hours.

erable. The strategy of using the best known solution after the three hour mark would be

only slightly better than using the heuristic solution; in just three out of the thirty instances

is the solution found at this point better than the heuristic solution.

Our last set of computational tests compares in detail four implementation options of

our overall L-shaped algorithm versus simply solving the extensive form of the stochastic

program. We denote the large integer programming approach (as formulated in (2)) as “Ex-

tensive Form” in Table 6. The “Multicut” approach uses the multicut L-shaped algorithm

augmented by the heuristic, valid inequality, and baseline enhancements mentioned thus far.

The “Single Cut” option is performed in the same manner, with the following modification

to the multicut L-shaped approach. After the solving of each master problem, instead of

adding an optimality cut to the master problem for each subproblem violating (8), we aggre-

gate all such inequalities into one optimality cut. This single cut is formed by multiplying

each generated optimality cut by the probability of realizing its corresponding scenario and

summing them together. Note that whereas this strategy would normally allow Θ to be

considered as one variable instead of r separate variables, we retain the individual Θκ vari-

ables for κ = 1, ..., r to garner the effectiveness of the baseline demand subproblem. The
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“Quadratic” option refers to the use of the reformulated dual subproblem (13) requiring the

addition of quadratic variables vρk for ρ ∈ E and k ∈ M , developed in Section 3.2. Finally,

“Quad + Single” denotes the implementation of the quadratic model in conjunction with

the single cut strategy.

The results in Table 6 demonstrate that the single cut implementations outperform their

disaggregated counterparts for these runs. Quite surprisingly, even though the disaggregated

(multicut) version provides stronger cuts to the master problem, our aggregation strategy

resulted in slightly fewer overall iterations for the L-shaped algorithm. The aggregation

of optimality cuts thus becomes a very attractive strategy computationally, as it reduces

the size and difficulty of each master problem while requiring roughly the same number of

iterations to solve each instance. As expected, the quadratic model option was effective in

reducing the number of overall iterations. Unfortunately, this reduction in iterations was

not always sufficient to make up for the increase in difficulty of solving the master problem.

Due to the inconsistency of the running times when using the quadratic model (even when

used in conjunction with the single cut strategy), we recommend the use of the original dual

subproblem within the L-shaped algorithm. However, the effectiveness of this option on

some of the test instances (e.g., on Set 2 instances) implies that it might indeed be useful

on certain classes of problems for which the quadratic representation provides a substantial

reduction in the number of iterations executed. Finally, these results demonstrate that the

extensive form option is clearly inferior to any of the four L-shaped implementations. One

interesting result is that the extensive form approach seems to suffer the same difficulties in

solving the hardest instances as do the L-shaped approaches, implying that the slow running

times for those instances are not due to weaknesses in the concept of the L-shaped algorithm,

but rather to the inherent difficulty of those instances.
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Multicut Quadratic Single Cut Quad + Single Extensive Form

Instance CPU Iter CPU Iter CPU Iter CPU Iter CPU

1 14.1 1 20.77 1 14.45 1 15.8 1 439.48

2 8.73 1 7.56 1 5.63 1 7.92 1 158.62

3 48.46 6 37.1 2 60.15 4 60.87 5 223.07

4 7.46 1 10.23 1 7.06 1 6.69 1 116.6

5 7.48 1 9.46 1 7.32 1 9.71 1 110.56

6 5.69 1 9.88 1 7.35 1 6.19 1 125.87

7 21.42 2 8.22 1 20.38 2 5.5 1 103.55

8 103.33 4 138.14 4 62.9 4 101.42 4 207.03

9 37.07 4 74.59 5 29.42 4 34.16 4 158.18

10 88.05 4 51.5 2 58.47 3 44.03 3 285.97

Avg 34.18 2.5 36.75 1.9 27.31 2.2 29.23 2.2 192.89

(a) Set 1 Instances

Multicut Quadratic Single Cut Quad + Single Extensive Form

Instance CPU Iter CPU Iter CPU Iter CPU Iter CPU

1 8.45 1 10.81 1 9.09 1 10.15 1 355.2

2 15.01 1 17.48 1 12.63 1 13 1 1153.8

3 576.59 7 510.98 4 399.86 7 302.15 5 3094.88

4 105.45 3 256.18 3 147.69 3 146.3 3 1504.42

5 8.35 1 8.85 1 8.86 1 7.52 1 380.47

6 32.12 2 65.07 2 14.97 1 11.56 1 510.75

7 71.8 3 129.44 3 55.08 3 94.41 4 696.38

8 30.88 2 55.64 2 38.28 2 40.49 2 499.45

9 25.31 2 36.77 2 26.2 2 37.3 2 400.85

10 32.09 3 44.33 3 29.92 3 45.79 3 526.94

Avg 90.61 2.5 113.56 2.2 74.26 2.4 70.87 2.3 912.31

(b) Set 2 Instances

Multicut Quadratic Single Cut Quad + Single Extensive Form

Instance CPU Iter CPU Iter CPU Iter CPU Iter CPU

1 678.72 11 543.53 5 423.01 11 621.45 9 3176.91

2 17.25 1 41.56 2 12.71 1 13.95 1 1253.81

3 28.33 2 34.54 2 24.44 2 26.16 2 708.19

4 81.07 4 155.06 4 71.16 4 72.99 4 750.70

5 96.04 4 116.76 4 71.4 4 86.14 4 894.49

6 50.77 2 101.65 2 33.73 2 46.99 2 1110.11

7 95.27 2 102.86 2 81.35 2 69.42 2 2336.42

8 110.32 5 186.72 5 112.15 6 99.91 5 831.83

9 78.26 2 101.37 2 67.7 2 53.55 2 1321.32

10 56.93 4 43.83 2 38.53 3 34.91 3 667.71

Avg 129.30 3.7 142.79 3.0 93.62 3.7 112.55 3.4 1305.15

(c) Set 3 Instances

Table 6: Effectiveness of Various L-Shaped Implementations and the Extensive Form.
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Another interesting question relates to the single-cut versus multicut approaches for the

L-shaped method. Works by Birge and Louveaux (1988) and Gassmann (1990) conduct

experiments on stochastic linear programs, suggesting that the multicut approach is usually

preferable when the number of realizations r is not significantly larger than the number of

first-stage constraints. We are unaware of similar experiments on stochastic programs with

first-stage integer variables. Our findings indicate that the single-cut version is preferable

even though the number of first-stage constraints greatly exceeds the number of scenarios.

One reason for this behavior might be that continuous relaxations of the master problem must

be solved many times within a branch-and-bound framework, making additional constraints

more burdensome than when the master problem is a linear program. Further theoretical

and empirical investigation is warranted.

6 Summary and Conclusions

We consider a stochastic intra-ring SONET design problem that generalizes the determinis-

tic SONET ring design problem. We begin by providing a basic decomposition framework

based on the L-shaped method, whose subproblems may be solved by a transformation to

a minimum cost flow problem. Using concepts derived from a simple dual recovery algo-

rithm for these subproblems, we derive an alternative formulation capable of generating

strong optimality cuts to the master program. Following this, we identify several classes

of valid inequalities along with a novel technique for including subproblem data into the

master problem. These techniques for obtaining strong lower bounds to the problem are

used in conjunction with an effective upper bounding heuristic executed after the solution

of each master problem. We then examine the effectiveness of our methodologies on a suite

of SONET test instances having varying numbers of scenarios to demonstrate the benefit
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of our overall prescribed algorithm, versus simply executing a rudimentary L-shaped imple-

mentation or solving the extensive form program.

Several opportunities for future research exist. For instance, this paper only presents the

case in which demand amounts are stochastic. Our basic L-shaped approach is easily extend-

able to the case in which the shortage penalties are stochastic as well, permitting the ring

capacity b to vary with each scenario as well by scaling the demand and penalty parameters

accordingly. Hence, we would implicitly absorb the uncertainty of the ring demand capacity

within the problem parameters. However, this generality would make the baseline scenario

addition to our problem invalid, and would thus appreciably increase the difficulty of solving

the problem.

Another interesting extension of this problem might consider the addition of ADMs to

the network in a future decision-making stage. Such an extension would require the re-

peated solution of mixed-integer second-stage problems. While the current state-of-the-art

in stochastic integer programming may not permit the direct solution of such a problem, the

heuristic developed in this paper could readily be modified to account for these second-stage

network design decisions.
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