9 research outputs found

    An exact method for a discrete multiobjective linear fractional optimization

    Get PDF
    Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated

    An exact method for a discrete multiobjective linear fractional optimization

    Get PDF
    Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated.multiobjective programming, integer programming, linear fractional programming, branch and cut

    Optimization over an integer efficient set of a Multiple Objective Linear Fractional Problem

    Get PDF
    The problem of optimizing a real valued function over an efficient set of the Multiple Objective Linear Fractional Programming problem (MOLFP) is an important field of research and has not received as much attention as did the problem of optimizing a linear function over an efficient set of the Multiple Objective Linear Programming problem (MOLP).In this work an algorithm is developed that optimizes an arbitrary linear function over an integer efficient set of problem (MOLFP) without explicitly having to enumerate all the efficient solutions. The proposed method is based on a simple selection technique that improves the linear objective value at each iteration.A numerical illustration is included to explain the proposed method

    Optimization over an integer efficient set of a Multiple Objective Linear Fractional Problem

    Get PDF
    The problem of optimizing a real valued function over an efficient set of the Multiple Objective Linear Fractional Programming problem (MOLFP) is an important field of research and has not received as much attention as did the problem of optimizing a linear function over an efficient set of the Multiple Objective Linear Programming problem (MOLP).In this work an algorithm is developed that optimizes an arbitrary linear function over an integer efficient set of problem (MOLFP) without explicitly having to enumerate all the efficient solutions. The proposed method is based on a simple selection technique that improves the linear objective value at each iteration.A numerical illustration is included to explain the proposed method

    Generating Pareto Optimal Solutions of Multi-Objective LFPP with Interval Coefficients Using e-Constraint Method

    Get PDF
    This paper illustrates a procedure to generate pareto optimal solutions of multi-objective linear fractional programming problem (MOLFPP) with closed interval coefficients of decision variables both in objective and constraint functions. E-constraint method is applied to produce pareto optimal solutions comprising most preferred solution to satisfy all objectives. A numerical example is solved using our proposed method and the result so obtained is compared with that of fuzzy programming which justifies the efficiency and authenticity of the proposed method

    Computing non-dominated solutions in MOLFP

    Get PDF
    In this paper we present a technique to compute the maximum of a weighted sum of the objective functions in multiple objective linear fractional programming (MOLFP). The basic idea of the technique is to divide (by the approximate [`]middle') the non-dominated region in two sub-regions and to analyze each of them in order to discard one if it can be proved that the maximum of the weighted sum is in the other. The process is repeated with the remaining region. The process will end when the remaining regions are so little that the differences among their non-dominated solutions are lower than a pre-defined error. Through the discarded regions it is possible to extract conditions that establish weight indifference regions. These conditions define the variation range of the weights that necessarily leads to the same non-dominated solution. An example, illustrating the concept, is presented. Some computational results indicating the performance of the technique are also presented.http://www.sciencedirect.com/science/article/B6VCT-4JYKKS8-5/1/13ee9420d668c003ca28b4f8605de94
    corecore