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We describe an improvement of Chergui and Mouläı’s method (2008) that generates the whole efficient set of a multiobjective
integer linear fractional program based on the branch and cut concept. The general step of this method consists in optimizing
(maximizing without loss of generality) one of the fractional objective functions over a subset of the original continuous feasible
set; then if necessary, a branching process is carried out until obtaining an integer feasible solution. At this stage, an efficient cut is
built from the criteria’s growth directions in order to discard a part of the feasible domain containing only nonefficient solutions.
Our contribution concerns firstly the optimization process where a linear program that we define later will be solved at each step
rather than a fractional linear program. Secondly, local ideal and nadir points will be used as bounds to prune some branches
leading to nonefficient solutions. The computational experiments show that the new method outperforms the old one in all the
treated instances.

1. Introduction

In this paper we focus our interest on multiobjective integer
linear fractional programming (MOILFP) where several lin-
ear fractional objectives (i.e., ratio of two linear functions) are
to be optimized simultaneously subject to a set of linear con-
straints and nonnegative integer variables. The motivation
behind this choice comes in particular from the fact that in
our knowledge a very few number of papers treating this type
of problem were published in the literature [1–3] contrary
to continuous case which has received much more attention
from researchers (see, e.g., [4–13]). For the interested reader,
Stancu-Minasian [14] has presented a comprehensive bibliog-
raphy with 491 entries in addition to his book [15] containing
the state of the art in the theory and practice of fractional
programming.

Abbas and Mouläı [1] and Gupta and Malhotra [3] have
presented each a technique to generate the efficient set of a
MOILFP based on the same principle: solving a sequence of
integer linear fractional programs (ILFPs) until the stopping

criterion they propose is met. The first ILFP solved is defined
by optimizing one of the objective functions subject to the
entire feasible set; then a cutting plane is recursively added
to eliminate the current optimal solution and eventually
the solutions lying on an adjacent edge. The choice of this
latter makes the main difference between these two methods.
Unfortunately, they have both the same inconvenience that
is scanning almost the whole search space which is very
expensive in time and memory space.

In [2], Chergui and Moulaı̈ proposed a branch and cut
approach to solve MOILFP problems. At each step, a new
node is added to the search tree and the corresponding
problem defined by optimizing one of the fractional objective
functions over a subset of the original continuous feasible
set is solved. Two types of nodes are distinguished: those
relative to the branching process and are created for the
search of integer feasible solutions and those relative to the
addition of what the authors called an efficient cut. The
purpose of adding such a cut to a given problem is to
remove from its feasible domain the optimal solution and
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eventually a set of nonefficient solutions. A node is fathomed
if the corresponding problem is infeasible or if the set of
the criteria’s growth directions determined to construct the
efficient cut is empty. The procedure terminates when all the
created nodes have been examined. The major drawback of
this method lies in the fact that the integer feasible solutions
found during the resolution are not all efficient (the efficiency
of a solution is guaranteed only at the end of the procedure;
otherwise, it is only potentially efficient). The larger the
size of the problem, the greater the number of nonefficient
solutions generated and thus the slower the convergence of
the algorithm. To overcome this, we will introduce two new
node fathoming rules based on the calculation of local ideal
and nadir points that will avoid exploring other branches
leading to unnecessary solutions. Also, we will give the
formulation of the linear program that we propose to solve
as subproblem at each node rather than a fractional linear
program.

The rest of the paper is organized as follows: in Section 2,
we give some definitions and some theoretical results related
to our work. In Section 3, we describe in detail the improved
method. We present a numerical example in Section 4
followed by a discussion of the results obtained from the
computational experiments in Section 5. We conclude in
Section 6.

2. Definitions and Previous Results

Amultiobjective integer linear fractional program (MOILFP)
can be written as follows:

(MOILFP)

{{{{{{{{{{{

{{{{{{{{{{{

{

max𝑍
1
(𝑥) =

𝑐1𝑥 + 𝛼
1

𝑑1𝑥 + 𝛽
1

...

max𝑍
𝑘
(𝑥) =

𝑐𝑘𝑥 + 𝛼
𝑘

𝑑𝑘𝑥 + 𝛽
𝑘

s.t. 𝑥 ∈ 𝑋 = {𝑥 ∈ R𝑛 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} ,

𝑥 integer,
(1)

where 𝑐𝑖,𝑑𝑖 are (1 × 𝑛) vectors and𝛼
𝑖
,𝛽
𝑖
are scalars for 𝑖 = 1, 𝑘;

𝐴 is a (𝑚 × 𝑛) real matrix and 𝑏 ∈ R𝑚.
We assume that 𝑋 is a nonempty compact polyhedron

and all denominators are positive everywhere in𝑋.
The solution to the problem (MOILFP) is to find all

solutions that are efficient in the sense of the following
definition.

An integer solution 𝑥 ∈ 𝑋 is called efficient if there
does not exist another integer solution 𝑥 ∈ 𝑋 such that
𝑍
𝑖
(𝑥) ≥ 𝑍

𝑖
(𝑥) for all 𝑖 = 1, 𝑘with at least one strict inequality.

The resulting criterion vector (𝑍
1
(𝑥), . . . , 𝑍

𝑘
(𝑥))
𝑇 is said to be

nondominated.The set of efficient solutions of (MOILFP)will
be denoted by Eff throughout the paper.

The vectors 𝐼𝑑 = (𝐼𝑑
1
, . . . , 𝐼𝑑

𝑘
)
𝑇 with 𝐼𝑑

𝑖
=

max
𝑥∈𝑋,𝑥 integer𝑍𝑖(𝑥) and𝑁𝑑 = (𝑁𝑑

1
, . . . , 𝑁𝑑

𝑘
)
𝑇 with 𝑁𝑑

𝑖
=

min
𝑥∈Eff𝑍𝑖(𝑥) are called, respectively, ideal and nadir points

of the problem (MOILFP).

A payoff table (suggested by Benayoun et al. [16]) is a
square matrix of order 𝑘 where its ith row represents values
of all objective functions calculated at a point where the ith
objective obtained its maximum value. An estimate of the
nadir point is obtained by finding the worst objective values
in each column.Thismethod gives accurate information only
in the biobjective case; otherwise, it may be an over or an
underestimation.

We give in the following the results that justify themethod
described in [2]. We first need to introduce some notations:

𝑥
𝑙 : the optimal integer solution of the linear fractional
program (𝑃

𝑙
) : max{𝑍

1
(𝑥) | 𝑥 ∈ 𝑋

𝑙
, 𝑋
𝑙
⊆ 𝑋};

note that instead of𝑍
1
, one can similarly consider the

problem (𝑃
𝑙
) with any of the remaining objectives 𝑍

𝑖
,

𝑖 ∈ {2, . . . , 𝑘}. Moreover, in the new method that we
will state later, the fractional objective function of (𝑃

𝑙
)

will be replaced by a linear one;

𝐵
𝑙
(resp., 𝑁

𝑙
): the set of indices of basic variables

(resp., nonbasic variables) of 𝑥𝑙;

𝛾
𝑖: the reduced gradient vector of the ith objective. It

is defined by

𝛾
𝑖
= 𝛽
𝑖
𝑐
𝑖
− 𝛼
𝑖
𝑑
𝑖

, (2)

where 𝛽
𝑖
, 𝛼
𝑖
, 𝑐𝑖, and 𝑑

𝑖

are updated values obtained from the
optimal simplex tableau of (𝑃

𝑙
);

𝐻
𝑙
: the set defined by {𝑗 ∈ 𝑁

𝑙
| ∃ 𝑖 ∈ {1, 2, . . . , 𝑘}; 𝛾

𝑖

𝑗
>

0} ∪ {𝑗 ∈ 𝑁
𝑙
| 𝛾
𝑖

𝑗
= 0, ∀𝑖 ∈ {1, 2, . . . , 𝑘}};

𝑋
𝑙+1

: the set defined by {𝑥 ∈ 𝑋
𝑙
| ∑
𝑗∈𝐻𝑙

𝑥
𝑗
≥ 1}.

Theorem 1. Suppose that𝐻
𝑙
̸= 0 at the current integer solution

𝑥𝑙. If 𝑥 is an integer efficient solution in domain 𝑋
𝑙
\ {𝑥𝑙} then

𝑥 ∈ 𝑋
𝑙+1

.

For proof, see [2].

Definition 2. An efficient cut is a constraint added to the
model and does not eliminate any feasible efficient integer
solutions.

Corollary 3. Suppose that 𝐻
𝑙
̸= 0 at the current integer solu-

tion 𝑥𝑙; then the following constraint is an efficient cut:

∑
𝑗∈𝐻𝑙

𝑥
𝑗
≥ 1. (3)

See [2] for proof.

Proposition 4. If𝐻
𝑙
= 0 at the current integer solution 𝑥𝑙 then

𝑋
𝑙
\ {𝑥𝑙} is an explored domain.

The proof is also in [2].
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Table 1: Comparison between Chergui and Moulaı̈’s method and its improved version on this example.

Old method New method
Number of efficient sol. 7 7
Number of integer sol. generated/number feasible
sol. 32/42 17/42

Number of created nodes 223 50
Number of simplex iterations 610 148

Table 2: The efficient set of the problem.

𝑥 𝑍(𝑥)

(0, 0, 0, 0, 0, 0, 1)
𝑇

(
83

47
,
56

99
)
𝑇

(0, 0, 0, 1, 0, 0, 1)
𝑇

(
177

103
,
121

150
)
𝑇

(0, 0, 1, 1, 0, 0, 0)
𝑇

(
30

23
,
81

70
)
𝑇

(0, 1, 0, 1, 0, 0, 1)
𝑇

(
227

143
,
167

168
)
𝑇

(0, 1, 0, 1, 0, 0, 0)
𝑇

(
34

25
,
66

59
)
𝑇

(0, 2, 0, 0, 0, 0, 1)
𝑇

(
183

127
,
148

135
)
𝑇

(0, 0, 0, 2, 0, 0, 0)
𝑇

(
45

29
, 1)
𝑇

Table 3: Results obtained by Seshan and Tikekar’s method.

𝑍
1

𝑍
2

𝜆

max𝑍
1

83

47

56

99

83

47

max𝑍
2

30

23

81

70

81

70

3. Description of the Method

In this section, we describe some improvements that we will
bring to Chergui and Mouläı’s method [2] but first we recall
briefly its principle and its limitations.

Let us consider a multiobjective integer linear fractional
program in the form of (MOILFP). The method of Chergui
andMouläımanages a search tree consisting of nodes. At each
node (say 𝑙) the following linear fractional program is solved
using Cambini andMartein’s method [17] or the dual simplex
method:

(𝑃
𝑙
) : max {𝑍

1
(𝑥) | 𝑥 ∈ 𝑋

𝑙
} , (4)

where𝑋
𝑙
⊆ 𝑋 and𝑋

0
= 𝑋.

(i) If this problem is infeasible, then the node 𝑙 is
fathomed.

(ii) On the contrary case, if the obtained optimal solution
is not integer, a branching process is performed. Oth-
erwise, the set𝐻

𝑙
defined above is determined. If it is

empty then the node 𝑙 is fathomed; else a new node is
created and the corresponding problem is obtained by
adding to (𝑃

𝑙
) the efficient cut constructed from𝐻

𝑙
.

The procedure ends when all the created nodes have been
examined.

As it can be seen, the node fathoming rules are reduced
to the two following cases: the problem (𝑃

𝑙
) is infeasible and

𝐻
𝑙
is empty which happens very rarely (see Table 7) during

the search process. Since the performance of this method
depends, among other things, on its ability to avoid exploring
nodes of the search tree leading to nonefficient solutions,
we propose to add at each node 𝑙 the two new fathoming
conditions given below.

(i) The ideal point, say 𝐼𝑑
𝑙, of the multiobjective lin-

ear fractional program (MOF𝑃
𝑙
) : max{𝑍

1
(𝑥), . . . ,

𝑍
𝑘
(𝑥) | 𝑥 ∈ 𝑋

𝑙
} is dominated by at least one of the

potentially nondominated points already found.

(ii) There exists 𝑖 ∈ {1, . . . , 𝑘} such that 𝐼𝑑𝑙
𝑖
< 𝑁𝑑

𝑖
, where

𝑁𝑑
𝑖
is the ith component of the original problem’s

nadir point.

Note that the use of the last rule ismore appropriate in the
biobjective case since the nadir point can be easily computed
using the payoff table.

On the other hand, as we need to generate a feasible
solution at each step of the method and not necessarily
the solution which optimizes one of the fractional objective
functions, we suggest to replace for each node 𝑙 the linear
fractional program by the following linear program (we keep
the same notation for the new problem):

(𝑃
𝑙
) : max {𝑐1𝑥 − 𝜆𝑑1𝑥 | 𝑥 ∈ 𝑋

𝑙
} , (5)

where 𝜆 is the parameter of Seshan and Tikekar’s method
[18] taken at the optimum when the first fractional objective
is optimized under the integer feasible set. The idea behind
this choice is to start with a solution close to an efficient one
(in our case, that with the maximum value of 𝑍

1
). However,

any linear objective function can be used in (𝑃
𝑙
) since the

purpose is to obtain a feasible solution; the only disadvantage
is that the starting solution will be any vertex of the feasible
set which may increase the iteration number.

Handling linear programs will not only reduce the num-
ber of simplex iterations performed but also facilitate the use
of the dual simplex algorithm whenever a constraint is added
to a node problem.
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Table 4: Reduced gradient vectors corresponding to Node 2.

𝑁
2

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
11

𝛾
1

−6724 −970 −2056 −230 −1138 −1016 −708
𝛾
2 1274 3546 5284 3579 634 −4795 −665

By taking into account the suggested changes and by
adopting the same notations as above, we obtain the fol-
lowing algorithm that generates the entire efficient set Eff of
(MOILFP).

The Algorithm
Step 0 (initialization). Denote by 𝐿 the list of untreated
problems. Set Eff to the empty set and 𝐿 to the linear program
(𝑃
0
). Compute the nadir point 𝑁𝑑 of (MOILFP) (for the

biobjective case, the payoff table is used and the individual
optimization of both fractional objectives is performed by
Seshan and Tikekar’s method [18]).
Step 1 (problem selection and resolution). If𝐿 is empty, return
the efficient set Eff and terminate. Otherwise, select the linear
program with the greatest index 𝑙 in 𝐿. Solve the problem (𝑃

𝑙
)

using the simplex or the dual simplex method; remove (𝑃
𝑙
)

from 𝐿 and go to Step 2.

Step 2 (Fathoming). If (𝑃
𝑙
) is infeasible, go to Step 1.

If not, let 𝑥𝑙 be its optimal solution,𝐵
𝑙
(resp.,𝑁

𝑙
) the set of

indices of basic variables (resp., nonbasic variables) of 𝑥𝑙 and
𝑍𝑙 the corresponding criterion vector.

If𝑍𝑙 is not dominated, go to Step 3. Else, compute the ideal
point 𝐼𝑑𝑙 of (𝑀𝑂𝐹𝑃

𝑙
) as follows.

The individual optimization of each fractional objective 𝑖
under𝑋

𝑙
is done by adding three rows to the optimal tableau

of (𝑃
𝑙
); the first and second rows correspond, respectively, to

the numerator and denominator of the fractional function
𝑖 written in the basis 𝐵

𝑙
and the last one to the reduced

gradient vector of the ith objective 𝛾𝑖 (see (2)). The ordinary
simplex pivot operations are then applied to the new table’s
rows except the last one which is modified using (2) until the
optimal condition is met; that is, 𝛾𝑖

𝑗
≤ 0, ∀𝑗 ∈ 𝑁

𝑙
.

If 𝐼𝑑𝑙 is dominated by the criterion vector of at least one
solution of Eff or if there exists 𝑖 ∈ {1, . . . , 𝑘} such that 𝐼𝑑𝑙

𝑖
<

𝑁𝑑
𝑖
then fathom the corresponding node and go to Step 1.

On the contrary case, go to Step 3.

Step 3 (branching). If 𝑥𝑙 is integer, go to Step 4; else select the
most fractional variable 𝑥𝑙

𝑗
= 𝛼
𝑗
. Create and add to 𝐿 two

problems identical to (𝑃
𝑙
) with the additional constraint 𝑥

𝑗
≥

⌊𝛼
𝑗
⌋ + 1 in the first one and 𝑥

𝑗
≤ ⌊𝛼
𝑗
⌋ in the second; go to

Step 1.

Step 4 (cut generating). Update Eff: If there does not exist 𝑥 ∈
Eff such that the corresponding criterion vector dominates
𝑍
𝑙 then add 𝑥𝑙 to Eff and remove all solutions for which the

criterion vector is dominated by 𝑍𝑙.
Determine the set𝐻

𝑙
. If𝐻
𝑙
is empty, go to Step 1. In case

that𝐻
𝑙
= 𝑁
𝑙
, generate the incident edge 𝐸

𝑝
with the greatest

number of integer solutions and update Eff; set 𝐻
𝑙
= 𝑁
𝑙
\

{𝑝}. Add to 𝐿 the problem obtained by extending (𝑃
𝑙
) with

the efficient cut of (3) and go to Step 1.

4. Numerical Example

Consider the following MOILFP problem:

(MOILFP)

{{{{{{{{{{{{

{{{{{{{{{{{{

{

max 𝑍
1
=
30𝑥
1
+ 50𝑥

2
+ 94𝑥

3
+ 94𝑥

4
+ 27𝑥

5
+ 19𝑥

6
+ 91𝑥

7
− 8

98𝑥
1
+ 40𝑥

2
+ 78𝑥

3
+ 56𝑥

4
+ 29𝑥

5
+ 23𝑥

6
+ 43𝑥

7
+ 4

max 𝑍
2
=
14𝑥
1
+ 46𝑥

2
+ 76𝑥

3
+ 65𝑥

4
+ 46𝑥

5
+ 7𝑥
6
+ 35𝑥

7
+ 21

2𝑥
1
+ 18𝑥

2
+ 40𝑥

3
+ 51𝑥

4
+ 70𝑥

5
+ 98𝑥

6
+ 50𝑥

7
+ 49

s.t. 21𝑥
1
+ 3𝑥
2
+ 8𝑥
3
− 9𝑥
4
− 𝑥
5
+ 26𝑥

6
+ 34𝑥

7
≤ 41

33𝑥
1
+ 28𝑥

2
+ 29𝑥

3
+ 14𝑥

4
+ 9𝑥
5
− 7𝑥
6
− 9𝑥
7
≤ 49

28𝑥
1
− 𝑥
2
+ 40𝑥

3
+ 38𝑥

4
+ 28𝑥

5
+ 43𝑥

6
+ 35𝑥

7
≤ 106

𝑥
1
, 𝑥
7
∈ N.

(6)

Following the steps described above to solve (MOILFP), we
find the efficient set given in Table 2.

During the construction of the search tree, 50 nodes were
created: the root node, 36 nodes of the branching process,
and 13 of the cutting process; 19 nodes among them were
fathomed. Only 17 solutions were generated from a total of
42 feasible solutions (the entire feasible set).

In Table 1, we compare the final results obtained for the
present example using Chergui and Mouläı’s method [2] and
its improved version.

In what follows, we give the calculation details for some
nodes of the problem’s search tree.

Node 0. We first calculate the payoff table and thus the
nadir point by simply finding the individual optima of both
objectives with Seshan and Tikekar’s method. The results
obtained are shown in Table 3.

The nadir point is𝑁𝑑 = (30/23, 56/99).
We then define the linear program (𝑃

0
) as max{𝑐1𝑥 −

(83/47)𝑑1𝑥 | 𝑥 ∈ 𝑋
0
}, where 𝑐1 = (30, 50, 94, 94, 27, 19, 91),

𝑑1 = (98, 40, 78, 56, 29, 23, 43), 𝑥 = (𝑥
1
, . . . , 𝑥

7
)
𝑇, and 𝑋

0
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Table 5: Reduced gradient vectors corresponding to Node 29.

𝑁
29

𝑥
1

𝑥
2

𝑥
6

𝑥
8

𝑥
18

𝑥
19

𝑥
20

𝛾
1

−52290 −5734 −47474 −1758 −15500 −54530 −18874
𝛾
2

−57196 −2128 −89977 −2846 −14004 −98349 −30121

is the set of 𝑥 ∈ R7 satisfying the three constraints of the
(MOILFP) problem.

Recall that the objective function of (𝑃
0
) taken here 𝑐1𝑥−

(83/47)𝑑1𝑥 can be replaced by any linear objective function.
Set 𝐿 = {𝑃

0
} and Eff = 0. The resolution of (𝑃

0
) gives

the optimal solution 𝑥0 = (0, 0, 0, 0, 0, 0, 41/34)𝑇 which is not
integer. Since only 𝑥

7
is fractional this is the variable that we

branch on. We obtain the two following subproblems:

Subproblem 1 : (𝑃
1
) {

(𝑃
0
)

𝑥
7
≥ 2

Subproblem 2 : (𝑃
2
) {

(𝑃
0
)

𝑥
7
≤ 1,

(7)

where 𝐿 = {𝑃
1
, 𝑃
2
}.

Node 2. Select from 𝐿 the problem (𝑃
2
). The resolution

of this problem yields the optimal integer solution 𝑥2 =

(0, 0, 0, 0, 0, 0, 1)
𝑇 with the corresponding criterion vector

𝑍2 = (83/47, 56/99)
𝑇. Then Eff = {𝑥2}. The set of nonbasic

variables 𝑁
2
= {1, 2, 3, 4, 5, 6, 11} and the reduced gradient

vectors are given in Table 4.
We have 𝐻

2
= {1, 2, 3, 4, 5} ̸=𝑁

2
. We create a new

problem (𝑃
3
) by adding to (𝑃

2
) the constraint 𝑥

1
+ 𝑥
2
+ 𝑥
3
+

𝑥
4
+ 𝑥
5
≥ 1. Consider 𝐿 = {𝑃

1
, 𝑃
3
}.

Node 18. The potentially nondominated solutions found so
far are (83/47, 56/99)

𝑇, (177/103, 121/150)𝑇, and (43/30,

43/50)
𝑇.

The resolution of (𝑃
18
) gives the optimal solution

(1, 0, 0, 0, 0, 0, 0)
𝑇 with the criterion vector (11/51, 35/51)𝑇

which is dominated then Eff remains the same.
We have 𝐼𝑑18

1
= 121/281 < 𝑁𝑑

1
= 30/23; we then fathom

the Node 18.

Node 29. The potentially nondominated solutions found
so far are (83/47, 56/99)

𝑇, (177/103, 121/150)𝑇, (43/30,
43/50)

𝑇, and (30/23, 81/70)𝑇.
The resolution of (𝑃

29
) gives the optimal

solution (0, 0, 1, 0, 1, 0, 1)
𝑇 with the criterion vector

(102/77, 178/209)
𝑇. This latter is dominated by (43/30,

43/50)
𝑇; therefore, Eff remains the same. Here, the local

ideal point 𝐼𝑑29 is not dominated so we proceed to the
construction of the set𝐻

29
: see Table 5.

Since we have𝐻
29
= 0, we fathom the Node 29.

Node 43. The potentially nondominated solutions found
so far are (83/47, 56/99)

𝑇, (177/103, 121/150)𝑇, (30/23,
81/70)

𝑇, (227/143, 167/168)𝑇, and (34/25, 66/59)𝑇.
The resolution of (𝑃

43
) gives the optimal solution

(0, 1, 0, 1, 1, 0, 1)
𝑇 with the criterion vector (127/86,

213/238)
𝑇 which is dominated; then Eff remains the

same.
We have that 𝐼𝑑43 = (127/86, 309/331)

𝑇 is dominated by
(227/143, 167/168)

𝑇; we then fathom the Node 43.

5. Computational Results

The method described in Section 3 and the one presented in
[2] (referred in Table 6 asNewAlgorithm andOldAlgorithm,
respectively) were implemented in a Matlab 7.0 environ-
ment and tested on randomly generated MOILFP problems.
The data are uncorrelated integers uniformly distributed
in the interval [1, 99] for the numerator and denominator
coefficients, [−10, 50] for the numerator constant, [1, 50]
for the denominator constant, and [−10, 50] for constraints
coefficients. For each constraint, the right-hand side value
was set to 𝛼% of the sum of its coefficients. For each instance
(𝑛,𝑚, 𝑘) (𝑛 is the number of variables, 𝑚 the number of
constraints, and 𝑘 the number of objectives), a series of
10 problems were solved. Computational experiments were
carried out on a computer with 2,53GHz Core i3 Processor
and 3GB ofmemory. Table 6 summarizes the obtained results
where mean and maximum number of created nodes (Tree
Size), number of efficient solutions (|Eff|), and execution time
in seconds are reported.The xmark in the table refers tomore
than 2 hours of execution time in the CPU Time column and
a number of created nodes of order of millions in Tree Size
column.

Due to the important amount of information to be pro-
vided, we have not presented the number of nodes saturated
corresponding to each of the four fathoming rules used in
our method. However, we can give in Table 7, as an example,
what we have found for the 10 problems treated of the first
type instance that is with 20 variables, 5 constraints, and 2
objectives.

As expected, the results obtained by the new method are
much better compared to those obtained by the original one
in all the treated instances. Indeed, the oldmethod takesmore
than two hours of execution time for a number of variables
exceeding twenty whereas the new one does not reach half
an hour for sixty variables (972,01 sec. on average). One can
also notice the influence of the use of nadir and ideal points
in the search tree size; for example, in the biobjective case,
the number of nodes of the search tree corresponding to a
MOILFP problem with twenty variables is of order of tens
of thousands on average for the old method; this number of
nodes is attained only for sixty variables andmore for the new
method.We should also notice that themethodwe propose is
more suited for the biobjective case; this is because, first, the
computation of the nadir point can be done quickly using the
payoff table and, second, the less calculation performed (two
reoptimizations) to obtain the ideal point at each stage.
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Table 7: The results of the first type instance concerning the number of saturated nodes using each of the 4 fathoming rules.

Problem number Number of saturated nodes using
𝐻
𝑙

Nadir point Ideal point Infeasibility Total
1 0 16 65 37 118
2 0 38 5 33 76
3 4 13 234 131 382
4 2 34 512 612 1160
5 3 32 362 320 717
6 3 4 115 68 190
7 0 59 120 105 284
8 2 22 139 67 230
9 0 3 47 40 90
10 3 35 55 56 149

6. Conclusion

In this paper, we have presented an improvement of Chergui
and Mouläı’s method [2] which generates the whole efficient
set of MOILFP problems. One of the main changes that
we have made was the addition of two fathoming rules
using both ideal and nadir points resulting in a remarkable
computational savings. Also, we have proposed to linearize
one of the fractional objective functions to solve linear pro-
grams as subproblems rather than fractional linear programs
which facilitates the use of the dual simplex algorithm and
reduces the number of simplex iterations performed. We
should finally point out that this method does not require any
nonlinear optimization and its tree structure can be exploited
for construction of a parallel algorithm to handle large scale
problems.
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