5 research outputs found

    Computing in Matrix Groups without memory

    Get PDF
    Memoryless computation is a novel means of computing any function of a set of regis- ters by updating one register at a time while using no memory. We aim to emulate how computations are performed on modern cores, since they typically involve updates of sin- gle registers. The computation model of memoryless computation can be fully expressed in terms of transformation semigroups, or in the case of bijective functions, permutation groups. In this paper, we view registers as elements of a finite field and we compute linear permutations without memory. We first determine the maximum complexity of a linear function when only linear instructions are allowed. We also determine which linear functions are hardest to compute when the field in question is the binary field and the number of registers is even. Secondly, we investigate some matrix groups, thus showing that the special linear group is internally computable but not fast. Thirdly, we determine the smallest set of instructions required to generate the special and general linear groups. These results are important for memoryless computation, for they show that linear func- tions can be computed very fast or that very few instructions are needed to compute any linear function. They thus indicate new advantages of using memoryless computation

    On simulation in automata networks

    Full text link
    An automata network is a finite graph where each node holds a state from some finite alphabet and is equipped with an update function that changes its state according to the configuration of neighboring states. More concisely, it is given by a finite map f:QnQnf:Q^n\rightarrow Q^n. In this paper we study how some (sets of) automata networks can be simulated by some other (set of) automata networks with prescribed update mode or interaction graph. Our contributions are the following. For non-Boolean alphabets and for any network size, there are intrinsically non-sequential transformations (i.e. that can not be obtained as composition of sequential updates of some network). Moreover there is no universal automaton network that can produce all non-bijective functions via compositions of asynchronous updates. On the other hand, we show that there are universal automata networks for sequential updates if one is allowed to use a larger alphabet and then use either projection onto or restriction to the original alphabet. We also characterize the set of functions that are generated by non-bijective sequential updates. Following Tchuente, we characterize the interaction graphs DD whose semigroup of transformations is the full semigroup of transformations on QnQ^n, and we show that they are the same if we force either sequential updates only, or all asynchronous updates

    Computing in permutation groups without memory

    No full text
    Memoryless computation is a new technique to compute any function of a set of registers by updating one register at a time while using no memory. Its aim is to emulate how computations are performed in modern cores, since they typically involve updates of single registers. The memoryless computation model can be fully expressed in terms of transformation semigroups, or in the case of bijective functions, permutation groups. In this paper, we consider how efficiently permutations can be computed without memory. We determine the minimum number of basic updates required to compute any permutation, or any even permutation. The small number of required instructions shows that very small instruction sets could be encoded on cores to perform memoryless computation. We then start looking at a possible compromise between the size of the instruction set and the length of the resulting programs. We consider updates only involving a limited number of registers. In particular, we show that binary instructions are not enough to compute all permutations without memory when the alphabet size is even. These results, though expressed as properties of special generating sets of the symmetric or alternating groups, provide guidelines on the implementation of memoryless computation.<br/

    Computing in Permutation Groups Without Memory

    Get PDF
    Memoryless computation is a modern technique to compute any function of a set of registers by updating one register at a time while using no memory. Its aim is to emulate how computations are performed in modern cores, since they typically involve updates of single registers. The memoryless computation model can be fully expressed in terms of transformation semigroups, or in the case of bijective functions, permutation groups. In this paper, we consider how efficiently permutations can be computed without memory. We determine the minimum number of basic updates required to compute any permutation, or any even permutation. The small number of required instructions shows that very small instruction sets could be encoded on cores to perform memoryless computation. We then start looking at a possible compromise between the size of the instruction set and the length of the resulting programs. We consider updates only involving a limited number of registers. In particular, we show that binary instructions are not enough to compute all permutations without memory when the alphabet size is even. These results, though expressed as properties of special generating sets of the symmetric or alternating groups, provide guidelines on the implementation of memoryless computation
    corecore