1,997 research outputs found

    Free subgroups of free products and combinatorial hypermaps

    Full text link
    We derive a generating series for the number of free subgroups of finite index in Δ+=ZpZq\Delta^+ = \mathbb{Z}_p*\mathbb{Z}_q by using a connection between free subgroups of Δ+\Delta^+ and certain hypermaps (also known as ribbon graphs or "fat" graphs), and show that this generating series is transcendental. We provide non-linear recurrence relations for the above numbers based on differential equations that are part of the Riccati hierarchy. We also study the generating series for conjugacy classes of free subgroups of finite index in Δ+\Delta^+, which correspond to isomorphism classes of hypermaps. Asymptotic formulas are provided for the numbers of free subgroups of given finite index, conjugacy classes of such subgroups, or, equivalently, various types of hypermaps and their isomorphism classes.Comment: 27 pages, 3 figures; supplementary SAGE worksheets available at http://sashakolpakov.wordpress.com/list-of-papers

    Simple recurrence formulas to count maps on orientable surfaces

    Full text link
    We establish a simple recurrence formula for the number QgnQ_g^n of rooted orientable maps counted by edges and genus. We also give a weighted variant for the generating polynomial Qgn(x)Q_g^n(x) where xx is a parameter taking the number of faces of the map into account, or equivalently a simple recurrence formula for the refined numbers Mgi,jM_g^{i,j} that count maps by genus, vertices, and faces. These formulas give by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large gg. In the very particular case of one-face maps, we recover the Harer-Zagier recurrence formula. Our main formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It is similar in look to the one discovered by Goulden and Jackson for triangulations, and indeed our method to go from the KP equation to the recurrence formula can be seen as a combinatorial simplification of Goulden and Jackson's approach (together with one additional combinatorial trick). All these formulas have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved.Comment: Version 3: We changed the title once again. We also corrected some misprints, gave another equivalent formulation of the main result in terms of vertices and faces (Thm. 5), and added complements on bivariate generating functions. Version 2: We extended the main result to include the ability to track the number of faces. The title of the paper has been changed accordingl

    Black Holes, Instanton Counting on Toric Singularities and q-Deformed Two-Dimensional Yang-Mills Theory

    Full text link
    We study the relationship between instanton counting in N=4 Yang-Mills theory on a generic four-dimensional toric orbifold and the semi-classical expansion of q-deformed Yang-Mills theory on the blowups of the minimal resolution of the orbifold singularity, with an eye to clarifying the recent proposal of using two-dimensional gauge theories to count microstates of black holes in four dimensions. We describe explicitly the instanton contributions to the counting of D-brane bound states which are captured by the two-dimensional gauge theory. We derive an intimate relationship between the two-dimensional Yang-Mills theory and Chern-Simons theory on generic Lens spaces, and use it to show that the correct instanton counting is only reproduced when the Chern-Simons contributions are treated as non-dynamical boundary conditions in the D4-brane gauge theory. We also use this correspondence to discuss the counting of instantons on higher genus ruled Riemann surfaces.Comment: 27 page
    corecore