5 research outputs found

    Making the Best of Limited Memory in Multi-Player Discounted Sum Games

    Get PDF
    In this paper, we establish the existence of optimal bounded memory strategy profiles in multi-player discounted sum games. We introduce a non-deterministic approach to compute optimal strategy profiles with bounded memory. Our approach can be used to obtain optimal rewards in a setting where a powerful player selects the strategies of all players for Nash and leader equilibria, where in leader equilibria the Nash condition is waived for the strategy of this powerful player. The resulting strategy profiles are optimal for this player among all strategy profiles that respect the given memory bound, and the related decision problem is NP-complete. We also provide simple examples, which show that having more memory will improve the optimal strategy profile, and that sufficient memory to obtain optimal strategy profiles cannot be inferred from the structure of the game.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Computing Optimal Strategies to Commit to in Stochastic Games

    No full text
    Significant progress has been made recently in the following two lines of research in the intersection of AI and game theory: (1) the computation of optimal strategies to commit to (Stackelberg strategies), and (2) the computation of correlated equilibria of stochastic games. In this paper, we unite these two lines of research by studying the computation of Stackelberg strategies in stochastic games. We provide theoretical results on the value of being able to commit and the value of being able to correlate, as well as complexity results about computing Stackelberg strategies in stochastic games. We then modify the QPACE algorithm (MacDermed et al. 2011) to compute Stackelberg strategies, and provide experimental results

    Computing optimal strategies to commit to in stochastic games

    No full text
    Significant progress has been made recently in the following two lines of research in the intersection of AI and game theory: (1) the computation of optimal strategies to commit to (Stackelberg strategies), and (2) the computation of correlated equilibria of stochastic games. In this paper, we unite these two lines of research by studying the computation of Stackelberg strategies in stochastic games. We provide theoretical results on the value of being able to commit and the value of being able to correlate, as well as complexity results about computing Stackelberg strategies in stochastic games. We then modify the QPACE algorithm (MacDermed et al. 2011) to compute Stackelberg strategies, and provide experimental results.
    corecore