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In this paper, we establish the existence of optimal boundedmemory strategy profiles in multi-player
discounted sum games. We introduce a non-deterministic approach to compute optimal strategy
profiles with bounded memory. Our approach can be used to obtain optimal rewards in a setting
where a powerful player selects the strategies of all players for Nash and leader equilibria, where in
leader equilibria the Nash condition is waived for the strategy of this powerful player. The resulting
strategy profiles are optimal for this player among all strategy profiles that respect the given memory
bound, and the related decision problem is NP-complete. We also provide simple examples, which
show that having more memory will improve the optimal strategy profile, and that sufficient memory
to obtain optimal strategy profiles cannot be inferred from the structure of the game.

1 Introduction

Discounted sum games [18, 17] are the stochastic games with quantitative objectives that have been
introduced by Shapley [18]. They are played on a finite directed graph without sinks, where each vertex
is owned by one of the players. Intuitively, they are played by placing a token on the graph, which is
moved forward by the players. We consider an initial probability distribution over all vertices to select
the start vertex. As an example, refer to Figure 1, where vertex 1, vertex 2 or vertex 3 each can be
taken as a start (or: initial) vertex with probability13. Initially, the token is placed on a start vertex.
Whenever the token is on a vertex, the player who owns this vertex will select an outgoing edge and
move the token along this edge. This way, the players construct an infinite play. Quantitative games
[3] are good models for studying non-terminating programs with multiple components that interact in
non-cooperation mode. In quantitative games, players havegoals defined by the payoffs on the edges
(sometimes on the vertices). For these payoffs, the playershave quantitative targets, such as maximising
their individual limit average or the discounted sum of their individual rewards, where the value of a
play is computed under a discount factor. Solutions to thesegames are the strategy profiles that consists
of strategies—recipes how to play—for each player. However, in a realistic situation, these solutions
need to be implementable, and thus players have to cope with limited resources such as limited memory.
Strategy profiles should also satisfy same basic consistency constraints. The reason for this is that the
players are assumed to be rational. The lowest level of rationality for a player is to take a look at her
strategy profile, and to check if she would gain by changing her own strategy. Strategy profiles where all
strategies pass this test arestablein terms of Nash equilibria [13, 15, 16]. Thus, in a Nash equilibrium,
no player benefits from changing her strategy unilaterally.

The second eminent class of equilibria goes back to von Stackelberg and is referred to as Stackelberg
equilibria orleader equilibria[21]. In economic game theory, leader equilibria refer to a setting, where
a powerful player can move first, or announce her move first, rather than moving at the same time as
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Figure 1:A game with three players and no memoryless Nash (nor leader)equilibrium for discount factorλ = 1
2.

The start vertex is picked uniformly at random out of the vertices 1, 2, 3 controlled by players 1, 2, 3, respectively.
Each edge is labelled with a reward vector(r1, r2, r3) wherer i is the reward playeri gets for traversing that edge.

the remaining players. This ‘right of the first move’ provides her with some advantage over the other
players. Broadly speaking, the Nash requirements of havingno incentive to deviate only affects the
remaining players, but not the leader herself. Leader equilibria have recently been studied as a more
general and broader class of strategy profiles than Nash equilibria, calledleader strategy profiles[10], in
the context of multi-player mean payoff games [23, 5]. Theleadercan assign the strategies to all players,
including herself. While we still require the strategy profile to be stable in that theother players do not
have an incentive to deviate, the leader herself may be in a position to improve over her current strategy
by deviating unilaterally. Thus, every Nash equilibrium isa leader strategy profile, but not every leader
strategy profile is Nash. We call strategy profiles that are optimal for the leaderleader equilibria (LE).
The more relaxed condition of a leader strategy profile implies that leader equilibrium can be selected
from a larger base (cf. Figure 3). The leader’s payoff can therefore improve as compared to Nash
equilibria. In this paper, we study leader equilibria and Nash equilibria for the leader in discounted sum
games (DSGs) that use bounded memory.

1.1 Related Work

The theory of stochastic games was introduced by Shapley in [18]. He showed that every two player
discounted zero-sum game has a value and that optimal positional strategies exist for both the players.
This idea is further extended in [7] to establish the existence of stationary equilibria in stochastic multi-
player games. Bewley and Kohlberg [2] have shown that, in twoplayer zero-sum undiscounted stochastic
games where both the set of action and the state spaces are finite, stationary optimal strategies exist for
both the players. Gimbert and Zielonka [9] have studied infinite two player antagonistic games with more
general reward functions. They have given sufficient conditions that ensure both the players to have
positional (memoryless) optimal strategies. Letchford etal. [14] have considered computing optimal
Stackelberg strategies in stochastic games. They studied this in context with correlation equilibria and
discuss the value of correlation and commitment in stochastic games. Berg and Kitti [1] have studied
subgame perfect pure strategy equilibria in DSGs. They analyse subgame perfect equilibria in games
with perfect information. Brihaye et al. [3] have studied the existence of simple Nash equilibria in non-
terminating games with various mixed reward functions. Thestrategies used in this paper are inspired by
the strategies introduced in [8]. Gupta and Schewe [10] havestudied the optimal leader strategy profiles
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in context with multi-player mean payoff games.

1.2 Results

This paper extends the use of leader equilibria to multi-player DSGs. While all of the above results
refer to equilibria that use either none or very small memory—memorising the player who deviated—we
show that such simple strategies do not suffice in the case of leader equilibria. This is owed to mixing
the optimality requirements from leader equilibria with discounting. In DSGs, we show that, as a result,
the leader can benefit from more memory (Lemma 6), and that there are actually cases, where infinite
memory is needed for leader equilibria (Theorem 7 and Theorem 8) and Nash equilibria (Theorem 9).

We do not hold strategies that require infinite memory to be realistic, and therefore discuss the con-
struction of strategies that use only bounded memory. We first show that memoryless leader equilibria do
not always exists, a simple corollary from the existence of games without memoryless subgame perfect
equilibrium [12]. The example from Figure 1, inspired by [12], has no memoryless Nash equilibria.
Therefore, when the leader is not among the three players whoown the three central vertices, there is
no memoryless leader equilibrium for this game. There even exists a game with a fixed starting position
where no pure Nash equilibria exist [11].

This problem, however, seems artificial when reviewing traditional classes of Nash equilibria. They
often use the traditional form of ‘reward and punish’ strategy profiles [8, 3, 10]. Strategy profiles define
a play, the play that ensues when all players follow the strategies assigned to them. Reward and punish
strategy profiles broadly consist of this play, and an agreement that the first player who deviates is
punished: all other players collude henceforth, followingthe new goal to harm the deviator.

Upon deviation, reward and punish strategy profiles therefore turn into two player games, and thus
enjoy the usual memoryless determinacy. The memory needed for this is tiny: one only needs to store
who has deviated. We therefore argue that the resource bounds should refer to the construction of the
main play, i.e., main path before deviation.

We give a simple non-deterministic polynomial time approach for assigning reward and punish strate-
gies that meet or exceed a given payoff bound for the leader and uses memory only within a given bound.
In Section 5, we show that the decision problem whether a purestrategy with bounded memory that gives
a reward greater than or equal to some threshold value existsis NP-complete.

2 Preliminaries

A multi-player discounted sum game (MDSG) is a game played onthe finite directed weighted graphG
defined as a tuple〈P,V,{Vp | p∈ P},∆,A,T,{tp : V ×A→Q | p∈ P}〉, whereP is a finite set of players,
V is a finite set of vertices,∆ : V → [0,1] is a probability distribution overV, which for eachv ∈ V
specifies the probability of selectingv as the start vertex.{Vp | p∈ P} is a partition of the verticesV into
the setsVp of vertices owned by playerp, A is a finite set of actions,T : V ×A→V is a set of transitions
that maps vertices and actions to vertices, and{tp | p ∈ P} is a family of reward functions defined as
tp : V ×A→ Q for all p∈ P that assigns, for each respective playerp, a reward for each actiona that
is taken from a vertexv (or, likewise, for the transition taken). The game is playedby moving a token
along the edges of the graph, starting from the start vertex as given by the probability distribution∆.
We use this initial probability distribution to select a start vertex. Each vertexv belongs to exactly one
playerp. At vertexv, the player who ownsv selects the next actiona. The token is then moved forward
to the vertex as given by the transitionT(v,a). This results in an infinite path, called aplay. We denote
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the reward for playerp at any transitionT(v,a) by tp(v,a). An MDSG is called a zero-sum game if,
for all verticesv∈V and for all actionsa∈ A, ∑p∈P tp(v,a) = 0 holds. The payoff at every transition is
discounted by a discount factorλ , where 0< λ < 1. In DSGs, the payoff (or: reward) for playerp at
the ith transition is given bytp(vi ,ai) ·λ i . For an infinite playπ = v0,a0,v1, . . ., we denote the reward for
playerp by rp(π) = ∑∞

i=0 tp(vi ,ai) ·λ i.
The way that the respective playerp chooses the successor vertex is defined by astrategyσp. We

considerpure strategies, which are functionsσp : (VA)∗Vp →A from initial sequences of plays to actions.
We focus on two types of pure strategies, memoryless and bounded memory strategies. A pure mem-
oryless strategy (or: a positional strategy) is a strategy,in which the choice of the next vertex depends
only on the current position, whereas a pure bounded memory strategy is a strategy, where the choice
of next vertex depends on finite memory. For a bounded memoryM (whereM is simply a finite set of
fixed size, the memory bound with a dedicated initial valuem0), we define two functions: the memory
update function, and the memory usage function that provides us with the action that is to be selected.
The memory usage function is a mappingU : M×V → A that maps a memory state and a vertex to an
action. In the classic memory model, the memory update function M : M× (V ×A)→ M defines how
the memory is updated; it maps a memory state, a vertex, and anaction to a new memory state. Thus,
the memory works as a Moore machine without output, whereM is the memory andM is the transition
function.

As discussed in the introduction, the example from Figure 1 shows that this memory model does
not always lead to an equilibrium, at least not for arbitraryM. We therefore define a memory model for
reasoning with bounded resources (cf. Corollary 14). We refer to this model ascompliance memory, as
it only refers to the histories, where all players have complied to their strategies. This justifies apartial
memory update functionM : M×(V×A)→M, whereM (m;v,a) is defined if, and only if,a=U (m,v).
When the actiona differs from the action defined by the memory usage function,the system remembers
only who caused the deviation, and then switches into a different mode, where it uses a memoryless
strategy (cf. Theorem 12 and Corollary 13).

The input alphabetV ×A is a product of the last vertex, the action selected, and the vertex reached
on a transition. A family of strategiesσ = {σp | p ∈ P} is called a strategy profile. A strategy
profile σ defines an expected reward, denotedEp(σ) for each playerp. In this paper, we shall fo-
cus on the reward of positional and bounded memory strategy profiles. For a positional strategy
profile σ , the payoff from every vertex is well defined. By abuse of notation, we useEp(σ ,v) =

tp
(

v,σ(v)
)

+ λEp

(

σ ,T
(

v,σ(v)
)

)

to denote the payoff for playerp when starting in a vertexv. Note

that this impliesEp(σ) = ∑v∈V ∆(v)Ep(σ ,v).

Definition 1 (Nash equilibrium) A strategy profile is a Nash equilibrium if no player has an incentive
to change her strategy, provided that all other player keep theirs. That is, for all players p∈ P and for
all σ ′ = (σ ′

q)q∈P with σq = σ ′
q for all q 6= p,Ep(σ)≥ Ep(σ ′) holds.

Definition 2 (leader strategy profile) A strategy profile is aleader strategy profile[10] for a designated
player l (for leader), if nootherplayer has an incentive to deviate her strategy. That is, if,for all players
p∈ Pr{l} and for all σ ′ = {σ ′

q | q∈ P} with σq = σ ′
q for all q 6= p,Ep(σ)≥ Ep(σ ′) holds.

A Nash resp. leader strategy profile isoptimal for a class of strategies, if no other strategy profile of this
class gives a higher payoff for the leader.

Definition 3 (leader equilibrium) An optimal leader strategy profile for a class of strategies is called a
leader equilibrium.
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Figure 2:discounted sum game with discount factor1
2

In two-player DSGs, the set of vertices inG is partitioned into two sets where each vertex belongs to
exactly one of the players and the player who owns the vertex decides the next move. For a MDSG
G = 〈P,V,{Vp | p ∈ P},∆,A,T,{tp : V ×A → Q | p ∈ P}〉, we define the two-player zero-sum DSG
G = 〈P,V,{Vp,Vo},∆,A,T,{tp, to}〉 played between playerp and an opponento, where the nodes ofp
ando partitionV into two sets (Vo =V rVp) and their goals are antagonistic(to(v,a) 7→ −tp(v,a)). Note
that not all MDSGs with two players in game are two-player games in this sense (two-player games need
to be antagonistic zero-sum games). We denote the expected outcome for playerp in a two-player game
that starts at any vertexv by rp(v). A game is called memoryless determined if all players have optimal
memoryless strategies. Two-player DSGs are memoryless determined [23]: both players have an optimal
positional strategy.

Theorem 4 [23] Two-player DSGs are memoryless determined.

3 Leader and Nash equilibria

In this section, we show that leader equilibria are superiorto Nash equilibria in simple zero-sum DSGs.
For this, consider the three-player game from Figure 2. One of the players, player 2, acts as theleader.
The game is played on a simple graph with three vertices, named 1, 2, and 3, owned by the respective
player with the same name. Note that we denote the vertices owned by leader (resp. other players)
by square (resp. circle) vertices. We used the same notationthroughout the paper. In all remaining
examples, we select an initial vertex with probability 1, and therefore mark the initial vertex with an
incoming arrow. The game graph with the payoff vectors of each transition is shown in Figure 2, and we
use a discount factor ofλ = 1

2. The payoff vectors represent the payoff of player 1, the leader, and player
3, in this order. Initially, player 1 can choose to play to vertex 2 or she can choose to remain in vertex 1.
She plays to vertex 2 only if the leader, in her strategy profile, chooses to remain in vertex 2 for a while.
At vertex 2, the leader has different options.

She can choose to play to vertex 3 (this is the option where shemaximises her reward), she can
choose to remain in 2 for a while, before continuing to vertex3, or she can stay in vertex 2 forever.
It is easy to notice that, when in vertex 2, the leader will immediately continue to vertex 3 in all Nash
equilibria. Consequently, player 1 would never play to vertex 2 from vertex 1: staying in vertex 1 forever

Nash SPs
LSPsGeneral SPs

Figure 3:General strategy profiles⊇ Leader strategy profiles⊇ Nash strategy profiles
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will yield a payoff of 0, while moving to vertex 2 in roundi would, forλ = 1
2, result in a payoff of− 3

2i .
Thus, the only play that can result from a Nash equilibrium isthe play 1ω , where the overall reward for
all participating players is 0. However, in a leader equilibrium the leader stays twice in vertex 2 and then
progresses to vertex 3. In this case, the leader can assign player 1 the strategy to immediately progress to
vertex 2, resulting in the play 1,2,2,2,3ω . This will provide an overall payoff of 0 for player 1, 1.5 for
the leader, and−1.5 for player 3.

1 2 34

−→
0

−→
0

−→
0

1,0 0,501− ε,0

Figure 4: increasing the memory helps

Theorem 5 Compared to Nash equilibria, leader equilibria may result in higher, but will never provide
smaller rewards for the leader.

Proof. While the example has proven the ‘higher’ part, note for the ‘not smaller’ part that all Nash
equilibria are leader equilibria, such that a leader equilibrium cannot be inferior to a Nash equilibrium.
They can, of course, be equal when a leader equilibrium is Nash. This is, for example, the case when
leader owns no vertex. Thus, leader equilibria gives more leeway to the leader for the selection of optimal
strategy profiles and forms a larger base of strategy profilesto choose from, as shown in Figure 3.

Note that the game from Figure 2 can be used to argue that having memory helps, and having more
memory helps more. Among the positional strategies of the leader, staying in vertex 2 forever (with an
overall payoff of 1 for player 1 and the leader, and−2 for player 3, respectively) is superior to continuing
immediately to vertex 3 (because in the latter case player 1 will stay in vertex 1, see above). So, while
still superior to the only Nash equilibrium, it is inferior to the strategy described above, which uses a tiny
amount of memory. To observe that, in general, more memory helps more, consider the situation where
one letsλ grow towards one. It is easy to see that, the closerλ gets to one, the longer leader would
stay in vertex 2 in leader equilibrium for the respective discount factor. The optimal memory bounded
strategy for the leader therefore improves with the memory we allow for.

Lemma 6 The optimal reward for the leader in a Nash or leader equilibrium improves with the increase
of the available memory.

It now becomes tempting to assume that we could use this observation to identify a situation where an
optimal leader strategy profile is reached. That is, given a fixed discount factor, is there ak∈N such that
an optimal leader strategy profile for memoryk is considered optimal for infinite memory? The answer
to this question is negative.

Theorem 7 For any fixed discount factorλ , there is no memory bound k such that an optimal leader
strategy profile with memory bound k is an optimal leader strategy profile.

Proof. For this, we refer to the example from Figure 4, where leader acts as player 2. Here, we argue that
having a finite memory at the vertices is sufficient for a leader equilibrium, but the effect of increasing
the memory is different than in our first example. Irrespective of the discount factor it is apparent that the
leader needs to promise sufficiently many, says, loops in vertex 2 so that∑s−1

i=0 λ i ≥ 1−ε
1−λ . Consequently,

the number of repetitions grows to infinity, for allλ ∈]0,1[, and withε falling to 0. If the memory is
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smaller than minimal suchs, then the leader would receive an overall reward of 0, eitherbecause she
promises to stay for more than the memory bound many steps (and thus for ever) in vertex 2, or by not
promising to do so and hence tempting the first player to move to vertex 4. If, on the other hand, the
memory size is at leasts, then the leader has enough memory to play the optimal pure strategy to move
to vertex 3 afters loops in vertex 2.

Finally, so far for a fixed discount factor and a fixed game graph with weights, bounded memory was
sufficient to guarantee optimal reward to the leader. We now show that infinite memory is sometimes
needed in a leader equilibrium.

Theorem 8 Optimal leader strategy profile may require infinite amount of memory even for a fixed two-
player game with a fixed discount factor.

Proof. We show this for a two-player game with three vertices depicted in Figure 5, where the leader is
player 2. Vertices 1 and 3 belong to player 1 and vertex 2 belongs to the leader. The rewards are depicted
in the order (player 1, player 2) and we setλ = 2/3. Notice that player 1 will move to vertex 3 unless the
leader can guarantee him a reward≥ −1/λ = −3/2 from vertex 2, because only then his total reward
would be≥ 1−λ/λ = 0. On the other hand, in the optimal leader strategy, the leader will try to give
him exactly that much, because only then her payoff would be equal toλ/λ = 1. Proposition 1 in [4]
shows that the leader can achieve this value with a pure strategy, but only if she has an infinite amount of
memory.

1 23
1,0−→

0
−1,1

−→
0

−→
0

Figure 5:leader benefits from infinite memory

We can show the same for Nash equilibrium, but with 3-players. Also, we show that the optimal
payoff of a player cannot be approximated by considering strategies with bounded memory only.

Theorem 9 An optimal Nash equilibrium may require infinite amount of memory even for a fixed 3-
player game with a fixed discount factor. Moreover, leader’soptimal payoff can be arbitrary far away
from her optimal payoff for bounded memory strategies.

Proof. To show this, we refer to the Figure 6. We have three players here – player 1, player 2 and leader.
The vertex 1, vertex 2 and vertex 3 are owned by player 1, player 2 and leader respectively. Rewards are
given on the edges and are shown in the order (player 1, player2, leader). We set the value of discount
factor to beλ = 2/3. Starting from the initial vertex (vertex 1), player 1 can either go to the terminal
state that has a reward of 0 for all the three players, or can move to the vertex 2. Similarly, at vertex 2,
player 2 can either go to the terminal state or move to the leader vertex.

For an optimal strategy profile, leader has to promise to bothplayer 1 and player 2 a reward of at least
3/2 at vertex 3, as otherwise at least one of them would prefer toterminate the game at their respective
vertices. On the other hand, no matter what leader does, their rewards at vertex 3 sum up to 3, because
the sum of their payoffs on the edges from vertex 3 is constantand equal to 1. Therefore, the leader has
to promise to both player 1 and player 2 a reward of exactly 3/2. Proposition 1 in [4] shows that the
leader can achieve this value with a pure strategy, but only if she has an infinite amount of memory. The
overall rewards of player 1 and player 2 from such a play 1·2 ·3ω would be 0. Note that this strategy
profile would be a Nash equilibrium where leader’s payoff is 2.



A. Gupta, S. Schewe, and D. Wojtczak 23

Finally, if the leader has only bounded amount of memory thenone of the other players has to receive
less than 0 from a play 1·2·3ω and would prefer to terminate the game before it reaches vertex 3. This
implies that the optimal payoff of the leader for bounded strategies is 0, while for general strategies it is
2. The difference between these two can be made arbitrarily large by scaling the payoffs on the edges in
this game.

1 2 3
(−1,−1,1)−→

0

−→
0

−→
0

(1,0,1)

(0,1,1)

−→
0

−→
0

Figure 6:leader benefits from infinite memory in Nash equilibria

Thus, an optimal strategy profile for a given player can be formed from a memoryless strategy, finite
memory strategy or from infinite memory. More memory would, therefore, give more leeway to leader
to select an optimal strategy profile (cf. Figure 7).

4 Reward and punish strategy profiles in discounted sum games

In this section, we show that for a playπ, we could establish if there exists a leader (or Nash) strategy
profile σ with π = πσ , and, moreover, its extension to such a strategy profile is simple. For this, we first
introduce reward and punish strategy profiles.

In reward and punish strategy profiles [10], the leader assigns a strategy to each player and each
of them co-operates to produce a playπ while playing in accordance with the assigned strategies. As
soon as one player deviates, the remaining players team up with the leader and co-operate against the
deviating playeri. That is, they will henceforth follow the goal to minimise the payoff of playeri, and act
jointly as the antagonist ofi in the underlying two-player DSG. Thus, in the resultant two-player game,
while the objective of playeri is still the same, the objective of all other players (including leader), is
changed and has become to minimise the payoff of playeri. Assuming that positional optimal strategies
in this two-player DSG are fixed,π thus defines a reward and punish strategy profile, which we denote
by rps(π). We now argue that

1 state

2 states
3 states

....
infinite memory

Figure 7:more memory states⇒ more strategies
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1. every leader resp. Nash strategy profileσ can be transformed into a leader resp. Nash strategy
profile σ ′ with πσ = πσ ′ , and thus with similar rewards for all players, and

2. give necessary and sufficient conditions for a playπ to be defined by some leader resp. Nash
strategy profile.

We first discuss the necessary conditions for a path to be the outcome of a Nash (resp. leader) equi-
librium, and then show that it is sufficient for a path to be theoutcome of a Nash (resp. leader) reward
and punish strategy profile.

Lemma 10 If π = v0,a0,v1, . . . is the outcome of a Nash (resp. leader) equilibrium, then, for all j ∈ N

and all players p (resp. all players p6= l), r p(v j)≤ ∑∞
i=0 tp(v j+i ,a j+i) ·λ i holds.

PROOF. We assume for contradiction that the condition is violated. We therefore select aj ∈N, and
a playerp (for leader equilibria a playerp 6= l ) such thatrp(v j)> ∑∞

i=0 tp(v j+i ,a j+i) ·λ i . We then change
the strategy of playerp to follow her strategy from the two player discounted-sum game from positionj
onwards. The resulting playπ ′ = v′0,a

′
0,v

′
1, . . . with v′i = vi for all i ≤ j anda′i = ai for all i < j satisfies

rp(π ′) = ∑∞
i=0 tp(v′i ,a

′
i) ·λ i = ∑ j−1

i=0 tp(v′i ,a
′
i) ·λ i + λ j ∑∞

i=0 tp(v′j+i ,a
′
j+i) ·λ i

≥ ∑ j−1
i=0 tp(vi ,ai) ·λ i + λ j rp(v j) > ∑ j−1

i=0 tp(vi ,ai) ·λ i + λ j ∑∞
i=0 tp(v j+i,a j+i) ·λ i

= ∑∞
i=0 tp(vi ,ai) ·λ i = rp(π).

Lemma 11 If π = v0,a0,v1, . . . satisfies rp(v j) ≤ ∑∞
i=0 tp(v j+i ,a j+i) ·λ i for all j ∈ N and all players p

(resp. all players p6= l), thenrps(π) is a Nash (resp. leader) equilibrium.

PROOF. We assume for contradiction that a playerp (for leader equilibria a playerp 6= l ) has an
incentive to deviate, and that the first position where player p selects a different action isj ∈ N. Let
π ′ = v0,a′0,v

′
1, . . ., wherev′i = vi for all i ≤ j anda′i = ai for all i < j, be the resulting play. We have,

rp(π ′) = ∑∞
i=0 tp(v′i ,a

′
i) ·λ i = ∑ j−1

i=0 tp(v′i ,a
′
i) ·λ i + λ j ∑∞

i=0 tp(v′j+i ,a
′
j+i) ·λ i

≤ ∑ j−1
i=0 tp(vi ,ai) ·λ i + λ j rp(v j) ≤ ∑ j−1

i=0 tp(vi ,ai) ·λ i + λ j ∑∞
i=0 tp(v j+i,a j+i) ·λ i

= ∑∞
i=0 tp(vi ,ai) ·λ i = rp(π).

The first ‘≤’ is implied by the definition ofrps, as the remaining players will play antagonistic top,
such thatp cannot yield a better result thanrp(v j) starting fromv j . Together with the observation that
pure Nash equilibria always exist [3]—leader equilibria can be formed by all players (playing as if they
played their respective two-player discounted sum game)—these lemmas provide the following theorem.

Theorem 12 Pure Nash and leader strategy profiles always exist in MDSGs,and for finding optimal
ones, it suffices to consider reward and punish strategies.

This is particularly interesting when we focus on the implementable strategy profiles. A strategy
is implementable, if it is realisable with finite memory. We are particularly interested in finite memory
strategies with a given small boundb on the memory used. Note that, for reward and punish strategy
profiles, we do not have to record the reaction upon deviation, as it is implicitly described by the pun-
ishment part. Thus, we do not want to reason about the trivialpart in the strategy, and therefore do not
count the tiny bit of memory required for the punishment part. This part does not need much memory: it
suffices to memorise which player is responsible for the deviation and at which vertex. When we allow
for finite memoryM, this effectively defines a larger game, on which a memoryless strategy is used.
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For a gameG = 〈P,V,{Vp | p∈ P},∆,A,T,{tp : V ×A→ Q | p∈ P}〉 and finite memoryM with initial
memorym0 ∈ M, we can simply defineG M = 〈P,V ′,{V ′

p | p∈ P},∆′,A,T ′,{t ′p : V ′×A → Q | p∈ P}〉
with V ′ =V ×M, V ′

p =Vp×M, T ′ : V ′×A→V ′ is a set of transitions that maps vertices and actions to
vertices,∆′(v,m) = ∆(v) if m= m0 and∆′(v,m) = 0 otherwise, andt ′p : ((v,m),a) 7→ tp(v,a).

Corollary 13 Pure memoryless, and, for a given memory bound b, pure bounded memory Nash and
leader strategy profiles always exist in MDSGs, and for finding the optimal ones, it suffices to consider
reward and punish strategies.

Corollary 14 For optimal reward and punish strategy profiles, it suffices to consider the memory needed
before deviation, i.e., compliance memory and additional kmemory states for the k followers, rather
than considering an arbitrary memory M.

5 Constraints for finite pure reward and punish strategy profiles

We first state that optimal strategies exist for all memory bounds. This is a simple implication of Theorem
12 and the finite space of candidate strategy profiles.

Lemma 15 For all MDSGs and for all memory bounds, optimal strategy profiles exist among the Nash
and leader equilibria.

We infer a necessary and sufficient constraint system for thestrategy profiles in Nash and leader
equilibria in MDSGs. Theorem 12 implies that, whenever a player deviates at some vertexv, then the
remainder of the game resembles a two-player game that starts at v. The player who owns vertexv
therefore has an incentive to deviate if, and only if, her payoff from now onwards would be less than the
payoff she receives in this underlying two-player game. This provides us with a first necessary constraint,
namely

• at any historyh that ends in a vertexv owned by playerp∈ P, Ep(σ ,h)≥ rp(v).

For positional (or: memoryless) reward and punish strategiesσ , the subtrees in all historiesh that
end inv coincide, such that one can writeEp(σ ,v) instead ofEp(σ ,h).

For pure strategies, we require for every vertexv that

• for all playersp∈ P, Ep(σ ,v) = tp
(

v,σ(v)
)

+λEp

(

σ ,T
(

v,σ(v)
)

)

.

The actionσ(v) from these constraints refers to the action selected at vertex v by playerp in strategy
profile σ . Once these actions are fixed, we therefore have a simple linear equation system of full degree,
that can easily be solved. To determine if the resulting system is in equilibrium we can simply check if
the first set of constraints hold for all players (Nash equilibrium) or for all players but the leader (leader
equilibrium). To validate that there is a pure strategy profile of a predefined quality can therefore be
checked in nondeterministic polynomial time.

Lemma 16 We can check, if there is a positional strategy profile that meets or exceeds a given threshold
t for the leader reward and is a leader or Nash equilibrium, innondeterministic polynomial time.

For strategy profiles with bounded memory, we can simply use the extended memory game instead.
We can also prove NP hardness of this problem using standard reduction from 3-SAT as in [20, 19]. By
putting these two together we obtain the following theorem.
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Figure 8:C1,C2......Cm are ′m′ conjuncts each with′n′ variables and there are intermediate leader′L′ nodes. A
path through the satisfying assignment is shown here.

Theorem 17 To check, if there is a pure positional or bounded memory strategy profile with fixed mem-
ory bound b that meets or exceeds a given threshold t for the leader and is a leader or Nash equilibrium,
is NP complete.

PROOF. In order to establish NP completeness, we reduce the satisfiability of a 3SAT formulaϕ
overn atomic propositions withmconjuncts to solving a multi-player discounted sum game with 2n+1
players and 4m+ 5n+ 2 vertices that uses only payoffs−1 and 0. Note that we have not considered
discount factor in the proof. We gave a standard reduction, which is similar to the reduction for mean
payoff games [10], safe for the weights.

We consider the reduction for the example of the 3SAT formula(p∨¬q∨¬r)∧(¬p∨q∨¬r)∧(¬p∨
¬q∨¬r). The 2n+1 players consists of 2n players for the 2n literals corresponding to then variables,
and theleader, who intuitively tries to validate the formula. The vertices are labelled by their owner.

The payoff for a transition that goes from a vertex owned by a literal playerl to a vertex different to
the absorbing state ‘abs’ has a payoff of−1 for the player¬l , and of 0 for every other player. The self-
loop at ‘abs’ has a payoff of−1 for the leader, and of 0 for every other player. The remaining transitions
have payoffs of 0 for every player.

If ϕ is satisfiable, the leader can use a satisfying assignment todetermine a cycle through the game
graph that does not pass by two vertices owned by opposing literal playersp and¬p. All players that
make a decision in the unfolding infinite path have a reward of0, which is the optimal reward obtainable
in any play, as there are no positive rewards on any edge. In this case, the leader reward is 0.

Let us assume thatϕ is unsatisfiable, and the play defined by the leader in a leaderstrategy profile
does not end in the absorbing state. Then there is a first literal l on the play, whose negation¬l occurs
later. The player who ownsl will receive a negative return when complying, and hence deviate by
moving to the absorbing state. This way, the player receivesa reward of 0. Hence, every play in a leader
equilibrium for unsatisfiable assignments must end in the absorbing state, which implies that the leader
receives a negative reward.

The example is depicted in the Figure 8. There are totalm conjuncts and each conjunct hasn literal
variables. Thus, forn propositions, there are 2n literal variables. We refer to leader nodes as′L′, leader’s
starting node as ‘Ls’ and there is one absorbing state ‘abs’. ‘Ls’ is taken as start node with probability 1.
The two depicted copies of the vertices ‘abs’ and ‘Ls’ each refer to one vertex. As inclusion in NP has
been shown in Lemma 16 for positional strategies and we can simply use the extended memory game
instead, we infer NP completeness.
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6 Equilibria with extended observations

We first argue why we have focus on the pure strategies only in the previous sections, although mixed
strategies are a more general choice. In principle, all arguments from the previous sections also extend to
the randomised strategies and strategy profiles, such that one might argue to use the randomised model.
The reason why we refrained from doing so is that reward and punish strategies rely on the observability
of deviation.

For pure strategies, a deviation by a player can be observed immediately: s/he simply plays a different
action than the action defined by the strategy profile assigned by the leader. Let us now consider a
reward and punish strategy for the simple game depicted in Figure 9. In this example, player 1 owns
vertices 1, 2, 3 and 4. Leader owns vertices denoted byl1 and l2. Rewards are given on the edges and
they are in the order (leader, player 1). When extending the concepts from the previous sections to mixed
strategies, the optimal leader strategy profile would be to ask the player 1 to play to vertexl1 with a 10%
chance, and tol2 with a 90% chance. When player 1 follows his strategy, the leader pledges to take an
edge froml1 to the vertex 2. While, if player 1 deviates at vertex 1, leader would harm him by taking an
edge froml1 to the vertex 3.

The expected reward for the leader would be 8.9λ , while the expected reward of player 1 would
be 0. Player 1 does not benefit from deviation, as, upon deviation, the leader would start to harm him. In
particular, she plays to the vertex 3 froml1.

The catch in this concept is that, with normal observationalpower (where the players can only ob-
serve vertices and actions), the leader (and other players in a multi-player game) would only be able
to observewhichaction has been taken, but notwhy. The leader (and other players) cannot distinguish
whether the player 1 has moved tol1 because he conducted a fair experiment with a 10% chance to move
to l1, whose outcome was to move there, or because he simply moved there (with a 100% chance) under
deviation from the assigned strategy to improve his payoff.

To be able to distinguish compliance from deviation in mixedstrategies, we would therefore need
a stronger observation model, where the randomised decision (in our example, the decision to play
to l1 with a 10% chance) or the random experiment itself can be observed. Under such an extended
observation model, deviation can be observed and we briefly discuss why the results from the previous
sections extend to mixed strategies when we assume this observational power.

Also, these temporal dependencies arenot common in the definition of Nash equilibria. This is also
unsurprising when given their origin in the normal-form games[15], where only a single move is played
and the concept of history and temporal order of cause and effect does not apply. For us, the concept of
observability of deviation by a player outweighs the generality of randomised strategies.

l1
2

l2 4

1

3−→
0

−→
0

−→
0

10,−1

−1,9

−→
0

−→
0

−→
0

Figure 9:unobservability of deviation in mixed strategy with discount factorλ

The above argument driven by the unobservability of deviation in mixed strategies made us focus only
on the pure strategies. However, an alternative to this restriction is to lift the restriction of our observa-
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Figure 10:leader benefits from memory in mixed strategies

tional power: instead of observing the outcome of a decision, we observe the decision itself. Note that
this would imply an uncountable set of possible actions, as encoded in the different selected probability
distribution over actions, which are possible in every vertex. To justify making this observable, one might
think of externalising how to resolve the probabilities, say, by a highly trusted third party. Also, note that
allowing for mixed strategies does not remove the usefulness of memory. In the example from Figure
10 (player 1 owns vertex 1, leader owns vertexl and rewards are in the order leader, player 1), when in
vertex 1, the leader can only assign an equilibrium strategyto player 1, which is not worse for player 1
than staying in vertex 1. Initially (that is, on the empty history), however, she does not have to take the
interest of player 1 into account and can progress to vertex 1with probability 1. With this motivation in
mind, we definemixed strategies, which are functionsσp : (VA)∗Vp → dist(A) from initial sequences of
plays that end in some vertex of playerp to a distribution over the actions inA. This implies re-writing

the expected reward for playerp as follows. We useEp(σ ,v) = ∑
a∈A

σ(v)(a) ·
(

tp(v,a)+λEp(σ ,T(v,a))
)

to denote the payoff for playerp when starting at vertexv. We again haveEp(σ) = ∑v∈V ∆(v)Ep(σ ,v).
Corollary 13 establishes that it suffices to focus only on thereward and punish strategy profiles. This

implies a simple constraint system for extended memory games: no player (except for the leader in leader
equilibria) may reach a position, where a player would benefit from changing her strategy in a reward and
punish strategy profile (that is assigned by the leader). Thus, at every vertexv of the extended memory
game (with memorym), it must hold thatEp(v,m) ≥ Ep,2(v). Here,Ep(v,m) is the expected reward for
player p at vertexv in extended memory game andEp,2(v) is the expected reward for playerp at vertex
v in two-player game that would result if playerp chooses to deviate at vertexv.

We can again use a non-deterministic approach to solve the related decision problem. We can start by
guessing a probability distribution at each vertexvi on all its outgoing actions, and guess, for each action,
a target memory value. Once these distributions are fixed, wecan again solve the resulting linear equation
system, and simply check that it satisfies the constraints from above and meets the required threshold
value. Unlike the pure case, where the existence of an optimal solution is implied by the existence
of a finite set of possible strategies, we have to provide an argument for the existence of an optimal
strategy profile with given memory bound in this setting. According to the constraint system from above,
the leader assigns probabilities to the actions and selectsthe memory updates. If the resulting system
complies with the first set of constraints, then it is a Nash (resp. leader) equilibrium. Technically, the
converse (only if) does not hold, as these constraints only need to be satisfied by the reachable vertices.
We could, however, require the same for unreachable vertices without excluding relevant solutions.

Theorem 18 For multi-player DSGs with perfect observation and predefined memory an optimal leader
strategy profile exists.

PROOF. First, we know that a strategy profile that satisfies the constraints exists (c.f., Section 6).
Further, to see that anoptimal strategy profile exists, we look at the reward obtained at thedifferent
probabilistic transitions. That is, we consider the rewardobtained on the different probabilities assigned
on different transitions. We define the payoff vector as a direct function on the probability assigned on
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the transitions and the strategy profile as the setD (for decisions) of probability vectors over actions,
or a finite dimensional closed subset of[0,1]n for somen∈ N. This set of probability distributions over
the possible actions gives the expected payoff for all players at all positions of the extended memory
game graph (game graph with memory of pre-defined sizem) and is defined by the memory copies at
all vertices. The resultant payoff for all players at all vertices of the extended game graph is, thus, again
a subset of a finite dimensional product of closed and boundedintervals, referred to asP (for payoff).
The intervals are bounded because, ifp defines the maximal absolute value of any of the individual
payoffs in the discounted sum game, then every payoff must bein the interval[− p

1−λ ,
p

1−λ ]. Given a

strategy profile, represented by a
−→
d ∈ D , we can compute the payoffs, represented by a vector−→p ∈ P.

We represent this by a valuation functionval : D → P, that maps each probability vector to a payoff
vector. The valuation function is continuous: if the decision vectorD changes only marginally, then
the payoff vectorP changes only marginally, too. Thus, if we fix anε > 0 then we can first choose a
natural numberl , such that∑∞

i=l λ i p< ε , and then choose aδ ∈]0,1[ such that the change between two
consecutive probabilities that is given byl

(

1−(1−δ )l
)

< ε
pl is only marginal. Then, if the absolute sum

of changes of all probabilities is belowδ , we can estimate the difference by∑∞
i=02λ i p

(

1− (1− δ )i
)

.

For the estimation of this difference, assume that we start with the probability vector
−→
d m, which is the

point-wise minimum of
−→
d and

−→
d ′. Then the difference can be estimated by choosing the joint actions

with the probability described in
−→
d m, and simply marking the positions with the missing probability (the

difference between the sum of the probabilities reflected in
−→
d m and 1 at every position in the extended

game) as deviation. This difference is bounded byδ .
The likelihood of being in a state wherenodifference has occurred so far is, afteri rounds,≥ (1−δ )i .

The likelihood that a difference has occurred so far can therefore be estimated by
(

1− (1−δ )i
)

. Using
this estimation, we can estimate the difference,

∑l−1
i=0 2λ i p

(

1− (1−δ )i
)

+∑∞
i=l 2λ i p

(

1− (1−δ )i
)

< ∑l−1
i=0 2p

(

1− (1−δ )l
)

+2ε < 4ε ,

where the first inequality uses the definition ofl , λ i ≤ 1, and 1− (1− δ )i < 1− (1− δ )l , while the

second estimation uses the definition ofδ . Thus,∀ε > 0 ∃δ > 0 such that‖
−→
d −

−→
d ′‖ < δ implies

‖val(
−→
d )− val(

−→
d ′)‖ < 4ε . The subsetC ⊆ P of the set of payoffs that comply with the constraint

system is obviously still closed, as it is still a product of finitely many closed intervals. (Only the lower
bound of these intervals may have changed.) Asval is continuous, the preimageD ′ of the closed and
bounded setC is closed and bounded. Whenval is restricted toD ′, then the maximum w.r.t. the value of
the leader in the initial state exists. That is, the supremumis taken for some value.

7 Conclusions

We have established the usefulness of memory in obtaining optimal leader strategy profiles in discounted
sum games. Strategy profiles could be formed from memoryless, bounded memory or infinite memory
strategies. Unsurprisingly, more memory can help. Our simple example from Figure 4 had shown that
there is no upper bound that could be inferred from the structure of the game on the memory needed
for an optimal strategy profile. We observed that in some cases even infinite memory is needed (c.f.,
Theorem 7, Theorem 8 and Theorem 9). We have argued that (and why) the detectability of deviation
made the restriction to pure strategies a natural choice. Weshowed that the related decision problem (Is
there a Nash resp. leader equilibrium that provides a payoffthat meets or exceeds a given threshold?) is
NP-complete. We have also discussed the extension to mixed strategies with bounded memory and the
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extension of the observation model that is needed to make such strategies reasonable. Possible future
work could be to implement our nondeterministic approach for solving these games in SMT solvers like
Yices [6, 22] and see how well they perform on small examples.
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