3,367 research outputs found

    KK-anonymous Signaling Scheme

    Full text link
    We incorporate signaling scheme into Ad Auction setting, to achieve better welfare and revenue while protect users' privacy. We propose a new \emph{KK-anonymous signaling scheme setting}, prove the hardness of the corresponding welfare/revenue maximization problem, and finally propose the algorithms to approximate the optimal revenue or welfare

    Near-optimal asymmetric binary matrix partitions

    Full text link
    We study the asymmetric binary matrix partition problem that was recently introduced by Alon et al. (WINE 2013) to model the impact of asymmetric information on the revenue of the seller in take-it-or-leave-it sales. Instances of the problem consist of an n×mn \times m binary matrix AA and a probability distribution over its columns. A partition scheme B=(B1,...,Bn)B=(B_1,...,B_n) consists of a partition BiB_i for each row ii of AA. The partition BiB_i acts as a smoothing operator on row ii that distributes the expected value of each partition subset proportionally to all its entries. Given a scheme BB that induces a smooth matrix ABA^B, the partition value is the expected maximum column entry of ABA^B. The objective is to find a partition scheme such that the resulting partition value is maximized. We present a 9/109/10-approximation algorithm for the case where the probability distribution is uniform and a (1−1/e)(1-1/e)-approximation algorithm for non-uniform distributions, significantly improving results of Alon et al. Although our first algorithm is combinatorial (and very simple), the analysis is based on linear programming and duality arguments. In our second result we exploit a nice relation of the problem to submodular welfare maximization.Comment: 17 page

    Online Learning and Profit Maximization from Revealed Preferences

    Full text link
    We consider the problem of learning from revealed preferences in an online setting. In our framework, each period a consumer buys an optimal bundle of goods from a merchant according to her (linear) utility function and current prices, subject to a budget constraint. The merchant observes only the purchased goods, and seeks to adapt prices to optimize his profits. We give an efficient algorithm for the merchant's problem that consists of a learning phase in which the consumer's utility function is (perhaps partially) inferred, followed by a price optimization step. We also consider an alternative online learning algorithm for the setting where prices are set exogenously, but the merchant would still like to predict the bundle that will be bought by the consumer for purposes of inventory or supply chain management. In contrast with most prior work on the revealed preferences problem, we demonstrate that by making stronger assumptions on the form of utility functions, efficient algorithms for both learning and profit maximization are possible, even in adaptive, online settings

    What Makes them Click: Empirical Analysis of Consumer Demand for Search Advertising

    Get PDF
    We study users' response to sponsored-search advertising using data from Microsoft's Live AdCenter distributed in the "Beyond Search" initiative. We estimate a structural model of utility maximizing users, which quantifies "user experience" based on their "revealed preferences," and predicts user responses to counterfactual ad placements. In the model, each user chooses clicks sequentially to maximize his expected utility under incomplete information about the relevance of ads. We estimate the substitutability of ads in users' utility function, the fixed effects of different ads and positions, user uncertainty about ads' relevance, and user heterogeneity. We find substantial substitutability of ads, which generates large negative externalities: 40% more clicks would occur in a hypothetical world in which each ad faces no competition. As for counterfactual ad placements, our simulations indicate that CTR-optimal matching increases CTR by 10.1% while user-optimal matching increases user welfare by 13.3%. Moreover, targeting ad placement to specific users could raise user welfare by 59%. Here, we find a significant suboptimality (up to 16% of total welfare) in case the search engine tries to implement a sophisticated matching policy using a misspecified model that does not account for externalities. Finally, user welfare could be raised by 14% if they had full information about the relevance of ads to them.

    On Revenue Maximization with Sharp Multi-Unit Demands

    Full text link
    We consider markets consisting of a set of indivisible items, and buyers that have {\em sharp} multi-unit demand. This means that each buyer ii wants a specific number did_i of items; a bundle of size less than did_i has no value, while a bundle of size greater than did_i is worth no more than the most valued did_i items (valuations being additive). We consider the objective of setting prices and allocations in order to maximize the total revenue of the market maker. The pricing problem with sharp multi-unit demand buyers has a number of properties that the unit-demand model does not possess, and is an important question in algorithmic pricing. We consider the problem of computing a revenue maximizing solution for two solution concepts: competitive equilibrium and envy-free pricing. For unrestricted valuations, these problems are NP-complete; we focus on a realistic special case of "correlated values" where each buyer ii has a valuation v_i\qual_j for item jj, where viv_i and \qual_j are positive quantities associated with buyer ii and item jj respectively. We present a polynomial time algorithm to solve the revenue-maximizing competitive equilibrium problem. For envy-free pricing, if the demand of each buyer is bounded by a constant, a revenue maximizing solution can be found efficiently; the general demand case is shown to be NP-hard.Comment: page2
    • …
    corecore