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Abstract

We study users’ response to sponsored-search advertising using data from Microsoft’s Live

AdCenter distributed in the “Beyond Search” initiative. We estimate a structural model of utility

maximizing users, which quantifies “user experience” based on their “revealed preferences,” and

predicts user responses to counterfactual ad placements. In the model, each user chooses clicks

sequentially to maximize his expected utility under incomplete information about the relevance

of ads. We estimate the substitutability of ads in users’ utility function, the fixed effects of

different ads and positions, user uncertainty about ads’ relevance, and user heterogeneity. We find

substantial substitutability of ads, which generates large negative externalities: 40% more clicks

would occur in a hypothetical world in which each ad faces no competition. As for counterfactual

ad placements, our simulations indicate that CTR-optimal matching increases CTR by 10.1%

while user-optimal matching increases user welfare by 13.3%. Moreover, targeting ad placement

to specific users could raise user welfare by 59%. Here, we find a significant suboptimality (up

to 16% of total welfare) in case the search engine tries to implement a sophisticated matching

policy using a misspecified model that does not account for externalities. Finally, user welfare

could be raised by 14% if they had full information about the relevance of ads to them.
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1 Introduction

Over the past decade the Internet has become the dominant channel for consumer information

about goods and services. A substantial fraction of this information is provided through Internet

advertising. In 2007, Internet advertising revenues rose 26 percent to reach $21.2 billion, according

to the Internet Advertising Revenue Report published by the Interactive Advertising Bureau and

PricewaterhouseCoopers LLP1.

To gain understanding of the online advertising market, compare alternative market structures

and designs, and examine their welfare effects, it is important to understand the behavior of con-

sumers in this market. Our paper makes a step in this direction, focusing on “search advertising,”

i.e., “sponsored links” that accompany results produced in response to the consumers’ search queries.

Search advertising accounts for 41% of the total Internet advertising revenues. It is viewed as the

most effective kind of advertising because of its very precise targeting: a consumer’s search string

reveals a great deal about the products (s)he is likely to be interested in. This precise targeting

allows to display only the most relevant ads, which in turn induces consumers to click on the ads.

While the market for search advertising has recently received a lot of attention, not much is known

about consumer behavior in the market. This paper makes a step towards remedying this problem.

Existing papers on search advertising postulate very simple and restrictive models of user be-

havior. For example, Edelman, Ostrovsky, and Schwarz (2007) propose a model that assumes that

the CTR (clickthrough rate) on a given ad in a given position is a product of ad and position specific

effects and does not depend on which other ads are displayed in the other positions. (Henceforth we

will refer to this model as the “EOS model,” which is also used in Edelman and Ostrovsky (2007),

Varian (2006), Yenmez (2009), Gomes and Sweeney (2009), Ostrovsky and Schwarz (2009)). In the

“cascade model” (Craswell, Zoeter, Taylor, and Ramsey (2008), Papadimitriou and Zhang (2008)),

users consider the ads sequentially from top to bottom, deciding whether to click on the current

ad and whether to continue clicking with ad-specific probabilities. These restrictive models have

not been compared with actual user behavior. Also, as these models have not been derived from

utility-maximizing behavior of users, they could not be used to evaluate user welfare.

This paper offers the first empirical investigation of user response to sponsored-search advertis-

ing that is based on a structural model of utility-maximizing user behavior. One advantage of a

structural model over reduced-form models is that once the model’s parameters are estimated and

1http://www.scribd.com/doc/4787183/Internet-advertising-revenue-report-for-2007
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its fit with the data is established, the model can be used to predict user behavior for all conceiv-

able counterfactual ad impressions. Another advantage of the model is that it quantifies the “user

experience” on a sponsored-search impression as users’ expected utility from the impression, and

estimates this utility from the preferences of actual users revealed by their clicking behavior, rather

than from the judgments of disinterested experts (as in Carterette and Bennett (2008)).2 Improving

user experience is crucial for the survival and growth of an Internet platform, and our model can

be used as a guide toward that goal.

Our dataset offers a selection of advertising impressions and user clicking behavior on Microsoft’s

Live Search advertising engine. The data contains a random selection of search sessions between

August 10 and November 1, 2007. In each session, the user entered a search string and was then

shown “organic” search results accompanied by advertisements (“sponsored links”). An advertising

“impression” is an ordered list of sponsored links. (The first sponsored link is displayed at the top

of the page in a highlighted box, while the others are displayed in a column to the right of the

organic search results.) For each advertising impression, our data describes the ads clicked by the

user and the times at which the clicks occurred.

Our estimation strategy is based on the fact that searches on the same search strings often

generate different advertising impressions. We treat this variation in impressions as exogenous and

uncorrelated with users’ characteristics. Indeed, we have been assured that the impressions were

not conditioned on the user’s known characteristics or browsing history. We also make the crucial

assumption that the characteristics of ads that determine users’ values for them did not vary over

our 3-month window. This assumption appears plausible for the four search strings we consider:

“games,” “weather,” “white pages,” and “sex”.3 In fact, it is easy to convince oneself of the large

2Dupret and Piwowarski (2008) quantify ad quality by calibrating a heuristic model of user behavior on real data.

However, since their model is not based on utility maximization, it cannot be used to quantify user welfare.
3To understand the importance of this assumption, imagine that the preferences of users searching for “Paris

Hilton” changed abruptly from looking for a hotel in the capital of France to looking for the infamous sex video, and

that the advertising engine quickly responded to this preference change by changing the placement of ads. In this

situation, our estimation strategy would be invalid: for example, it might wrongly find that putting an ad in the top

position raises its CTR when in fact it may just be that the engine puts the most relevant ad at the top and there is

no position effect for any given ad.

Microsoft plans to release a dataset in which ad impressions are truly randomized and independent of ad charac-

teristics – an initiative known as the “adCenter challenge:”

http://research.microsoft.com/workshops/ira2008/ira2008 talk.pdf

Repeating our analysis on this dataset would eliminate any possible concerns about the endogeneity of impressions.
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random component in ad placement by searching for the same search string several times in a row.

The ad placement results from several fast-changing factors, such as advertisers’ varying bids and

budgets, the advertising engine’s estimate of the ad’s relevance based on its historical clickthrough

rate (CTR), and explicit experimentation by the engine. We believe that at least on our search

strings, this randomness swamps any possible shifts in the ads’ relevance.

We begin by examining reduced-form evidence that contradicts the existing theoretical models

and suggests some dimensions in which the models need to be enriched. In particular, the EOS

model is contradicted by the prevalence of externalities across ads: the CTR on a given ad in a given

position depends on which ads are shown in other positions. For example, the CTR of Domain 1

in position 2 on the “white pages” search string is 18% if its competitor in position 1 is Domain

3 (which is not a good match for “white pages”because offers yellow pages ), but drops to 8%

if the competitor is Domain 2 (which is a specialized advertising company).4 This difference is

statistically significant. The “cascade model” is contradicted by the observation that 46% of the

users who click on ads do not click sequentially on positions (1,2,. . . ), and 57% of the users who click

more than once do not “cascade,” i.e., click on a higher position after clicking on a lower position.

Also, the data exhibits certain kinds of externalities that could not emerge in the cascade model:

the CTR on a given ad in a given position depends on which ads are shown below it, and the CTR

on a given ad in position 3 given the two ads shown in position 1 and 2 still depends on the order

in which the two ads.

Next, we formulate and estimate a structural model of rational user behavior that nests the

existing models. In our model, a user chooses his clicks sequentially under uncertainty about the

relevance of ads to him. The model is related to the literature on consumer search (e.g., Hong

and Shum (2006), Hortacsu and Syverson (2004)), the closest work being Kim, Albuquerque, and

Bronnenberg (2009), which estimates online search for durable goods at Amazon.com. The latter

paper assumes full satiation: a consumer gets utility from at most one purchase. Our model instead

parametrizes the degree of substitutability (satiation) among ads with a parameter R in a “Constant

Elasticity of Substitution” utility function. For R = 0, user utility is the sum of the utilities derived

from the clicked ads, and so there are no externalities across ads, as in the EOS model. At the

other extreme, when R =∞, user utility is the maximum of the values of the ads he clicks on, and

so he derives utility from at most one ad, and the externalities are the most prominent (similar to

4The domain names are available in the dataset by Microsoft does not allow us to publish them to protect advertiser

privacy.
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Kim, Albuquerque, and Bronnenberg (2009)).

In addition to the substitutability parameter R, our model includes a number of other param-

eters. For each of the more common ads, we estimate two fixed effects: the probability of being

relevant and the user’s utility derived if it does turn out to be relevant. Thus, we separately estimate

users’ expectation of a given ad’s value and their uncertainty this value. Also, we include fixed cost

effects for clicking different positions, to capture the fact that the same ad receives more clicks when

shown in a higher position. We also allow for user heterogeneity by incorporating a user-specific

random utility effect whose variance we estimate. This effect proves important to fit the data, in

which some users click on many ads and others on few or none.

We find that externalities are both statistically and economically significant. Our estimate of

the substitutability parameter R is 0.55. Using the estimate, we predict that the CTR on most

domains in the hypothetical world without externalities would have been substantially higher than

their actual CTR. We predict that the total number of clicks in our dataset would have been 40%

higher had satiation been absent. We find evidence of user uncertainty: if this uncertainty were

resolved prior to clicking, consumer welfare would be 14% higher (and there would be no significant

effect on the total CTR).5

We use our estimated model to predict user behavior on counterfactual ad impressions and

generates impressions that maximize the total CTR or the expected user welfare. It is well known

that in the EOS model, the total CTR is maximized by assortative matching of higher-quality ads

to better positions. The same is true in our model without externalities (R = 0), furthermore, in

this model the same assortative matching also maximizes expected user welfare (where “quality” is

interpreted as expected quality, and user uncertainty about quality does not matter). We simulate

outcomes6 of welfare-optimal and CTR-optimal matching policies and compare them to the data

and assortative matching according to simple OLS-type estimates. While in theory assortative

5Note that in our model of expected utility maximization, cardinal utility has empirical meaning: impression A

being x% better than impression B means that the user is indifferent between receiving impression B for sure and

receiving impression A with probability x
100+x

and no ads at all with the complementary probability.
6These counterfactuals can be reliably interpreted as “short-run” counterfactuals. If an alternative placement

policy is implemented in the long run, one may ask if this will change any of the model’s parameters. We think that

the only parameters that may be subject to change are the position fixed effects, which capture the fact that users

are much more likely to click on the same ad in a higher position. If these fixed effects stem from (psychic) clicking

costs, then they should not depend on the matching policy. If instead these effects are due to users’ expectations that

higher positions contain more relevant ads, these expectations will be altered in the long run under the new matching

policy.
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matching does not have to coincide with optimal matchings, it turns out that in practice those

policies provide vary similar improvements (about 13% welfare gain and 10% CTR gain). It is

due to the fact that if the advertiser cannot target target ads on consumer level there is not much

flexibility in matching strategies.

It has also been suggested that user experience and CTR could be improved by targeting the

impressions to individual users, e.g., based on their browsing history or demographics (E.g., see

Radlinski and Dumais (2006) for a discussion of targeting and ad diversity.) We can bound above

the gain in user welfare and CTR that could be achieved by such targeting, by simulating “first-

best” targeting based on the users’ individual characteristics. We find that user-optimal first-best

targeting could raise user welfare by 59%, while CTR-optimal first-best targeting would raise the

total CTR by 49.7%. In this case placement policies do not coincide with user-by-user assortative

matching, and there are large differences in welfare and CTR (up to 60% in welfare and 15% in

CTR). Moreover, we find that if search engine was trying to use a misspecifified model (that does

not account for externalities) to maximize consumer welfare or total CTR it might end up with

suboptimal solution that is Pareto dominated by simple assortative matching.

Athey and Ellison (2007) (henceforth AE) model user learning about general ad relevance in

the course of a search session: upon learning the relevance of a clicked ad, the user updates his

beliefs about the relevance of the other ads in the same impression.7 Our paper ignores this kind of

updating. There are two reasons for this: (1) Such updating would generate positive “informational

externalities” across ads – i.e., an ad would benefit from having better ads in the same impression.

Empirically we find that the overall externalities are instead negative, and it would be difficult to

separately identify both satiation externalities and informational externalities from the available

data. (2) We believe such updating to be a long-run rather than a short-run phenomenon. As

consumers use a given search engine frequently, we don’t expect much learning about relevance to

occur in the course of a single session (as assumed in Athey and Ellison (2007)). While long-run

learning over the course of many sessions may prove to be very important, we are unable to observe

it in our data which does not keep track of user histories (for privacy reasons).

7In their basic model, the ads’ texts are uninformative, and so the CTR on a given ad depends on the information

learned from clicking on the preceding ads, but not on the ad itself. User behavior in this model is similar to that in

the “cascade” model, with the added feature that the probability of continuing after clicking a given ad depends not

just on this ad’s quality but also on the qualities of the ads above it (which determine user beliefs about the quality

of subsequent ads). Just as the cascade model, the AE model is inconsistent with non-sequential and non-cascading

clicks and with externalities from below.
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The paper is organized as follows. In Section 2 we describe the dataset and examine some

reduced-form evidence. Section 3 describes the model. Section 4 describes identification and es-

timation. Section 5 discusses the estimation results. Section 6 simulates counterfactual matching

policies. Section 7 concludes.

2 The data and its preliminary analysis

2.1 Data Description

Our dataset offers a selection of advertising impressions and user behavior on Microsoft’s Live Search

advertising engine. As of May 2008, Live Search had 9.1% of the U.S. online search market (as

compared to the market leader Google’s 61.6%).8 This modest market share nevertheless translated

into about 900 million search queries per month. This enormous data is generally not available to

external researchers, primarily for fears of compromising user privacy. However, in 2008, Microsoft

created a DVD with a sample of user search and advertising data, cleaned up to eliminate privacy-

compromising information. This DVD was distributed to a few dozen recipients of Microsoft’s

external research grants, as well as to a small number of other researchers, including the authors of

this paper.

The data on the DVD contains a random selection of search sessions between August 10, 2007 and

November 1, 2007. In each session, the user entered a search string and was then shown “organic”

search results accompanied by advertisements (“sponsored links”). An advertising “impression” is

an ordered list of sponsored links. The first sponsored link is displayed at the top of the page in a

highlighted box, while the others are displayed in a column to the right of the organic search results.

For each sponsored link the user was shown a text display containing the advertiser’s domain name

as well as brief advertising copy. For example, one ad produced in response to a search for “weather”

reads

Local Weather Forecast

Get Live Weather Forecasts & More With The Free Weather Toolbar

Weather.alot.com

For each advertising impression, our data describes the ads clicked by the user and the times at

which the clicks occurred.9

8http://www.techcrunch.com/2008/05/22/the-empire-strikes-back-our-analysis-of-microsoft-live-search-cashback/
9Advertising domains often experiment by varying the text of the advertising; we ignore this issue by ignoring the
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The sample of impressions on the AdCenter DVD was randomly generated from the search

engine’s complete log file. The sampling scheme involved selecting an impression at random from

the log and then including all the other impressions displayed to the same user during the same

session. We were informed that the average length of a session is about 10 minutes. Impressions

that were part of longer user sessions have a proportionally higher probability to be in the data set

than shorter ones. Since the vast majority of the sessions contain only one impression, we believe

that sample selection issues are not of great importance.

Each data point was screened for privacy protection by Microsoft’s technical team. On top of

the privacy screening, each search string was “normalized.” We do not have full information about

the transformations employed, since this information is proprietary to Microsoft. However, we have

been assured that normalization did not involve anything more complicated than converting the

case of letters and getting rid of special characters, articles, and prepositions. We tried to minimize

the impact of such transformations by the choice of search strings to analyze.

The subset of the dataset that we examine contains the impressions produced on 4 search strings

(exact match): “games”, “weather”, “white pages” and “sex”. These are the search strings that

produced the most sponsored-ad clicks in the data, with the exception of searches for domain names

and the “yellow pages” string. We did not consider searches for domain names like “google” or

“myspace” because we believe that such searches commonly arise when a user either (i) mistakenly

types a domain name into the search box, or (ii) types an incomplete domain name in the browser’s

address bar, forgetting an extension such as “.com,” and is redirected by the browser to the search

engine. The user’s behavior in such situations may not be typical of his behavior following intentional

searches. We also excluded the searches for “yellow pages” since we did not find enough variation

in the impressions on this query to estimate our model.

We matched the impressions on the selected search strings to clicks on these impressions, ap-

plying a couple of sanity rules. We dropped impressions with the same unique impression id since

we believe that those were due to errors in the data generation process. Similarly, when observing

more than one click on the same link in an impression, we kept only the first click. Since the vast

majority of repeat clicks occur within seconds of the first click (e.g., 84% occur within 10 seconds),

we believe that the repeat clicks are either user errors or attempts to reload the web site following

technical problems. If there are any repeat clicks that are not user errors or technical problems,

text and treating all ads with the same domain as identical. To the extent the text matters to consumers, it will be

subsumed in our noise terms.
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they are effectively assumed not to affect the user’s payoff (i.e., yield a zero marginal utility and

have a zero marginal cost), which would justify dropping them. Our final dataset contains 92136

impressions, of which 17.7% have at least one click and 1.4% have at least two clicks.

2.2 Non-cascade clicks

Our dataset exhibits several features of user behavior that are not captured by the theoretical

models in the existing literature. Namely,

• 46% of users who click do not click in the sequential order of positions, i.e. (1,2,. . . ).

• 57% of users who click more than once do not “cascade,” i.e., click on a higher position after

clicking on a lower position.

These findings are inconsistent with the cascade model or with the AE model, both of which

predict “cascades,” and the latter also predicts sequential clicks. These findings demonstrate the

importance of user heterogeneity. This is confirmed by having different orders of clicks by different

users facing the same impression.

We model heterogeneity by letting users have different preferences over ads. Formally, we do

this with a user×ad random utility effect.

2.3 Rich Externalities

Another important observation from the data is the prevalence of externalities: the CTR on a given

ad in a given position depends on which ads are shown in the other positions. These externalities

immediately violate the EOS model or any other model in which users’ decisions of clicking on

different ads in an impression are independent of each other. Also, some of these externalities are

inconsistent with the cascade model.

The externalities are evident by examining the conditional probabilities of clicking on a given

ad in a given position under various assumptions about the ads displayed in the other positions.

For example, Table 1 presents evidence for “externalities from above”: the CTR on a given link

displayed in position 2 conditional on the competitor displayed in position 1. (We were only able

to conduct this analysis for the most popular ads, for which there were enough observations with

desired impressions.) Comparison of the CTRs suggests negative externalities from the competitors.

Namely, Domain 1 in “white pages” string prefers a competitor at the position above that is of lower
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Competitor CTR
Domain 1

Domain 2 0.0763
(0.0060)

Domain 3 0.1842
(0.0138)

Domain 4 0.1078
(0.0240)

Competitor CTR
Domain 1

Domain 2 0.0189
(0.0020)

Domain 3 0.0535
(0.0038)

Domain 4 no observations

Table 1: Conditional Click-Through Rates on domains www.whitepages.com in search string ”white

pages” and try.weatherstudio.com in search string “weather” when placed in position 2 given differ-

ent domains in position 1. In parentheses we give standard errors. The estimates all have asymptotic

normal distributions.

relevance (Domain 3, which does not have any white-page information) rather than higher relevance

(any of the Domains 2,3 ). The same conclusion obtains in the “weather” search string: Having

Domain 3 (which does not have any weather information) as the above competitor is better than

having Domain 2. All this evidence is suggestive of negative externalities, which may be attributed

to users being satiated after clicking on good advertisements (in an extreme case of satiation, a user

might not derive any benefit from a second ad – e.g., he may be fully satisfied with a single weather

report).

Domain Regime CTR Number of observations Avg. number of ads Diff. of CTRs

Domain 2
With 0.1051 5061 6.1577 0.074∗∗∗

(0.009)Without 0.1785 2112 7.1089

Domain 3
With 0.1558 1560 7.1071

0.067∗∗∗

(0.013)Without 0.223 2022 7.632

Domain 4
With 0.1546 304 7.2993

0.019
(0.032)Without 0.1739 253 7.2885

Table 2: CTRs of different domains in position 1 with and without having Domain 1 as competitor

in any of the lower positions. One, two and three stars mean statistical significance with respectively

10%, 5% and 1% level.

More evidence of negative externalities is presented in Table 2. In this table, we repeat the exer-

cise from the previous paragraph, but this time conditioning on the presence of certain competitors
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below. We can see that the differences are again statistically significant. Note that the average

number of competitors is lower in the impressions that have Domain 1, which acts in the opposite

direction to the negative externality, so if we had enough observations to control for the number

of ads in the impression we expect the differences to be even larger. An important implication of

externalities from below is rejection of cascading models (including the AE model) in which users

always make clicking decisions going sequentially from top to bottom. Instead, users appear to

exhibit more rationality, examining many ads before decided which ones to click on.

Another interesting observation that is inconsistent with the basic cascade model is that switch-

ing the ads in the top two positions affects the CTR of the ad in position 3. We were able to

perform this analysis for one impression configuration on the “weather” search string. (The number

of relevant observations in the other cases was fewer than 300, and in search strings “games” and

“sex” there were no relevant observations at all.) The CTR of Domain 1 in position 3 conditional

on having Domain 3 in position 1 and Domain 2 in position two is 0.0434. When we switch the

top two ads, the CTR drops to 0.0077. The difference is significant with 0.05 test size. To perform

the test we used the asymptotic Wald test. The test statistic (distributed as standard normal)

was 2.193. As we mentioned earlier we believe that Domain 3 is not a very relevant domain for

“weather”, while Domain 2 is very relevant. Thus, matching the better competitor domains with

the higher position has a negative externality on a lower ad. This externality can again be attributed

to user satiation: matching the better domain with the higher position increases the likelihood of

user clicking on the better domain, making him more satiated and less likely to click on the third

ad.

In addition to the externalities caused by satiation, we may also expect externalities caused by

user learning about the quality of ads (as in Athey and Ellison (2007)). In contrast to satiation,

we would expect learning to generate positive externalities: seeing one relevant ad would raise user

expectation about the relevance of ads in general and make him more likely to click on other ads.

Since the overall externalities exhibited in the data are negative, it appears that satiation is a more

important source of externalities than learning. It would be difficult to identify these two effects

separately given out data set: We cannot tell if a user stops clicking because he is satiated by the

ads he has clicked on or because he is discouraged by their poor quality. One way to distinguish

these two effects would be by using the data on “conversions” (i.e., purchases or follow-up requests)

following the clicks. Another way would be to consider long-run learning about the general quality

of ads across different search strings (where satiation is not an issue). Since we do not currently

11



have data on conversions or on user histories, we cannot undertake either approach.

2.4 User Heterogeneity

Another interesting feature of the data is positive correlation between clicks on different positions

in a given impression. We found this correlation by looking at impressions with a given (the most

popular) ad is shown in position 1 and examining the correlation between clicking on this ad and

clicking on any other ad in the impression. In a model without satiation in which a user’s values for

different ads are drawn independently (such as the EOS model), the correlation would be zero. In a

world with satiation but with independent draws, the correlation would be negative. However, Table

3 demonstrates that the actual correlation is in some cases positive and statistically significant and

in others statistically insignificant. For example, when Domain 1 is displayed in position 1 on the

“weather” search string and the user clicks on it, the probability of clicking on any other position

is 5.1%, while if the user does not click on it, the probability of clicking on any other position is

3.4%, and this difference is highly significant. Similar significant positive correlation is found in the

“white pages” search string, while in the other two search strings we find no significant correlation.

To explain these correlations, we model “vertical” heterogeneity of users, which makes some

users more likely than others to click on any ad. For example, some users can have higher utilities

for all ads (e.g., due to higher beliefs about the relevance of sponsored search advertising) or lower

costs of clicking on ads (e.g., due to lower opportunity cost of time). We capture this vertical

heterogeneity with a random user utility effect. The heterogeneity has to be large enough to offset

the negative correlation among clicks created by satiation and in some cases even to generate positive

correlation. This positive correlation is also needed to explain disproportionate numbers of multiple-

clicks observations (“bundles”). Namely, our model without satiation and with independent clicks

(which is then equivalent to the EOS model) would predict only 911 bundles of 2 clicked ads versus

1157 in the data, and only 20 bundles of 3 clicked ads versus 188 in the data. Introducing satiation

only increases this discrepancy, and so we need to add vertical heterogeneity of users to fit the data

better.

3 The Model

Consider a user i who faces an impression a = (a1, ..., aN ) ∈ AN , where N is the number of ads

in the impression, A is the set of all possible ads that could be displayed, and an ∈ A is the ad
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displayed in position n. Each ad a ∈ A is characterized by a pair (pa, vai), where pa ∈ [0, 1] is the

probability that domain a will be prove to be relevant to him upon clicking, and vai is user i’s value

derived from clicking on the ad when it turns out to be relevant to him (when it is not relevant,

the value is 0). The users learns whether an ad is relevant only upon clicking on it. The user also

incurs a cost fn from clicking on an ad in position n.

The timing of the user’s decision problem is as follows:

(i) The user observes the impression (a1, ..., aN ) and the pairs (pa, vai) for all ads in the impression.

(ii) The user either clicks on a position c in the impression that he hasn’t clicked on yet or stops

clicking (exits).

(iii) The user observes whether the clicked ad ac is relevant to him or not.

(iv) Go to (ii).

We assume the user is a rational and forward-looking expected-utility maximizer and knows all

the parameters. His decision problem can then be modeled as a dynamic programming problem

whose payoff-relevant state can be summarized with two disjoint subsets CR, CNR ⊂ {1, ..., N} of

clicked positions that turned out to be relevant and irrelevant, respectively. The optimal contin-

uation value of user i in state (CR, CNR), which we denote by Vi (CR, CNR), is governed by the

following Bellman equation:

Vi (CR, CNR) = max

{
Ui(CR), max

c∈{1,..,N}\(CR∪CNR)
[pac,iVi (CR ∪ c, CNR) + (1− pac,i) (CR, CNR ∪ c)]

}
,

(3.1)

where Ui(CR, CNR) is the user’s utility from stopping in state (CR, CNR). We postulate this utility

to take the form

U(C) =

∑
n∈CR

v1+R
an,i

1/(1+R)

−
∑

n∈CR∪CNR

fn, (3.2)

where R is a parameter that captures the substitutability of different ads to the user.

We assume that the value of user i for a given ad a is generated as

vai = qa + εai + δi,
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where qa is the fixed “quality” effect of ad a, εai is a random shock to user value for a given ad,

and δi is a random effect in user value for ads. We assume that εai is drawn from an exponential

distribution whose decay parameter is normalized to 1 (i.e., the c.d.f. is F (εai) = 1 − e−εai ). As

for δi, it is drawn from a normal distribution whose standard deviation σ is a parameter to be

estimated.

This model is rich enough to nest the following special cases:

• R = 0 (additively separable utility), pa = 1 (no uncertainty): The user’s clicking decisions on

different ads are then independent, and there are no externalities across ads. If in addition

user random effects are absent (i.e., σ = 0), the clicks on the different positions are statistically

independent, and the CTR on ad a in position n is Pr {qa + εai − fn ≥ 0} = F (fn − qa) =

max
{
eqae−fn , 1

}
. Thus, provided that each ad receives a CTR less than one in any position

(which is certainly true empirically), our model nests as a special case the EOS model, in which

the CTR is the product of the ad fixed effect (e−qa) and the position fixed effect (e−fn).10

This nesting is the key motivation for us adopting the exponential distribution of errors εai,

and it also allows a simple quantitative interpretation of the estimated fixed effects on the

CTR. In the EOS case, a consistent estimate of the fixed effects qa and fn can be obtained

with an OLS regression of the logarithm of CTR on the ad and position dummies. Note that

user uncertainty about relevance cannot be identified in this model - only the quality of ad

a, qa can be identified. Note also that since only the differences qa − fn are identified in the

EOS model, the fixed effects fn and qa are identified only up to a constant.

• Perfect substitutability: R =∞. In this case, the user’s utility asymptotes to Ui (CR, CNR) =

maxn∈CR
van,i −

∑
n∈CR∪CNR

fn, i.e., the user derives utility from at most one ad (for example,

he derives no benefit from viewing a second weather forecast.). This nests the classical con-

sumer search model (e.g., Kim, Albuquerque, and Bronnenberg (2009)). In this model, user

uncertainty about relevance matters: for example, if he has no uncertainty (pa = 1 for all a)

he will click on at most one ad; otherwise he may click on many ads. We can also approximate

“cascade models” by assuming that position clicking costs fn increase sharply in position n

relative to any variation in ad quality, which induces users to click positions top to bottom.

10If σ > 0 but small, the random variable εai+δi can be approximated in the relevant upper tail with an exponential

distribution, and the CTR can be approximated with the EOS multiplicatively separable form. Still, the model would

be distinguishable from the EOS model by predicting a positive correlation between clicks on different positions.
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We also allow for the case of R < 0, in which the clicks are complements rather than substitutes.

4 Estimation and Identification

We estimate the model using the Simulated Generalized Method of Moments based on Pakes and

Pollard (1989).

Moments are computed using a nested dynamic programming approach. First we draw user

specific effects ε, δ. We compute the user’s optimal policy by solving system (3.1) by backward

induction. The solution produces a stochastic process of ordered clicks for each user. We take 1000

draws from this stochastic process and compute the user-level average moments. We repeat the

ε, δ draws 100 times and take the average of user-level moments. Each iteration of the estimation

algorithm amounts to solving about one million dynamic programming problems.11

Our model has 46 unknown parameters and identifies them using 78 moments. Our parameters

are divided into 3 groups:

• position fixed effects fn, domain qualities qa and relevance probabilities pa,

• the standard variation σ of the user random effect,

• the satiation parameter R and the domain/position normalizing constant.

We discuss the identification of all those groups separately.

For given vector of relevance probabilities p, we can identify the position fixed effects fn(p) and

the domains’ expected qualities qa(p) up to a constant even if R = 0. The moments that identify

these parameters are the CTRs of domains, the CTRs of positions, and the positions/domain

CTRs. Thus, we include the probabilities of clicking on each position from 1 to 5 conditional on

each search string, the probabilities of clicking on each domain conditional on each search string,

and the probabilities of clicking on each of the top 2 domains in each of the top 3 positions. (We

dropped the moments that proved to have a close to zero variance.) In the data we observe the

same domains placed in different positions, which allows us to identify the fixed effects: We can

can identity position fixed effects fn by comparing the CTR on the same given domain in different

positions, and we can identify ad qualities qa by comparing the CTRs of different ads in the same

position. (When R > 0, we also have to control for the ad’s competitors.) Under our assumption

11Computations were possible because of supercomputer resources provided by Microsoft Corp.
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that user/position noise is distributed exponentially with decay parameter 1, the fixed effects can

be interpreted as factors in the CTR.12

To identify the standard variation σ of the user random effect we include the unconditional

probabilities of bundles of 2 and of 3 clicks. Increasing σ increases the correlation of clicks on

different ads in the same impression, and so increases the probabilities of clicking bundles. (For

parametric identification we use the functional form assumption that user specific errors have a

normal distribution with mean 0.)

One the main contributions of this paper is identifying the user satiation parameter R and

separating utility from cost. For this purpose, we use two additional sets of moments. The first

set is composed of conditional probabilities similar to those presented in Table 1. For each search

string, it consists of the following 3 moments:

• The probability of clicking on the most popular domain in position 2 conditional on the second

most popular domain being in position 1;

• The probability of clicking on the most popular domain in position 2 conditional on the third

most popular domain being in position 1;

• The probability of clicking on the second most popular domain in position 2 conditional on

the most popular domain being in position 1.

We dropped a couple of such moments that had zero observations in the sample. We did not in-

clude similar conditional probabilities for other impressions due to the small number of observations

with such impressions.

The second set of moments identifying R consists of probabilities of continuing clicking after

clicking on a given domain. We have 3 such moments per search string for the 3 most popular

domains. The satiation parameter is identified from these moments, since more satiation means

lower probabilities of continuing clicking. Given our assumed functional forms, the parameter R as

well as the normalizing constant separating domain utilities and position costs are both identified.

Identification is driven by the fact that moving a constant from costs to utilities and increasing R

produce different curvature of incremental utility of subsequent clicks as a function of the already

clicked links.

12Since the number of clicks on positions 6 and 7 is very small we assume that cost of clicking on those are

respectively 10% and 30% higher than on position 6, these numbers don’t affect the estimation.
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When R 6= 0, we can separately identify domain relevance probabilities pa and their quality

parameters qa using the domain-specific continuation probabilities. Indeed, reducing pa while raising

qa while holding the product fixed reduces increases the probability that the user continues clicking

after clicking on domain a (while it does not affect the probability of clicking on domain a when R is

close to zero). Intuitively, when we observe a domain with a high CTR but also a high probability of

continuing clicking after clicking it, we attribute the “discrepancy” to high user uncertainty about

the domain – i.e., low relevance probability pa offset with a high quality qa if relevant.13

We argued in the Section 2 that the cascade model and the AE models are not very realistic

because of wide presence of non-ordered clicks. To make sure that our model explains this phe-

nomenon we include, in addition to the already discussed moments, the probabilities of clicking on

a link in a higher position conditional on clicking on a link in a lower position for each search string.

We perform moment weighting using a consistent estimate of the optimal weighting matrix,

which in this case is the inverse of the asymptotic covariance matrix of the moment conditions.

Estimation was done in 3 steps: (1) The moments conditions were evaluated at the starting point

to get the initial weighting matrix, (2) A minimization routine (using initial weighting matrix) was

performed and a consistent estimate of the optimal weighting matrix was computed, and (3) We

obtained final estimates by minimizing the weighted sum of squared sample moment conditions.

To perform nonlinear optimization we used the Levenberg-Marquard gradient method14 with

a 10−9 tolerance factor. The starting point for the estimation was a consistent estimator of the

constrained model with R = σ = 0. In this special case, the model is separable, so we obtained

consistent estimates of paqa and fn by regressing the logarithm of the domain/position CTRs on the

domain and position dummies. Because the cost and utility in the restricted model are identified

only up to a constant, we normalized the cost of clicking on the top position to be 0. We drop this

normalization when estimating the full model.

5 Results

The estimates of the main model are presented in Tables 4, 5 and 6. Table 4 presents the estimated

position clicking costs for each search string. Table 5 presents the estimated quality measures of

selected domains, organized by search string. Finally Table 6 contains the estimates of the satiation

13An alternative explanation for the discrepancy is that users hold incorrect prior beliefs about the domain’s quality.

It would be difficult to distinguish this explanation from our model of user uncertainty.
14Uses software developed by the University of Chicago, as Operator of Argonne National Laboratory.
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Search string/domain at top position

games
Domain 1

weather
Domain 1

white pages
Domain 1

sex
Domain 1

Clicking on top pos. 0.051 0.046 0.17 0.037

Not clicking top on pos. 0 0.034 0.043 0.116 0.045

Difference 0.017∗∗∗

(0.005)

0.003
(0.006)

0.054∗∗∗

(0.009)

0.008
(0.006)

Table 3: Probability of clicking on any other ad conditional on clicking and not clicking on top

position

Search string

games weather white pages sex

Position 1 −1.41
(0.15)

−0.73
(0.07)

−1.91
(0.05)

−1.94
(0.08)

Position 2 −1.42
(0.14)

−1.28
(0.06)

−2.30
(0.08)

−2.12
(0.08)

Position 3 −1.80
(0.09)

−1.69
(0.05)

−2.99
(0.05)

−2.30
(0.11)

Position 4 −3.11
(0.15)

−3.51
(0.14)

−4.76
(0.14)

−3.13
(0.31)

Position 5 −3.27
(0.26)

−4.09
(0.21)

−5.61
(0.13)

−3.86
(0.25)

Table 4: Estimates of clicking cost in the baseline model

parameter R and the user heterogeneity parameter σ.

Table 4 presents our estimates of clicking costs on positions 1 to 5 in the four chosen search

strings. (As mentioned earlier, we assume that positions 6 and 7 have respectively 10% and 30%

higher clicking cost than position 5.) To interpret the magnitude of those numbers, recall that the

utility of not clicking anything is normalized to 0. The fact that users face an exponential shock to

their utility means that reducing the cost of a position by 1 increases the CTR of the position by a

factor of e.

As expected, higher positions have lower cost of clicking. By exponentiating the cost differences

we obtain the ratios of CTRs on different positions in the EOS world of R = 0. For example, in

the “games” search string, the CTR of a given ad in position 1 is exp (3.4− 1.4) ≈ 7 times higher

in position 1 than in position 5. In the “weather” search string, the ration is exp (4.1− 0.7) ≈ 30.

We do not know whether to attribute users’ reluctance to click on lower positions to their
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Search string

games weather white pages sex

Domain 1
Quality −2.10

(0.09)

−3.13
(0.07)

−0.60
(0.09)

−0.40
(0.09)

Prob. 0.96
(0.08)

0.96
(0.05)

0.98
(0.04)

0.98
(0.10)

Domain 2
Quality −1.82

(0.11)

−4.02
(0.08)

−0.79
(0.04)

−1.95
(0.09)

Prob. 0.76
(0.08)

0.96
(0.07)

0.83
(0.03)

0.94
(0.03)

Domain 3
Quality −1.29

(0.17)

−3.73
(0.12)

−0.86
(0.18)

−2.47
(0.07)

Prob. 0.83
(0.07)

0.72
(0.04)

0.78
(0.04)

0.90
(0.04)

Domain 4
Quality −1.76

(0.14)

−3.01
(0.07)

−0.75
(0.16)

−1.43
(0.10)

Prob. 0.71
(0.05)

0.95
(0.03)

0.93
(0.04)

0.89
(0.07)

Domain 5
Quality −3.01

(0.06)

−4.84
(0.08)

−2.57
(0.05)

−2.84
(0.09)

Prob. 0.96
(0.04)

0.97
(0.04)

0.97
(0.04)

0.91
(0.05)

Table 5: Estimates of domain quality and probabilities of relevance

R σ

0.55
(0.02)

2.25
(0.067)

Table 6: Estimates of the structural parameters: the satiation parameter R and the standard

deviation σ of the user random effect.
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bounded rationality that creates a high “psychic” cost of clicking on them, or to their rational

expectations that ads placed in lower positions have lower quality, as e.g. in the AE model. We

cannot answer this question given the available data. Answering this question would be important

to predict long-run responses to changes in the ad allocation policy. Yet, we can be agnostic about

this question in analyzing user behavior for a given allocation policy, or their short-run response to

a change in the policy.

Our separation of utility from cost also enables us to compare the costs of clicking on ads

under different keywords. For example, it turns out that people searching for “weather” find it

relatively cheap to click of sponsored links, as opposed to those searching for “white pages”. This

cost heterogeneity of search strings may be due to the selection of different users in different searches

and also to competition with the “organic search” results: If some keywords have better organic

search results than others it would manifest itself in our model as a higher cost of clicking on

sponsored search results. Unfortunately, we do not observe organic search links for the impressions

we analyze, so we cannot test this hypothesis.

It is also interesting to note the heterogeneous cost differences between positions. This observa-

tion is important for optimizing bidding strategy in the keyword auctions. For example, the biggest

percentage jump in cost between position 1 and 2 is observed for “weather”. It suggests that there

is a lot of extra value for winning slot number 1 vs. 2. At the same time for “sex” this difference is

much smaller so an advertiser might benefit from bidding less and taking position 2.

Table 5 presents the estimates of qualities and relevance probabilities of selected domains for

each keyword. In each keyword, we have selected the 4 most-clicked domains and pooled all the other

domains, assuming they have the same quality. We can now supplement our reduced-form evidence

negative externalities from Section 2 with structural estimates that provide us with quantitative

guidance about the relative qualities of the domains. The advantage is that now we do not need to

guess which domains are stronger and which are weaker competitors.

For example, in the “games” search string, the largest number of clicks is received by the

Microsoft-owned Domain 1, yet the structural model yields that this domain has the lowest quality

of the top 4. The structural model attributes the large number of clicks on this domain to its frequent

placement in top positions (which presumably was done by Microsoft to promote the service). The

same phenomenon is observed for Microsoft’s Domain 3 in the “weather” search string. Moreover,

the description of this domain suggests that is service with maps, so users can be uncertain if it

contains weather. This explains the domain’s relatively low relevance probability.
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We investigated the domains advertised on the “sex” string and found that only Domain 1 is

directly relevant to the search query. Domain 2 is a general Internet shopping web site, Domain 3

is a health nutrition store and Domain 4 is a spam domain with no content other than sponsored

links. Our estimates of domain qualities are consistent with these findings. However, it is interesting

that Domain 4 is estimated to have a relatively high quality. We cannot reveal the domain name

due to Microsoft’s privacy restrictions, but we can say that it is very well chosen, suggesting success

in sexual life. We think that many users are disappointed by the domain after clicking on it, which

explains the domain’s lowest relevance probability among the “sex” domains.15

Our estimates of satiation and of user heterogeneity are presented in Table 6. The interpretation

of the standard deviation σ is that different users’ probabilities of clicking on a given ad in a given

position may differ on average by a factor of expσ ' 9.5.

15In our model, users are induced to click on this domain because they rationally expect that its quality will be

high if it proves to be relevant for them. Alternatively, the same data can be explained with a model (estimated in

an earlier version of this paper) in which users are deceived by the domain’s name into expecting the domain to be

highly relevant and are systematically disappointed upon clicking on it. It would be difficult to distinguish between

the models of rational user learning and incorrect priors from the available data. Note, however, that the policy

implications of the two models would be quite different: high placement of “uncertain” domains may benefit rational

users by facilitating their learning, while high placement of “deceptive” domains would hurt users.
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(d1) (d2) (d3) (d4) (d5) R=0

(d1) - 0.116 0.100 0.121 0.126 0.136

(d2) 0.093 - 0.089 0.107 0.114 0.124

(d3) 0.155 0.166 - 0.169 0.164 0.175

(d4) 0.085 0.101 0.084 - 0.107 0.118

(d5) 0.045 0.054 0.048 0.056 - 0.133

(d1) (d2) (d3) (d4) (d5) R=0

(d1) - 0.062 0.065 0.049 0.070 0.075

(d2) 0.022 - 0.030 0.021 0.033 0.037

(d3) 0.019 0.022 - 0.018 0.027 0.032

(d4) 0.057 0.067 0.070 - 0.075 0.079

(d5) 0.011 0.013 0.015 0.010 - 0.052

(d1) (d2) (d3) (d4) (d5) R=0

(d1) - 0.146 0.159 0.129 0.171 0.183

(d2) 0.057 - 0.084 0.068 0.111 0.124

(d3) 0.045 0.063 - 0.054 0.090 0.104

(d4) 0.081 0.111 0.118 - 0.147 0.160

(d5) 0.016 0.022 0.025 0.018 - 0.108

(d1) (d2) (d3) (d4) (d5) R=0

(d1) - 0.227 0.236 0.225 0.236 0.243

(d2) 0.033 - 0.076 0.059 0.078 0.086

(d3) 0.019 0.035 - 0.031 0.046 0.056

(d4) 0.050 0.091 0.099 - 0.106 0.115

(d5) 0.013 0.025 0.030 0.022 - 0.089

Table 7: Predicted CTR on a domain in position 2 conditional on different competitors in position 1 and conditional on a “dummy

competitor” inposition 1 who creates no satiation.
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Search string

games weather white pages sex

Domain 1
True data 0.094 0.073 0.129 0.256

R=0 0.126 0.082 0.158 0.271

Domain 2
True data 0.042 0.022 0.086 0.072

R=0 0.068 0.032 0.123 0.098

Domain 3
True data 0.119 0.024 0.063 0.030

R=0 0.152 0.035 0.095 0.049

Domain 4
True data 0.047 0.012 0.099 0.115

R=0 0.074 0.019 0.139 0.131

Domain 5
True data 0.063 0.012 0.031 0.031

R=0 0.105 0.019 0.062 0.056

Table 8: Counterfactual domain CTRs if there are no externalities, i.e R = 0

To interpret the quantitative significance of the externality parameter R, we performed two

counterfactual exercises. In the first exercise, we consider a hypothetical impression with only two

advertisements and we compute the effect of satiation on the CTR of the advertiser in position 2.

That is, we calculate the probability of the advertiser in slot 2 getting clicked when the user is not

satiated by the ad in slot 1 (e.g., when a very low quality ad is placed in position 1), and compare

it with the CTRs with satiation for different actual competitors placed in slot 1. Table 7 presents

the results. The biggest losses due to satiation occur in the “sex” string, on ads that compete with

Domain 1 in position 1. For example, the CTR of Domain 3 in position 2 would be almost 3 times

higher if it did not compete with Domain 1 in position 1. On the other hand, Domain 1 itself,

being a high-quality ad, does not suffer much from externalities: its CTR in position 2 would have

been only 3%-9% higher had it faced no competition from position 1.

The second counterfactual exercise is performed on the actual data. We simulate the CTRs of

selected domains in the observed impressions in the hypothetical world without satiation (i.e., in

which R = 0) and compare the results with the actual empirical CTRs. The simulation results are

presented in Table 8. Unlike in the previous exercise, the size of the loss now depends not only on

the domain’s own quality but also on how often it faces strong competitors in the impression. A

good example is given by comparing Domain 1 in “games” to Domain 4 in “white pages”. Both

of those domains have similar CTRs, however Domain 4 gains much more in the counterfactual.

23



Search string

games weather white pages sex

Domain 1
True data 0.094 0.073 0.129 0.256

No uncertainty 0.087 0.072 0.121 0.254

Domain 2
True data 0.042 0.022 0.086 0.072

No uncertainty 0.052 0.022 0.100 0.073

Domain 3
True data 0.119 0.024 0.063 0.030

No uncertainty 0.121 0.026 0.078 0.032

Domain 4
True data 0.047 0.012 0.099 0.115

No uncertainty 0.059 0.013 0.102 0.120

Domain 5
True data 0.063 0.012 0.031 0.031

No uncertainty 0.062 0.012 0.029 0.034

Table 9: Counterfactual domain CTRs if all uncertainty about ad quality of resolved prior to clicking

decisions

While in general better domains tend to lose less due to externalities, the magnitude of the loss

varies by search string. We also calculate that the total number of clicks in our dataset would have

increased by 40% had satiation been absent.16

We can also quantify the effects of user uncertainty about relevance by considering the counter-

factual in which this uncertainty is resolved before the user starts clicking. (For example, the search

engine can reduce uncertainty by offering longer website descriptions, user comments, or experts

opinions.) Although it is straightforward that eliminating user uncertainty will raise user welfare, a

priori it is not clear how it would affects the total CTR. Table 9 presents the CTR effects on each

domain of removing uncertainty about the relevance of ads. We note that the ads that benefit from

this change are the ones with the greatest uncertainty (lowest relevance probability), while the ads

with relevance probability close to 1 receive lower CTRs in the counterfactual regime. The second

row of Table 11 presents the effects of removing uncertainty on user welfare and the total CTR: the

counterfactual raises user welfare by nearly 14% and also yields a slight increase in the total CTR.

16We cannot estimate the loss of advertiser profits caused by externalities, because of lack of click conversion data.

This issue is left for further research.
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6 Counterfactual Matching Policies

This section presents the outcomes of simulations that compare user welfare and the total CTR for

counterfactual matching policies of ads to positions. (Since we do not observe the advertisers’ bids,

we use the total CTR is our proxy for the search engine’s revenue.) In particular, it is interesting to

consider the matching policy that maximizes the users’ expected utility and a potentially different

policy that maximizes the total CTR.

A natural candidate matching policy is Assortative Matching (AM), in which the ads are dis-

played in the decreasing order of their quality qa. (This policy is feasible for Microsoft provided

that they know the qualities of the different ads. We suspect that Microsoft has some estimates of

quality though they might not be perfect.) This policy in fact maximizes the total CTR and users’

expected utility in the cases of our model without externalities and uncertainty (pa = 1):

Proposition 6.1. If R = 0 and each ad receives a CTR less than one in each position, then

assortative matching maximizes both the total CTR and the user’s expected utility.

Proof: It suffices to show that this is true conditional on any given realization of the user’s

random effect δi: this will imply that the same is true on expectation over δi.

Recall that the CTR on an ad of quality q in a position with cost f is π (q, f) = Pr {q + ε > f} =

max
{
eq−f , 1

}
= eq·e−f . Since this function is supermodular in

(
eq, e−f

)
, a well-known result implies

that assortative matching maximizes the total CTR.

As for the user’s expected utility from having ad with quality q in position with cost f , it can

be computed as∫ ∞
0

max {q + ε− f, 0} e−εdε =

∫ ∞
f−q

(ε− f + q) e−εdε = eq−f = π (q, f) .

So in this benchmark model the user’s expected utility coincides with the CTR and is again maxi-

mized by assortative matching.

When R > 0, the conclusion no longer holds, and we can find examples in which the total CTR

or expected user utility are not maximized by AM. The intuition for how assortative matching can

be improved upon for users is that for two ads with the same quality qa it is strictly optimal to put

the ad with the lower relevance probability pa in a higher position so as to reduce the user’s cost of

learning its relevance. (Similar changes raise the CTR but to a smaller extent.)

Example 6.1. Suppose that R > 0. There are two ads: A = {1, 2}, with ad 2 having no relevance

uncertainty: p2 = 1. The position clicking costs are f2 > f1. Compare the two possible impressions:
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Utility CTR

Data 0.23 - 0.18 -

No Uncertainty 0.27 +14.1% 0.19 +3.0%

OLS 0.26 +12.8% 0.2 +10.1%

Max U 0.27 +13.3% 0.2 +9.9%

Max CTR 0.26 +12.8% 0.2 +10.1%

Max U with misspecified model

(no externalities)
0.27 +13.3% 0.2 +9.9%

First Best 0.37 +59.0% 0.25 +34.5%

Table 10: Counterfactual matching regimes

(1, 2) and (2, 1) . A user can have four possible types of optimal strategies: (a) always click on both

ads, (b) always click on zero ads, (c) always click on one ad, and (d) click on the uncertain ad 1,

and then click on ad 2 if and only if ad 1 proves to be irrelevant. (Of course, the optimal strategy

may depend on the impression as well as the user’s realized utility.) The expected payoffs from

strategies (a) and (b) are the same on the two impressions. Since strategy (c) yields the same payoff

as if R = 0, the expected payoff from this strategy is maximized by assortative matching, by the

above proposition. However, the payoff from strategy (d) is maximized on impression (1, 2), since

with probability 1 − p1 it avoids clicking on ad 2. Thus, for parameter values for which strategy

(b) is sufficiently likely to be optimal to the user on both impressions, it is optimal to display the

uncertain ad above the certain ad, even if the certain as has higher expected quality (q2 > p1q1).

Similarly if there is no externalities i.e. R = 0, but there is uncertainty, the assortative matching

might be sub-optimal both for maximizing consumer surplus as well as CTR.

Example 6.2. Suppose there are two ads (p1, q1) = (1, 10) and (p2, q2) = (0.2, 10), and there is no

user heterogeneity. The position clicking costs are f1 = 1 and f2 = 8. In case when the ads are

matched assortitatively, i.e. ad 1 is placed on position 1, the expected utility is 9 and expected CTR

is 1. In this case position 1 gets clicked, position two doesn’t because incurring high cost of clicking

8, is not justified by the low probability of the reward. In case we match ad 1 to position two the

user will click both ads, getting expected utiltiy equal to 11.2

We simulate both welfare- and CTR-optimal matching policies on our data, and compare them

to both assortative matching (ad qualities are obtained by estimating EOS model using OLS) and
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Utility CTR

Data 0.23 - 0.18 -

Max U 0.37 +59.0% 0.25 +34.5%

Max CTR 0.23 -1.5% 0.28 +49.7%

Max U with misspecified model

(no externalities)
0.33 +42.5% 0.25 +37.6%

Max CTR with misspecified model

(no externalities)
0.28 +20.9% 0.25 +33.7%

Assortative Matching 0.35 +48.5% 0.25 +36.3%

Table 11: Consumer level targeting

the actual data. As shown in Table 10, we find that assortative matching that does not take into

account uncertainty would raise user welfare by 12.8% and the total CTR by 10.1%. It turns out

that this matching policy coincides with user optimal policy. While in theory those two regimes do

not have to coincide it turns out that in practice the give the same matching rules.

If the search engine tries to maximize welfare ignoring the presence of externalities it turns out

that it will arrive at the policy that maximizes CTR. Again in theory those two do not have to

coincide. Moreover, the difference in welfare and CTR between this matching rule and the one from

the previous paragraph is below 1%. It leads us to conclude that if the search engine cannot target

ad placement on the level of individual user there is no significant improvements in adjusting the

matching software from assortative matching using OLS estimates to more sophisticated schemes.

Moreover, if one does not account for externalities, the perceived ’welfare maximizing’ matching

scheme might be actually inferior to OLS assortative matching.

The above assertions treat the average CTR as a proxy for total revenue. In reality, however the

revenue is a sum of clicks weighted by costs per click. In case the costs per click are heterogeneous

one can give examples under which assortative matching gives suboptimal results. Consider the

following example from the data.

Example 6.3. Take Domains 2 and 3 from the weather search string, and ignore all the other

domains. In the data we observe impressions when those domains switch places with eachother.

One way to rationalize this fact is that the search engine is indifferent between both placements.

Moreover suppose that it is doing a weighted a bid-weighted assortative matching using the OLS

estimates of EOS model. We can therefore infer that the bids for those ads have to be proportional
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to the inverse of the exponent of the OLS quality estimates, i.e. exp(4.3) and exp(4.6). One can

take those bids, and compute the search engine revenue under different matching policies of those

ads to first and second position. It turns out that OLS assortative matching gives about 5% less

revenue than non-assortative one.

Unfortunately given the available dataset it is impossible to seperately identify costs per click

without having data on advertisers bids or valuations.

6.1 First best targetting

Next we examine the improvements that could be achieved by “first-best” targeting, i.e., condition-

ing the impressions on the user’s utility characteristics εi, δi. This approximates the situation in

which the search engine uses information about the consumers like search history or demographics

to tailor the impression. As shown in Table 11, moving towards first-best welfare-maximizing raises

the user’s expected utility by 59% from the actual data, and raises the total CTR by 34.5%. If we

instead implement CTR-maximizing first-best targeting, we increase the CTR by 49.7%, without

significant loss to utility (about 1%). We take it a an evidence that there are extra profit opportu-

nities from exploring user level targeting that are also beneficial for the consumers. Microsoft does

have access to substantial information about users’ browsing habits stored in “cookies” on their

computers, and this information is especially rich for users who have opened “Microsoft Passport ”

accounts (special accounts that offer a gateway to e-mail, Internet communicator, and many other

services). To the best of our knowledge, Microsoft does not yet target sponsored search results to

individual users. However, it is now pretty common to target display ads within webpages (in par-

ticular Yahoo! and Google-Doubleclick are known for doing this.) Our analysis of full-information

targeting can be viewed as an upper bound on what can be achieved with targeted advertising.

We examined how a potential model misspecification can affect a performance of a consumer level

targeting. As mentioned earlier, not accounting for externalities or using simple OLS assortative

matching does not decrease the performance of the placement algorithm, if the search engine cannot

target ads for each user. However, in the presence of such targeting possibility, suboptimalities might

be significant. When using assortative matching, that does not take into account externalities and

uncertainty, welfare of the consumers improves by 48.5% and CTR by 36.3%. Therefore, welfare

loss of using this matching policy amounts to about 10.5%, compared to the first best solution.

Interestingly, if the search engine tries to be more sophisticated and implements optimal matching

’as if’ there we no externalities, the loss of welfare is greater and amounts to 16.5%. This effect
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is even more pronounced in the misspecified placement policy that tries to maximize CTR. This

matching policy, presented in the 5th row of Table 11 is Pareto dominated by first best welfare

matching and even by assortative matching. To see the mechanism of this process, we consider an

example from the data. Suppose the impression from the “weather” keyword has 3 ads of qualities

repectively: 3.92, 3.37 and 1.49 (position clicking costs are: -0.73, -1.69 ,-1.28). Now suppose that

search engine wants to maximize CTR and thinks that there are no externalities (R=0), but takes

into account uncertainty. It is going to match as follows: (3.9,−0.7), (3.3,−1.68) and (1.49,−1.27).

If R = 0 and p is big it should give 3 clicks. However, on average it gives only 1.03 clicks because

users get satiated after clicking on the first ad, and click on the second ad only if the first is

not relevant. Instead, what one should do is assortative matching: (3.9,−0.7), (3.3,−1.27) and

(1.49,−1.68) which gives 2 vs. 1.03 clicks on average and on top of that more utility.

That being said, we note that sometimes not-assortative matching might be actually a good

idea. Suppose the one ad is very strong and the other one very week, but good enough to be

clicked on top position. The first one gets clicked for sure on any position, and in case of assortative

matching second one gets clicked only if the first one is not relevant. So to maximize CTR one would

want to revert the assortative matching. This effect however turns out to be much weaker that the

one mentioned in the previous paragraph. That is why, assortative matching Pareto dominates

misspecified CTR-optimal user level matching in the data.

Those results lead us to conclusion that if the search engine is uniformed about the strength or

even presence of externalities, it can come up with suboptimal matching schemes that are Pareto

dominated by the simple assortative matching. Although there is a lot to gain by implementing

more sophisticated matching schemes on the user level, one has to make sure that the estimates of

externalities are correct.

7 Conclusion

This paper provides empirical evidence of externalities among ads in sponsored-search advertising,

of user heterogeneity, and of user uncertainty regarding the relevance of ads to them. The evidence

is provided using both reduced-form tests and a structural models of expected utility-maximizing

users.

The advantage of the structural model is that it we can estimate the impact of externalities and

uncertainty on CTRs of advertisers, social welfare of consumers and total CTR that is proxy of
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profits for the search engine. We find significant impact of both uncertainty (usually in the range

of couple per-cent, with maximal 25% drop of CTR for one advertiser) and externalities (usually

around 30% drop in CTR) on advertisers’ CTR.

We alse make counterfactual predictions for different ad placement regimes and quantify “user

experience” as the average user’s expected utility. We find that an alternative ad placement policy

could raise user welfare by 12%, and that the increase could go up to 59% if information is available

to target the placement to specific consumers. This suggests a large potential for ad targeting based

on user level covariates, such as demographics or previous search history.

We also find that if the search engine tries to implement sophisticated matching policies but

uses an misspecifified model (for example the one that does not account for externalities) it can end

up in suboptimal matching policies that are Pareto dominated by a simple assortative matching. In

case when the ad placement cannot be targeted on users the losses are not very large, but in case

of user level targeting they may reach even 16% of consumer welfare.

The interpretation of our counterfactuals depends on our attribution of on position fixed effects

– namely, if these effects would be affected in the long run by implementation of an alternative ad

placement policy. If the fixed effects are position-specific clicking costs that do not depend on the

matching policy, then our counterfactuals are valid in the long run as well as in the short run. If

instead these fixed effects are due to users’ expectations that higher positions contain more relevant

ads, these expectations will be altered in the long run under the new matching policy, which is not

accounted for in our model. While we believe it is important to study long-run user learning of

position-specific ad relevance, the dataset on the Beyond Search DVD does not allow is to do it as

it does not track users over time. This is an important direction for future research.
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