3,848 research outputs found

    Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings

    Full text link
    Consider a directed or an undirected graph with integral edge weights from the set [-W, W], that does not contain negative weight cycles. In this paper, we introduce a general framework for solving problems on such graphs using matrix multiplication. The framework is based on the usage of Baur-Strassen's theorem and of Strojohann's determinant algorithm. It allows us to give new and simple solutions to the following problems: * Finding Shortest Cycles -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for finding shortest cycles in undirected and directed graphs. For directed graphs (and undirected graphs with non-negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-Williams. On the other hand, no algorithm working in \tilde{O}(Wn^{\omega}) time was previously known for undirected graphs with negative weights. Furthermore our algorithm for a given directed or undirected graph detects whether it contains a negative weight cycle within the same running time. * Computing Diameter and Radius -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for computing a diameter and radius of an undirected or directed graphs. To the best of our knowledge no algorithm with this running time was known for undirected graphs with negative weights. * Finding Minimum Weight Perfect Matchings -- We present an \tilde{O}(Wn^{\omega}) time algorithm for finding minimum weight perfect matchings in undirected graphs. This resolves an open problem posted by Sankowski in 2006, who presented such an algorithm but only in the case of bipartite graphs. In order to solve minimum weight perfect matching problem we develop a novel combinatorial interpretation of the dual solution which sheds new light on this problem. Such a combinatorial interpretation was not know previously, and is of independent interest.Comment: To appear in FOCS 201

    NC Algorithms for Computing a Perfect Matching and a Maximum Flow in One-Crossing-Minor-Free Graphs

    Full text link
    In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3K_{3,3}-minor-free graphs by building on Kasteleyn's scheme for planar graphs, and stated that this "opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3K_{3,3}-free graphs." In this paper, we finally settle this 30-year-old open problem. Building on recent NC algorithms for planar and bounded-genus perfect matching by Anari and Vazirani and later by Sankowski, we obtain NC algorithms for perfect matching in any minor-closed graph family that forbids a one-crossing graph. This family includes several well-studied graph families including the K3,3K_{3,3}-minor-free graphs and K5K_5-minor-free graphs. Graphs in these families not only have unbounded genus, but can have genus as high as O(n)O(n). Our method applies as well to several other problems related to perfect matching. In particular, we obtain NC algorithms for the following problems in any family of graphs (or networks) with a one-crossing forbidden minor: \bullet Determining whether a given graph has a perfect matching and if so, finding one. \bullet Finding a minimum weight perfect matching in the graph, assuming that the edge weights are polynomially bounded. \bullet Finding a maximum stst-flow in the network, with arbitrary capacities. The main new idea enabling our results is the definition and use of matching-mimicking networks, small replacement networks that behave the same, with respect to matching problems involving a fixed set of terminals, as the larger network they replace.Comment: 21 pages, 6 figure

    Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs

    Get PDF
    We present a deterministic way of assigning small (log bit) weights to the edges of a bipartite planar graph so that the minimum weight perfect matching becomes unique. The isolation lemma as described in (Mulmuley et al. 1987) achieves the same for general graphs using a randomized weighting scheme, whereas we can do it deterministically when restricted to bipartite planar graphs. As a consequence, we reduce both decision and construction versions of the matching problem to testing whether a matrix is singular, under the promise that its determinant is 0 or 1, thus obtaining a highly parallel SPL algorithm for bipartite planar graphs. This improves the earlier known bounds of non-uniform SPL by (Allender et al. 1999) and NC2NC^2 by (Miller and Naor 1995, Mahajan and Varadarajan 2000). It also rekindles the hope of obtaining a deterministic parallel algorithm for constructing a perfect matching in non-bipartite planar graphs, which has been open for a long time. Our techniques are elementary and simple

    Matching Is as Easy as the Decision Problem, in the NC Model

    Get PDF
    Is matching in NC, i.e., is there a deterministic fast parallel algorithm for it? This has been an outstanding open question in TCS for over three decades, ever since the discovery of randomized NC matching algorithms [KUW85, MVV87]. Over the last five years, the theoretical computer science community has launched a relentless attack on this question, leading to the discovery of several powerful ideas. We give what appears to be the culmination of this line of work: An NC algorithm for finding a minimum-weight perfect matching in a general graph with polynomially bounded edge weights, provided it is given an oracle for the decision problem. Consequently, for settling the main open problem, it suffices to obtain an NC algorithm for the decision problem. We believe this new fact has qualitatively changed the nature of this open problem. All known efficient matching algorithms for general graphs follow one of two approaches: given by Edmonds [Edm65] and Lov\'asz [Lov79]. Our oracle-based algorithm follows a new approach and uses many of the ideas discovered in the last five years. The difficulty of obtaining an NC perfect matching algorithm led researchers to study matching vis-a-vis clever relaxations of the class NC. In this vein, recently Goldwasser and Grossman [GG15] gave a pseudo-deterministic RNC algorithm for finding a perfect matching in a bipartite graph, i.e., an RNC algorithm with the additional requirement that on the same graph, it should return the same (i.e., unique) perfect matching for almost all choices of random bits. A corollary of our reduction is an analogous algorithm for general graphs.Comment: Appeared in ITCS 202

    Belief-Propagation for Weighted b-Matchings on Arbitrary Graphs and its Relation to Linear Programs with Integer Solutions

    Full text link
    We consider the general problem of finding the minimum weight \bm-matching on arbitrary graphs. We prove that, whenever the linear programming (LP) relaxation of the problem has no fractional solutions, then the belief propagation (BP) algorithm converges to the correct solution. We also show that when the LP relaxation has a fractional solution then the BP algorithm can be used to solve the LP relaxation. Our proof is based on the notion of graph covers and extends the analysis of (Bayati-Shah-Sharma 2005 and Huang-Jebara 2007}. These results are notable in the following regards: (1) It is one of a very small number of proofs showing correctness of BP without any constraint on the graph structure. (2) Variants of the proof work for both synchronous and asynchronous BP; it is the first proof of convergence and correctness of an asynchronous BP algorithm for a combinatorial optimization problem.Comment: 28 pages, 2 figures. Submitted to SIAM journal on Discrete Mathematics on March 19, 2009; accepted for publication (in revised form) August 30, 2010; published electronically July 1, 201

    The Matching Problem in General Graphs is in Quasi-NC

    Full text link
    We show that the perfect matching problem in general graphs is in Quasi-NC. That is, we give a deterministic parallel algorithm which runs in O(log3n)O(\log^3 n) time on nO(log2n)n^{O(\log^2 n)} processors. The result is obtained by a derandomization of the Isolation Lemma for perfect matchings, which was introduced in the classic paper by Mulmuley, Vazirani and Vazirani [1987] to obtain a Randomized NC algorithm. Our proof extends the framework of Fenner, Gurjar and Thierauf [2016], who proved the analogous result in the special case of bipartite graphs. Compared to that setting, several new ingredients are needed due to the significantly more complex structure of perfect matchings in general graphs. In particular, our proof heavily relies on the laminar structure of the faces of the perfect matching polytope.Comment: Accepted to FOCS 2017 (58th Annual IEEE Symposium on Foundations of Computer Science

    A Decomposition Theorem for Maximum Weight Bipartite Matchings

    Get PDF
    Let G be a bipartite graph with positive integer weights on the edges and without isolated nodes. Let n, N and W be the node count, the largest edge weight and the total weight of G. Let k(x,y) be log(x)/log(x^2/y). We present a new decomposition theorem for maximum weight bipartite matchings and use it to design an O(sqrt(n)W/k(n,W/N))-time algorithm for computing a maximum weight matching of G. This algorithm bridges a long-standing gap between the best known time complexity of computing a maximum weight matching and that of computing a maximum cardinality matching. Given G and a maximum weight matching of G, we can further compute the weight of a maximum weight matching of G-{u} for all nodes u in O(W) time.Comment: The journal version will appear in SIAM Journal on Computing. The conference version appeared in ESA 199
    corecore