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Error-Free Milestones in Error Prone Measurements

Abstract
A predictor variable or dose that is measured with substantial error may possess an error-free milestone, such
that it is known with negligible error whether the value of the variable is to the left or right of the milestone.
Such a milestone provides a basis for estimating a linear relationship between the true but unknown value of
the error-free predictor and an outcome, because the milestone creates a strong and valid instrumental
variable. The inferences are nonparametric and robust, and in the simplest cases, they are exact and
distribution free. We also consider multiple milestones for a single predictor and milestones for several
predictors whose partial slopes are estimated simultaneously. Examples are drawn from the Wisconsin
Longitudinal Study, in which a BA degree acts as a milestone for sixteen years of education, and the binary
indicator of military service acts as a milestone for years of service.
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ERROR-FREE MILESTONES IN ERROR PRONE MEASUREMENTS

BY DYLAN S. SMALL AND PAUL R. ROSENBAUM1

University of Pennsylvania

A predictor variable or dose that is measured with substantial error may
possess an error-free milestone, such that it is known with negligible error
whether the value of the variable is to the left or right of the milestone. Such
a milestone provides a basis for estimating a linear relationship between the
true but unknown value of the error-free predictor and an outcome, because
the milestone creates a strong and valid instrumental variable. The inferences
are nonparametric and robust, and in the simplest cases, they are exact and
distribution free. We also consider multiple milestones for a single predictor
and milestones for several predictors whose partial slopes are estimated si-
multaneously. Examples are drawn from the Wisconsin Longitudinal Study,
in which a BA degree acts as a milestone for sixteen years of education, and
the binary indicator of military service acts as a milestone for years of service.

1. Introduction: strong, valid instrumental variables from error-free mile-
stones.

1.1. Error-free milestones. A fallible measure contains an error-free milestone
if there is some value of the measure, called the milestone, such that, despite errors
of measurement, the measurement is always on the correct side of the milestone.
Error-free milestones arise in a variety of ways. It may happen that a nonnegative
quantity may contain errors when it is strictly positive, but a zero is truly and ex-
actly a zero; an example involving duration of exposure to anesthetics is discussed
in Section 1.2. If a scale is defined in terms of many item responses, then for some
possible definitions of the scale, an error free item yields an error free milestone;
an example involving a scale of exposure to combat in Vietnam is discussed in
Section 1.3. If deceit is distinguished from error, then the concept of an error-free
milestone (as distinct from a deception free milestone) is relevant to responses to
questions; see Section 1.4.

In practice, an error-free milestone is a model intended to approximate situa-
tions in which errors that respect the milestone are commonplace and errors that
cross the milestone are extremely infrequent. In Section 1.2 imprecision in record-
ing the duration of anesthesia respects a milestone at zero, whereas failing to bill
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for an operation causes an error that crosses the milestone; however, there are
strong disincentives for the latter error.

1.2. Inhaled anesthetics and neurodegenerative disorders. Measurable cogni-
tive dysfunction may occur in perhaps 20% of patients one week after surgery with
an inhaled anesthetic [Johnson et al. (2002)], but long term effects in humans have
not, so far, been demonstrated. Eckenhoff et al. (2004) provide in vitro laboratory
evidence suggesting that the anesthetics halothane and isoflurane enhanced cellu-
lar changes associated with the development of neurodegenerative disorders such
as Alzheimer and Parkinson disease.

Mounting a large scale, long term study in humans faces several significant ob-
stacles, including (i) measurement of the duration of anesthetic exposure, (ii) mea-
surement of neurodegenerative outcomes, and (iii) confounding of the need for
surgery with effects of anesthetics given during surgery. Jeffrey Silber, Roderic
Eckenhoff and one of the authors (Rosenbaum) have proposed to use data from
Medicare as the basis for such a study. Medicare is the program of the U.S. govern-
ment which provides publicly financed health care to people of age 65 or greater.
With some exceptions, doctors and hospitals bill Medicare for services provided
to the elderly, and these Medicare claims create a national record of health care for
Medicare recipients.

If you fall in a certain way and break your hip, it is likely that you will need hip
surgery requiring prolonged anesthesia; for Medicare recipients, these events will
be recorded in Medicare claims. If you fall in a slightly different way and break
your pelvis, it is likely that your condition will be treated without surgery, and
hence without inhaled anesthesia; these events, also, will be recorded in Medicare
claims. Comparing patients who broke either a hip or a pelvis is an example of
using differential treatment effects to remove confounding from generic biases
[Rosenbaum (2006)].

Like lawyers, and unlike surgeons, anesthesiologists bill for their time. Anesthe-
siologists submit a bill to Medicare which records the duration of anesthetic care.
Silber et al. (2007) compared the times recorded in these bills to times obtained
by chart abstraction for 1931 patients in Pennsylvania. The bills were typically in
close agreement with the chart abstractions, with a median absolute difference of
five minutes, but as seen in the quantile–quantile plot in Figure 2 of Silber et al.
(2007), the distribution is approximately symmetric with extremely long tails, with
more than 1% of bills discrepant by more than an hour. The cause of these large
discrepancies is not known, and could conceivably be errors in abstraction rather
than in bills; however, we suspect that our algorithm for record linkage sometimes
makes a few gross errors, possibly due to errors in dates on bills. Silber et al. (2007)
conclude that anesthesia bills can be used to gauge anesthesia duration, providing
robust methods are used to prevent the long tails from having inappropriate influ-
ence.
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Although the anesthesia bills measure anesthesia duration with moderate but
long tailed error, it is virtually certain that a patient who did not have surgery had
no exposure to inhaled anesthetics. In other words, the nonzero anesthesia duration
for a broken hip will contain error, but the zero duration for a broken pelvis will
truly be zero, creating an error-free milestone at zero.

1.3. Scales in which certain levels may be verified using administrative records.
Lund et al. (1984) created a seven point scale of the degree of exposure to combat
during the Vietnam War. Certain points on the scale can be determined objec-
tively from military records; others depend on self-report. For instance, “in mili-
tary service during 1965–1975” by itself scores a 0, whereas that combined with
“stationed in Vietnam” scores a 1, while both of these together with “saw injury
or death of U.S. Serviceman” scores a 2, and so on, and “wounded in combat”
scores a 5. Military records indicate when and where an individual has served and
whether the individual was wounded in combat, but there is no record of whether
an individual saw the injury or death of a U.S. Serviceman. A misstatement by an
individual may result in erroneous placement on the scale, but only within the mile-
stones created by the scale’s dependence, at certain points, on objective records.

Expressed more abstractly, it is common to combine several oriented pieces
of information or items to form a scale. Here the scale is the degree of exposure
to combat and the items are such events as “wounded in combat.” With m binary
items, the 2m possible patterns of item responses are partially ordered, for instance,
a person who is positive for items 1 and 2 and for no other items is at least as high
in the partial order as a person who is positive for item 2 and no other item, etc. In
rare instances, the patterns that actually occur form a linear order or Guttman scale,
so only m + 1 patterns of the 2m possibilities actually occur. More commonly, the
definition of the scale imposes a linear order that is compatible with (i.e., is a
linear extension of) the partial order on the 2m possible patterns. If some of the
items are error free and others are error prone, then it is always possible to define
the linear order or scale so that it gives lexicographic priority to at least one of
the error-free items, thereby creating an error-free milestone; see the discussion of
the lexicographic sum of partial orders in Trotter (1992), page 24. Whether or not
such a scale will be reasonable as a scale obviously depends upon the content of the
specific items involved, but the mere existence of scales with error-free milestones
is guaranteed by the existence of at least one error-free item.

As noted by Dee, Evans and Murray (1999), in longitudinal data for research in
education and labor economics, it is increasingly common to combine transcripts
from educational institutions with survey questionnaires. Although this does not
appear to have been done as yet, in parallel with Lund et al. (1984), one could
create educational scales anchored by milestones determined from transcripts, for
instance, receipt of particular academic degrees.
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1.4. Milestones to anchor memory. Measurements that describe people are of-
ten obtained by asking them questions. How many years of education do you have?
How long did you serve in the U.S. military? How many cigarettes do you smoke
per day? To what extent are you prone to violent behavior? In asking such ques-
tions, an investigator hopes that the respondent can remember the answer, and can
express the answer in a manner consistent with the investigator’s operational def-
initions, but these hopes are not always realized. Aspects of questionnaire design
are discussed by Sudman and Bradburn (1986), Lyberg (1997) and Tourangeau,
Rips and Rasinski (2000).

For instance, by “years of education,” most investigators mean “grades success-
fully completed,” not years spent trying. Imagine a person who dropped out of
high school in the middle of tenth grade, having repeated grades three and seven.
Such a person might think of this as twelve years of education (ten plus two),
whereas the investigator might intend this to be classified as successful comple-
tion of grades one through nine, or nine years of education. Similarly, a person
who achieves a BA degree with three years of college, a summer session after the
freshman year and some advanced placement credit might report fifteen years of
education, whereas the investigator might intend to credit sixteen years of educa-
tion for achievement of a BA.

A respondent may intend to report accurately, but may fail to do so because of
lapses of memory and uncertainties about the intended meaning of the question.
Certain events, however, are easy to remember and unambiguous in question and
answer: they are events punctuated by public ceremony, official sanction, public
documents, and by kinds of behavior rather than degrees of behavior. An honest,
sober, mentally competent respondent is unlikely to err in response to the following
questions: Do you have a high school degree or high school equivalency degree?
Did you ever serve in the U.S. military? Have you smoked any part of at least
one cigarette in the last seven days? Have you ever been convicted for assault?
If scales of behavior are defined in terms of such unambiguous milestones, and if
questioning is organized to ensure that the milestone is respected in responses, then
the milestones may be measured with negligible error, despite continued errors at
points in the scale between milestones.

1.5. Outline. Our purpose here is formalize these considerations, showing
how error-free milestones permit estimation of slopes for the true but unknown
error-free measurements. Speaking informally, almost by definition of the scale
itself, an error-free milestone creates a strong and valid instrumental variable, so
that location with respect to the milestone is related to the true measurement but is
uncontaminated by measurement error; see Section 2 for formal definitions and re-
sults. The inferences are nonparametric and robust, and in the simplest cases they
are exact and distribution free. In Section 2 the most common and simplest case is
discussed, namely, a single milestone for a single variable, first for matched pairs
using Wilcoxon’s signed rank test, then for matched sets formed by full matching
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using a generalization of the signed rank test. In Section 4, multiple milestones
are considered, including several milestones for one predictor, single milestones
for each of several predictors, or several milestones for each of several predictors.
The theory in Sections 2 and 4 is applied in Sections 3 and 5, respectively, to the
example in Section 1.6.

Our use of the term instrumental variable departs slightly from the traditional
definition, which is stated in terms of covariances; see Cheng and Van Ness (1999),
Section 4, for review of the traditional definition. The literature on correcting for
measurement error is extensive; see also Kendall and Stuart (1973), Section 29,
Fuller (1987), Brenner and Gefeller (1993) and Carrol, Ruppert and Stefanski
(1995) for several perspectives. The method discussed in Rosenbaum (2005) may
be viewed as a special case in which the error-free milestone occurs between dose
zero and all positive doses, in which case it was possible to correct for measure-
ment error using controls known to have received dose zero of a treatment. The
notion of error-free milestones is substantially more general, however, in that all
doses may be affected by errors, and several milestones may be available.

1.6. Years of education in the Wisconsin Longitudinal Study. Traditional ques-
tions in sociology and labor economics concern the effects of additional schooling
or of service in the military. The Wisconsin Longitudinal Study (WLS) provides
especially detailed information, including an IQ test score from high school, and
several measures of education. For two of the many empirical studies based on
the WLS, see Singer et al. (1998) and Warren, Sheridan and Hauser (2002). We
focus on the 3738 men with wages of at least $100 in 1974. The WLS began its
data collection with surveys in the senior year of high school, which in the U.S. is
conventionally recorded as 12 years of education, with kindergarten and preschool
ignored. In WLS, the variable edyrcm is self-reported years of education beyond
high school, which we use in the form SR = edyrcm + 12, where SR signifies
“self-report.” The second measure, edeqyr, is a scaled measure of education based
on equivalent degrees actually earned (DS for “degree scaled”), for example, 16
years for a BA, 20 years for a Ph.D., etc. Using DS, we create a binary indicator of
whether the individual reports having a BA degree. These two measures of educa-
tion, SR and DS, often differ by a few years, but they are in substantial agreement
at 16 years of education for the BA. Although not collected in precisely the man-
ner suggested in Section 1.4, to a close approximation, SR does seem to have the
BA degree as an error-free milestone: in SR, all but 29/3738 = 0.008 < 1% of the
men reported less than 16 years of education if no BA was received or at least 16
years of education if a BA was received.

Figure 1 contrasts three measures of education in the WLS, including the degree
scaled education, DS, and the self reported education, SR. The DS and SR differ
for 470 = 12.6% of the men, mostly by one year, but discrepancies as large as
seven years do occur. We assumed that the report of a BA or not was accurate, and
created a third measure, the adjusted self report or SRa, which minimally altered
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FIG. 1. Three measures of education compared: degree scaled (DS), self-report (SR) and self-report
minimally edited to be compatible with a BA = 16 years (SRa). There are a fair number of small
discrepancies between DS and SR, and a very small number of larger discrepancies (up to seven
years). There are only 29/3738 discrepancies between SR and SRa, of which 27 are about one year,
and two are two years.

the 29/3738 = 0.008 < 1% of the men whose self-reported years were inconsistent
with 16 years for the BA. Specifically, two men who reported a BA with 15 years
of education were credited with 16 years of education, 24 men who reported no
BA with 16 years of education and 3 men who reported no BA with 17 years of
education were credited with 15.999 years of education. This adjustment would not
be necessary if the questionnaire forced compliance with the milestone. Of course,
because only small changes were made to 29/3738 records, in Figure 1, SR and
SRa are indistinguishable, but both differ somewhat from DS. For the purpose of
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illustration in the current paper, we act as if SRa were a fallible measure of DS
with a milestone at 16 years.

In Sections 3 and 5, we estimate the relationship between log earnings in 1974
and education correcting for errors of measurement in self-reported education us-
ing the BA degree as a milestone for 16 years of education.

2. Inference using one milestone.

2.1. Doses measured with random errors. There are I matched sets or strata,
i = 1, . . . , I , matched exactly on covariates x, and matched set i contains ni ≥ 2
individuals, j = 1, . . . , ni . The j th individual in set i has covariates xij , true but
unobserved dose dij , fallible observed dose Dij , and outcome Yij . Here, xij and
dij are viewed as fixed, perhaps fixed by conditioning as in a regression model,
but Dij and Yij are random variables, in part because Dij measures dij with an
error of measurement. Because the matching is exact, xij = xij ′ for all i, j , j ′.
See Cochran (1968) for some discussion of the consequences of close but inexact
control for x.

Let C be the set of continuous distribution functions on the real line, and let S
be the subset of continuous distribution functions on the line that are symmetric
about zero. The true but unknown dose dij is assumed to be linearly related to Yij ,

Yij = λ(xij ) + βdij + εij , εij
i.i.d.∼ G ∈ C,(1)

where β is the parameter to be estimated, and λ(·) is an unknown function. The
fallible, observable dose Dij measures the true but unknown dose dij with errors
ξij that are symmetric about zero, are mutually independent, and independent of
the εij ,

Dij = dij + ξij , ξij ∼ Fdij
∈ S,(2)

so the distribution of measurement errors, Fdij
, varies with the true dose dij , but

Dij is always symmetrically distributed about its center or median, namely, dij .
So far, (1) and (2) slightly generalize the traditional errors-in-variables regression
model [Wald (1940), Neyman and Scott (1951), Madansky (1959), Kendall and
Stuart (1973), Section 29, Fuller (1987), Section 1, Cheng and Van Ness (1999)],
notably because the distribution Fdij

of errors ξij need not be the same for all true
doses dij . To say that Dij measures dij with error, there must be some sense in
which the error Dij − dij = ξij is typically zero, and the symmetry of the distribu-
tion Fdij

of ξij about zero in (2) is one such sense. Later, we remove the assumption
of symmetry in (2), replacing it by the assumption that E(ξij ) = 0, but for now ξij

is symmetric about zero. For instance, ξij might have a rescaled and relocated sym-
metric beta distribution with median zero and with a range and a shape that might
vary in some way with dij . If Dij − dij is centered, say, at positive value, then
the doses are systematically biased, and the methods we propose apply to random
errors of measurement but not to systematic biases.
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It is well known that β is not identified under models (1) and (2). Indeed, even
if one assumed much more, say, that λ(xij ) = α for all xij , and εij ∼ N(0, σ 2

ε ),
ξij ∼ N(0, σ 2

ξ ), dij ∼ N(μd,σ 2
d ) with unknown σ 2

ε > 0, σ 2
ξ > 0, σ 2

d > 0 and α,
then: (i) there would be no consistent estimate of β; (ii) the likelihood function
would have a ridge rather than a unique maximum; (iii) least squares regression
of Yij on Dij would be consistent for βσ 2

d /(σ 2
d + σ 2

ξ ) �= β , where Dij has reli-

ability σ 2
d /(σ 2

d + σ 2
ξ ) < 1 as a measure of dij ; see Cheng and Van Ness (1999),

Section 1.2.1.

2.2. Definition of a milestone. The number κ is defined to be an error-free
milestone, or briefly a milestone, for (Dij , dij ) if

Dij < κ ⇐⇒ dij < κ, Dij ≥ κ ⇐⇒ dij ≥ κ, ∀i, j.(3)

In the WLS example in Section 1.6, with κ = 16 years of education, (3) says that
a respondent might misreport dij years of education as Dij years of education
because of a lapse of memory or a miscommunication about the investigator’s op-
erational definition of what counts as a year of education, but an honest, mentally
competent respondent could not misunderstand or forget the answer to the ques-
tion: “Did you receive a BA degree?”

Obviously, a milestone at κ in (3) places a restriction on the range of the
distribution Fdij

of the error of measurement ξij . If (3) is true with κ = 16 in
Section 1.6, then a man who reports Dij = 18 years of education has at least
dij ≥ κ = 16 years of education, so he exaggerates his education by at most
two years, ξij = Dij − dij ≤ 2. Similarly, a man who reports Dij = 14 years
of education has at most dij < κ = 16 years of education, so he understates his
education by at most ξij = Dij − dij > −2 years. In general, if Dij ≥ κ , then
dij ≥ κ so that ξij = Dij − dij ≤ Dij − κ , whereas if Dij < κ , then dij < κ so
that ξij = Dij − dij > Dij − κ . This range restriction is respected by various para-
metric families of distributions Fdij

for ξij in (2) which are symmetric about zero,
Fdij

∈ S, including the symmetric beta distributions relocated and rescaled to have
median zero with support contained in the interval [−|dij − κ|, |dij − κ|].

2.3. A basic property. Consider testing the hypothesis H0 :β = β0 in (1) and
(2) using the error-free milestone (3). Recall that the matching on x is exact, xij =
xik . If a matched set i contains an individual j with Dij ≥ κ and another individual
k with Dik < κ , then compute

Q
(β0)
ijk = (Yij − β0Dij ) − (Yik − β0Dik)

= β(dij − dik) − β0(Dij − Dik) + (εij − εik)(4)

= (β − β0)(dij − dik) − β0(ξij − ξik) + (εij − εik).

Because κ is a milestone in (3), dij − dik > 0 in (4). Also, because the ξij , ξik , εij ,
εik are mutually independent with distributions satisfying the conditions in (1) and
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(2), the quantity −β0(ξij − ξik) + (εij − εik) in (4) has a continuous distribution

symmetric about zero. If H0 :β = β0 were true, then Q
(β0)
ijk in (4) would be sym-

metrically distributed about zero. If H0 :β = β0 were false with β > β0, then Q
(β0)
ijk

would be symmetrically distributed about a positive quantity, whereas if β < β0,
then Q

(β0)
ijk would be symmetric about a negative quantity.

The symmetry of Q
(β0)
ijk about (β − β0)(dij − dik) also holds under certain vari-

ations of the model in (1) and (2). In particular, the εij need not all have the same
distribution G ∈ C; rather, they could have different distributions that are sym-
metric about zero, εij ∼ Gdij

∈ S, and then Q
(β0)
ijk would still be symmetric about

(β − β0)(dij − dik). In Section 1.6, for instance, a person with dij = 18 years of
education might have either a law degree or a masters degree in art history, so the
εij for wages Yij might be more variable at dij = 18 than at dij = 12, so G18 might

be more dispersed than G12, but providing εij ∼ Gdij
∈ S, in (4) the quantity Q

(β0)
ijk

is symmetric about (β − β0)(dij − dik).
If one replaces all assumptions of symmetry of ξij or εij by the assumption that

E(ξij ) = E(εij ) = 0, then Q
(β0)
ijk in (4) has expectation E{Q(β0)

ijk } = (β −β0)(dij −
dik), and, in particular, E{Q(β0)

ijk } = 0 if H0 :β = β0 is true.

2.4. Inference with matched pairs. Suppose that κ is a milestone (3) for
(Dij , dij ) and I pairs, ni = 2, i = 1, . . . , I , are matched exactly for xij with the
additional requirement that Di1 ≥ κ > Di2, or, equivalently, the requirement that
di1 ≥ κ > di2. In Section 1.6 this would mean pairing someone with at least a BA
to someone with less than a BA. Although (Di1,Di2) = (di1 + ξi1, di2 + ξi2) is a
random quantity because (ξi1, ξi2) is random, the event Di1 ≥ κ > Di2 is deter-
mined by (di1, di2), which is fixed. In Section 1.6 this would mean that, although
there are random errors in reported years of education (Di1,Di2), the pairing of
someone with at least a BA to someone with less than a BA is made without error:
in each pair, the person claiming to have a BA has one, and the person claiming
not to have a BA does not have one.

To test H0 :β = β0 in (1) and (2), calculate the I mutually independent dif-
ferences, Q

(β0)
i12

.= (Yi1 − β0Di1) − (Yi2 − β0Di2). The Q
(β0)
i12 are symmetrically

distributed about (β − β0)(di1 − di2) by (4), where di1 − di2 > 0 because the
pairing ensured di1 ≥ κ > di2. Let Tβ0 be Wilcoxon’s signed rank statistic [e.g.,

Hettmansperger and McKean (1998), Section 1] computed from Q
(β0)
i12 ; that is,

rank the |Q(β0)
i12 | from 1 to I , and let Tβ0 be the sum of the ranks for which

Q
(β0)
i12 > 0. If H0 :β = β0 is true, then sign{Q(β0)

i12 } and |Q(β0)
i12 | are independent,

where sign(a) = 1, 0, or −1 as a > 0, a = 0, a < 0; see Wolfe (1974), Corol-
lary 2.1. So if H0 :β = β0 is true, then the conditional distribution of Tβ0 given

the |Q(β0)
i12 | is the usual exact distribution of Wilcoxon’s signed rank statistic,
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namely, the distribution of the sum of I independent random variables taking val-
ues i or 0 each with probability 1

2 , i = 1, . . . , I . Therefore, Tβ0 yields an exact,

distribution free test of H0 :β = β0. If β > β0, the Q
(β0)
i12 are symmetric about

(β − β0)(di1 − di2) > 0, so the test based on Tβ0 is consistent against H1 :β > β0

under mild conditions on the limiting behavior of the fixed dij ’s and of the Fdij

as I → ∞. Similarly, the test is consistent against H1 :β < β0. A 1 − α confi-
dence set for β is formed by inverting the test, that is, as the set of hypotheses
H0 :β = β0 not rejected by a level α test. Because Di1 ≥ κ > Di2, the difference

Q
(β0)
i12 is strictly decreasing as a function of β0, so the signed rank statistic Tβ0 is

monotone decreasing as a function of β0, which implies that this confidence set is
an interval. Under H0 :β = β0, the null expectation of the signed rank statistic is
I (I + 1)/4. The Hodges–Lehmann (1963) point estimate β̂ of β is the “solution”
to the estimating equation, Tβ̂ = I (I + 1)/4, in a sense that will now be described.
Because the rank statistic Tβ0 takes many, small discrete steps downward as β0

increases continuously, there is either a unique value, β̂ , of β0 where Tβ0 passes
I (I +1)/4, or there is an interval of values of β0 where Tβ0 = I (I +1)/4, in which
case the “solution” β̂ is defined to be the midpoint of this interval.

An alternative estimator uses sample means rather than rank statistics. Write

Q
(β0)

12 = (1/I)
∑

Q
(β0)
i12 = (Y 1 − β0D1) − (Y 2 − β0D2), where Y 1 = (1/I)

∑
Yi1,

etc. Assume in this paragraph only that the i.i.d. εij ’s have finite variance and that
the ξij ’s, which are not i.i.d., have uniformly bounded variances. If H0 :β = β0 is

true in (1) and (2), then E{Q(β0)

12 } = 0. The estimating equation Q
(β̃)

12 = 0 has so-
lution β̃ = (Y 1 − Y 2)/(D1 − D2), which is Wald’s (1940) estimator, or two-stage
least squares, in a context that avoids the concerns raised by Neyman and Scott
(1951). In β̃ , the denominator has positive expectation, E(D1 − D2) > 0 because
Di1 ≥ κ > Di2, and β̃ is consistent for β under mild conditions on the limiting be-
havior of the fixed dij ’s and of the Fdij

as I → ∞. In parallel with the procedures
above using the signed rank test, a one-sample t-statistic may be computed from
the Q

(β0)
i12 . This t-statistic does not have a t-distribution, in part because the ξij ’s

in Q
(β0)
i12 are not i.i.d. Normal random variables, and their variances may change

with dij . With i.i.d. Normal matched pair differences, the Pitman asymptotic rel-
ative efficiency of the signed rank statistic and the t-statistic is 3/π = 0.955, and
Sen’s (1968) Theorem 2.2, result shows that the relative efficiency is always greater
than or equal to 3/π , often much greater than 1, with Normal distributions having
unequal variances. In short, in this context, the signed rank statistic is robust to
outliers, has a known finite sample null distribution, and has the possibility of su-
perior efficiency relative to the t-statistic. The procedures based on means do have
one advantage: unlike the signed rank statistic, they yield consistent inferences as
I → ∞, assuming E(ξij ) = 0 without the assumption that the ξij are symmetri-
cally distributed about zero.
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2.5. Inference with matched sets. In a full matching, each matched set with
ni ≥ 2 individuals contains either 1 individual with Dij ≥ κ and ni − 1 individuals
with Dij < κ or else ni −1 individuals with Dij ≥ κ and 1 individual with Dij < κ .
Matched pairs, as in Section 2.4, and matching with a fixed number of controls are
special cases of full matching. It can be shown that the stratification or matching
that minimizes the total distance on x within matched sets is always a full match-
ing, and an optimal full matching—one that minimizes the total distance within
matched sets—may be constructed by solving a standard combinatorial optimiza-
tion problem, technically known as minimum cost flow in a network [Rosenbaum
(1991), Gu and Rosenbaum (1993), Hansen (2004, 2007), Hansen and Klopfer
(2006)]. Such a matched set creates ni − 1 differences Q

(β0)
ijk of the form (4); how-

ever, these ni −1 differences are now dependent because one of the Dij ’s, say, Di1,

appears in all ni − 1 differences. If H0 :β = β0 were true in (1) and (2), each Q
(β0)
ijk

in (4) would be symmetric about zero, and the ni − 1 differences would have a
joint distribution with a form of reflection symmetry about 0 described by Sen and
Puri (1967); specifically, (Q

(β0)
i12 , . . . ,Q

(β0)
i,1,ni

) would have the same distribution as

(−Q
(β0)
i12 , . . . ,−Q

(β0)
i,1,ni

). If H0 :β = β0 were true, for any statistic that is a function

of the Q
(β0)
ijk , the reflection symmetry yields a null permutation distribution formed

by changing the signs of the I vectors (Q
(β0)
i12 , . . . ,Q

(β0)
i,1,ni

) in all 2I possible ways;
see Sen and Puri (1967) and Rosenbaum (2005) for details. For instance, in Sec-
tion 3.2 the usual Wilcoxon signed rank statistic is compared with this unusual
permutation distribution which correctly allows for dependence in matched sets
with ni > 2; see Rosenbaum (2005) for a computational illustration.

3. An example with a single milestone: education and earnings.

3.1. Full matching to control for IQ, parent’s education and home town. The
method of Section 2 will be applied to the example in Section 1.6, using the BA
degree as a milestone for 16 years of education in the self-reported years of educa-
tion, SRa. We contrast the results with least squares and Huber’s (1981), Section 7,
m-estimation using SRa, ignoring measurement error and using a linear model for
the covariates xij . In m-estimation, we used the defaults for rlm in the MASS pack-
age in R. Under the simplest models for errors of measurement, we expect the
slope estimates from least squares and m-estimation to be attenuated, or biased
toward zero, and the estimate using the milestone to be consistent. The degree
scaled measure of education, DS, used as the standard for comparison, is analyzed
in a parallel manner. In practice, the simple measurement error models may be
incorrect, and the methods differ in several ways, but the comparison serves as
an illustration. In Section 3.1 the matching is described, while in Section 3.2 the
estimated economic returns to additional education are compared.

In the Wisconsin Longitudinal Study in Section 1.6, there were 1124 men with
a BA degree, and 2614 men without one, 3738 = 1124 + 2614. The 1124 men
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FIG. 2. IQ scores for all 1124 males with a BA and for the 1124 highest IQ scores among the 2614
males without a BA. The figure shows that pair matching is not feasible, even if matching on IQ were
the only objective.

with a BA were matched to 1124 men without a BA. The matching controlled
for a four dimensional x, whose coordinates were IQ in high school (specifi-
cally gwiiq_bm), father’s education in years (edfa57q), mothers education in years
(edmo57q) and the population size of the town in which the individual attended
high school (pop15). Parental education was missing in whole or in part for 432
men, and an effort was made to match men with missing parental education to
other men with missing parental education.

Pair matching is not feasible in these data, because the distributions of x are
quite different for males with a BA and males without a BA. This is seen for IQ in
Figure 2 which depicts the IQ’s for the 1124 males with a BA and the 1124 highest
IQ’s for males without a BA among the 2614 males without a BA. Even the 1124
highest IQ’s without a BA are too low to form an acceptable match. Moreover,
these 1124 highest IQ’s would constitute a poor match, in part because they ignore
the other three covariates, and in part because some lower IQ’s are needed to match
to males with BA’s having lower IQ’s.

In place of pair matching, a full matching was performed, with a maximum 2-
to-1 ratio, using all 1124 males with a BA and 1124 males without a BA. This
means that a matched set might be a matched pair or a matched triple. A pair con-
sists of a male with a BA and a male without a BA, and there were 239 such pairs.
A triple may consist of either a male with a BA and two without a BA, or two with
a BA and one without, and there were 295 triples of each type. That is, there were
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829 = 239 + 295 + 295 matched sets, containing 1124 = 239 + 295 + 2 × 295
males with a BA, and the same number without a BA. At higher IQ’s, two men
with a BA might be matched to one without a BA, with the reverse pattern at lower
IQ’s. As noted in Section 2.5, full matching is the form that minimizes distances
within matched sets [Rosenbaum (1991)], and an implementation of optimal full
matching is available in the optmatch package in R [Hansen (2004, 2007), Hansen
and Klopfer (2006)]. Haviland, Nagin and Rosenbaum (2007), Appendix, present a
general result about efficiency from matched sets with varied match ratios, and the
1–2 limit on imbalance is quite efficient. The distance used was the Mahalanobis
distance on the ranks of the four variables, with two additional variables contain-
ing binary indicators of missing parental education. Because the Mahalanobis dis-
tance is affinely invariant and missing indicators are included, any value may be
substituted for missing values without altering the Mahalanobis distance. Figure 3
shows the four covariates before and after full matching. Each covariate is repre-
sented by a pair of boxplots, one before matching, the other after matching. The
boxplot before matching compares the 1124 males with a BA to the 2614 males
without a BA by taking all 2,938,136 = 1124×2614 differences. The boxplot after
matching describes one number for each of the 829 matched sets, namely, the BA-
minus-no-BA difference in means within a matched pair or triple. After matching,
the differences are close to zero.

3.2. Inference about economic returns to education. Table 1 contrasts the
eight estimates of economic returns to additional years of education, measured
using log wages in 1974. Of the eight estimates, four are based on the better de-
gree scaled education, DS, and four are based on self-report, SRa. Two methods,
least squares and m-estimation (with R’s defaults), make no correction for errors
of measurement in SRa, whereas the third and fourth methods use the BA as a
milestone for 16 years. In the third method, as described in Section 2.5, the special
permutation distribution of Wilcoxon’s signed rank statistic is used. The fourth
method uses two-stage least squares with the milestone as the instrumental vari-
able; however, conventional two-stage least squares actually requires more than
(1) and (2), whereas these assumptions suffice for the Wilcoxon method. If DS
were free of measurement error and SRa were prone to measurement error, then
least squares and m-estimation applied to SRa would be inconsistent, but, assum-
ing that a linear model for the covariates xij holds, the same methods applied to
DS would be consistent. Table 1 asks the following: Which methods give similar
answers with both DS and SRa?

Although the methods differ in several respects, not solely the use of the mile-
stone, and although sampling variability creates some ambiguity, it does appear
that (i) use of SRa in least squares or m-estimation yielded a lower estimated return
to education, and (ii) using the milestone, DS and SRa produced similar results.
Using the fallible self-report, SRa, the 95% confidence interval from m-estimation
is [0.026,0.035], whereas using the milestone with the Wilcoxon procedure, it is
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FIG. 3. Four covariates before and after full matching. “Unmatched” refers to all pairwise differ-
ences, BA-minus-no-BA. “Matched” refers to the differences in means within 829 matched pairs or
triples.

[0.034,0.048], so these intervals barely overlap. Although two-stage least squares
used more observations than the Wilcoxon procedure, its confidence intervals were
longer, perhaps because log (income) does not have a Gaussian distribution [see
Imbens and Rosenbaum (2005), Figure 2(b)], or perhaps because of the remark-
able property noted by Sen (1968) which is directly relevant to (2) when Fdij

varies
with dij .

4. Multiple milestones.

4.1. Definition and model: partition and reflection symmetry. In this section
we extend the model in Section 2 in two ways. First, we allow for multiple mile-
stones for one variable, for instance, for years of education, twelve years for a high
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TABLE 1
Estimates of percent returns to an additional year of education, using degree-scaled (DS) or

self-reported (SRa) schooling. Least squares and m-estimation make no correction for measurement
error. The two milestone methods use the BA as a milestone for 16 years of education, that is, as an

instrumental variable. All methods adjust for four covariates. The table gives the point estimate,
large sample 95% confidence interval and a standard error (se), which for the milestone estimate is

the length of the 95% interval divided by 2 × 1.96

Method Sample size Variable ̂β se 95% CI

Least squares 3306 DS 0.035 0.0040 [0.027,0.043]
Least squares 3306 SRa 0.023 0.0036 [0.016,0.030]
m-estimation 3306 DS 0.038 0.0027 [0.032,0.043]
m-estimation 3306 SRa 0.030 0.0025 [0.026,0.035]
Milestone Wilcoxon 2248 DS 0.044 0.0036 [0.037,0.051]
Milestone Wilcoxon 2248 SRa 0.041 0.0036 [0.034,0.048]
Milestone TSLS 3306 DS 0.038 0.0045 [0.029,0.047]
Milestone TSLS 3306 SRa 0.035 0.0043 [0.027,0.044]

school diploma and sixteen years for a BA degree. In the WLS all respondents
completed high school with a high school degree, so this milestone is not avail-
able. Second, we allow for several variables, each with at least one milestone. In
the example in Section 5, using the WLS data, we will estimate the partial slopes
for years of education and months of military service, using the BA as a milestone
for sixteen years of education and no military service as a milestone for months of
military service.

In contrast to Section 2, there is now a P -dimensional fixed vector dij =
(dij1, . . . , dijP ) of true but unobserved doses, a fallible, random P -dimensional
observed dose Dij . In Section 5 dij = (years of education, months of military ser-
vice). Write SP for the set of P -dimensional, continuous multivariate distributions
that are symmetric about 0, in the sense that if ξ ∼ F ∈ SP , then ξ and −ξ have
the same distribution; see Sen and Puri (1967), Snijders (1981) or Neuhaus and
Zhu (1998). The model is

Yij = λ(xij ) + βT dij + εij , εij
i.i.d.∼ G ∈ C,

(5)
Dij = dij + ξ ij , ξ ij ∼ Fdij

∈ SP ,

where the εij and ξ ij are mutually independent. The P coordinates of ξ ij may be
dependent; for instance, exaggerating years of education may be correlated with
exaggerating months of military service. From (5), the distribution of measurement
errors, Fdij

, varies with the true dose dij , but any linear combination of the com-
ponents of the true dose ηT Dij is always symmetrically distributed about its center
or median, namely, ηT dij . Matching is assumed to exactly control x, so that, as in
Section 1.4, two individuals, j and k, in the same matched set, i, have xij = xik .



896 D. S. SMALL AND P. R. ROSENBAUM

Write D for the set of possible values of dij . The generalization of an error-free
milestone is a mutually exclusive and exhaustive partition D = D1 ∪ · · · ∪ DL,
with D� ∩D�′ = ∅ for � �= �′ such that dij ∈ D� ⇔ Dij ∈ D�. Because dij is fixed,
Dij is observed, and Dij ∈ D� if and only if dij ∈ D�; it follows that membership
in a particular D� is fixed and known, even though dij is not observed. The case of
a single milestone had R = D = D1 ∪D2 with D1 = {d :d < κ}, D2 = {d :d ≥ κ}.
It is assumed that the partitioning cuts each of the P coordinates at least once, so
that the partition D = D1 ∪ · · · ∪ DL includes at least 2P quadrants formed by
these P cuts, which implies L ≥ 2P . In the example in Section 5, d = (years of
education, months of military service), and the partition is D = D1 ∪ · · · ∪ D4,
where D1 is “no BA, no military service” D2 is “no BA, some military service,”
D3 is “BA, no military service” and D4 is “BA, some military service.” Also, in
asymptotics, as I → ∞, it is assumed that the fraction of observations in D� tends
to a positive constant, φ� > 0, for each �, where 1 = φ1 + · · · + φL.

Consider testing the null hypothesis H0 :β = β0 using Yij − βT
0 Dij , comparing

matched individuals, j and k, in the same matched set i, where

V
(β0)

ijk = (Yij − βT
0 Dij ) − (Yik − βT

0 Dik)

= βT (dij − dik) − βT
0 (Dij − Dik) + (εij − εik)(6)

= (β − β0)
T (dij − dik) − βT

0 (ξij − ξik) + (εij − εik),

which is symmetric about zero if H0 :β = β0 is true. If H0 is false, then V
(β0)

ijk is

symmetric about (β − β0)
T (dij − dik). Of course, (6) is the multivariate analogue

of (4).

4.2. Optimal nonbipartite matching; vector of signed-rank statistics. We fo-
cus on the case of matched pairs, ni = 2, selected to ensure that xi1 and xi2 are as
close as possible and that if di1 ∈ D�, then di2 /∈ D�. Define a distance, such as the
Mahalanobis distance, between values of x, and compute that distance for every
possible pair of two individuals; however, if two individuals have D in the same
D�, then replace that distance by ∞. With these distances, apply optimal nonbi-
partite matching to construct the pairs, as described in Lu and Rosenbaum (2004),
thereby finding a pairing that minimizes the total distance within pairs on x subject
to the constraint that paired individuals are in different D�. Algorithms for optimal
nonbipartite matching are discussed by Galil (1986), Derigs (1988) and Cook and
Rohe (1999).

Recall that dij ∈ D� ⇔ Dij ∈ D�. If Di1 ∈ D� and Di2 ∈ D�′ , for p = 1, . . . ,P ,
define zip = 1 if d ∈ D�, d′ ∈ D�′ implies dp > d ′

p , zip = −1 if d ∈ D�, d′ ∈ D�′
implies dp < d ′

p , zip = 0 if d ∈ D�, d′ ∈ D�′ does not itself determine the ordering
of dp and d ′

p . For instance, in Section 5, if Di1 ∈ D2 = “no BA, some military
service,” Di2 ∈ D4 = “BA, some military service,” then zi1 = −1 and zi2 = 0.
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Write zi = (zi1, . . . , ziP )T . Notice that the zi are determined by the fixed events
dij ∈ D� ⇔ Dij ∈ D�, so the zi are fixed.

Consider the hypothesis, H0 :β = β0, and let ri,β0
be the rank of |V (β0)

i12 | in

(6), let si,β0
= sign(V

(β0)

i12 ), and define the P -dimensional vector of signed rank
statistics,

Tβ0
=

I∑
i=1

ziri,β0
si,β0

.

If H0 :β = β0 were true, then si,β0
= sign(V

(β0)

i12 ) and |V (β0)

i12 | would be indepen-
dent; again, see Wolfe (1974), Corollary 2.1. Consider the conditional distribution
of Tβ0

given the |V (β0)

i12 |; under H0 :β = β0, this distribution has E(Tβ0
) = 0 and

P × P covariance matrix

var(Tβ0
) =

I∑
i=1

r2
i,β0

zizT
i .(7)

This variance formula (7) depends upon the continuous distribution of V
(β0)

ijk ,

which ensures |V (β0)

i12 | > 0 and |si,β0
| = 1 with probability one. In the presence

of ties, use average ranks for tied ranks, and use var(Tβ0
) = ∑I

i=1 |si,β0
|r2

i,β0
zizT

i .

If H0 :β = β0 were true, then TT
β0

{var(Tβ0
)}−1Tβ0

would tend to the chi-square
distribution on P degrees of freedom [Sen and Puri (1967)], and from this a con-
fidence set for β is found by inverting the test. The point estimate of β minimizes
TT

β0
{var(Tβ0

)}−1Tβ0
as a function of β0.

5. An example with multiple milestones: returns to education and military
service. In the WLS data of Section 1.6, with dij = (years of education in DS,
true months of military service), with the BA degree as a milestone for 16 years
of education and with no military service as a milestone for zero years of service,
the partial regression coefficients β = (βed, βms)

T will be estimated from the fal-
lible self report Dij = (years of education in SRa, measured months of military
service). As in Section 3, men were matched for a 4-dimensional x consisting of
IQ in high school, father’s education in years, mother’s education in years and the
population size of the town in which the individuals attended high school. From
the 3738 men, we formed 1000 pairs of two men by optimal nonbipartite match-
ing, as described in Section 4.2, where the distance was the Mahalanobis distance
computed from the ranks of the four variables and from two indicators for missing
parental education. The matching resulted in 230 pairs whose members differ on
which side of both the BA and military service milestones they are on, 199 pairs
whose members differ only on which side of the BA milestone they are on and
571 pairs whose members differ only on which side of the military service mile-
stone they are on. Among the 230 pairs whose members differed on both BA and
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military service, in 143 pairs, one member had a BA and no military service and
the other member had no BA and military service, and in 87 pairs, one member
had a BA and military service and the other member had neither a BA nor military
service. Boxplots similar to Figure 1 but not included show that the differences on
x are nearly zero within matched pairs.

We now compare the least squares, m-estimate and milestone estimates of per-
cent returns to an additional year of education and an additional month of mil-
itary service. The least squares estimates and m-estimates regress log wages on
self reported education (SRa), months of military service, IQ, father’s education,
mother’s education and scaled hometown population and lose 445 men due to
missing data on parent’s education or months of military service, leaving 3293
men. The milestone estimates are based on the nonbipartite matching described
above of 1000 pairs of two men, matching missing data to missing data, using the
methods in Section 4.2.

Figure 4 plots the three 95% confidence sets β = (βed, βms)
T . As in Section 3,

the milestone method suggests the returns to education, βed , are higher than the two
regression methods that ignore measurement error. Specifically, for least squares
β̂ed is about a 2% increase in earnings per year of education, for m-estimation β̂ed
is about 3% per year, and for the milestone method β̂ed is about 4% per year. For
military service, the milestone method suggests βms might be zero, whereas the
regression methods suggest reduced earnings. Table 2 presents numerical results.

FIG. 4. 95% confidence sets for (βed, βms)
T by three methods.
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TABLE 2
Estimates of the percent returns to an additional year of education (ed) or an additional month of

military service (ms). The two stage least squares estimates use receipt of a BA and
whether the man served in the military as instrumental variables

Method Sample size ̂βed se 95% CI

Education
Least squares 3293 0.02214 0.00363 [0.01502,0.02927]
m-estimation 3293 0.02967 0.00246 [0.02485,0.03449]
Milestone 2000 0.03820 0.00679 [0.02495,0.05155]
TSLS 3293 0.03587 0.00436 [0.02733,0.04441]
Method Sample size ̂βms se 95% CI

Military
Least squares 3293 −0.00056 0.00025 [−0.00104,−0.00007]
m-estimation 3293 −0.00042 0.00017 [−0.00075,−0.00009]
Milestone 2000 0.00009 0.00024 [−0.00039,0.00057]
TSLS 3293 0.00032 0.00046 [−0.00058,0.00121]

The confidence intervals for the milestone method are projections of the confidence
set, so their simultaneous coverage is 95%.

6. Summary. For use with measurement error, there are several methods for
using strong, valid instrumental variables [e.g., Cheng and Van Ness (1999), Sec-
tion 4.2], but few methods for constructing them. Error-free milestones in error
prone measurements create instrumental variables. In the Alzheimer’s disease ex-
ample in Section 1.2, the dose of anesthesia is measured with error, except for the
zero doses of patients who did not have surgery. In the combat exposure scale ex-
ample in Section 1.3, certain points on the scale are anchored by military records,
while others depend on self report and memory, the latter being far more prone
to error. In surveys in Section 1.4, a scaled response with aspects prone to er-
ror because of subtle operational definitions or memory lapses may sometimes be
anchored by events that are difficult to misunderstand or forget, such as events
marked by public ceremony or official sanction. Although various generalizations
were mentioned, the discussion has focused on a predictor that has errors which
are symmetric about zero yet respect a milestone, and in this case, exact, nonpara-
metric inference was developed.
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