6,874 research outputs found

    Hyperbolic intersection graphs and (quasi)-polynomial time

    Full text link
    We study unit ball graphs (and, more generally, so-called noisy uniform ball graphs) in dd-dimensional hyperbolic space, which we denote by Hd\mathbb{H}^d. Using a new separator theorem, we show that unit ball graphs in Hd\mathbb{H}^d enjoy similar properties as their Euclidean counterparts, but in one dimension lower: many standard graph problems, such as Independent Set, Dominating Set, Steiner Tree, and Hamiltonian Cycle can be solved in 2O(n11/(d1))2^{O(n^{1-1/(d-1)})} time for any fixed d3d\geq 3, while the same problems need 2O(n11/d)2^{O(n^{1-1/d})} time in Rd\mathbb{R}^d. We also show that these algorithms in Hd\mathbb{H}^d are optimal up to constant factors in the exponent under ETH. This drop in dimension has the largest impact in H2\mathbb{H}^2, where we introduce a new technique to bound the treewidth of noisy uniform disk graphs. The bounds yield quasi-polynomial (nO(logn)n^{O(\log n)}) algorithms for all of the studied problems, while in the case of Hamiltonian Cycle and 33-Coloring we even get polynomial time algorithms. Furthermore, if the underlying noisy disks in H2\mathbb{H}^2 have constant maximum degree, then all studied problems can be solved in polynomial time. This contrasts with the fact that these problems require 2Ω(n)2^{\Omega(\sqrt{n})} time under ETH in constant maximum degree Euclidean unit disk graphs. Finally, we complement our quasi-polynomial algorithm for Independent Set in noisy uniform disk graphs with a matching nΩ(logn)n^{\Omega(\log n)} lower bound under ETH. This shows that the hyperbolic plane is a potential source of NP-intermediate problems.Comment: Short version appears in SODA 202

    Random graph states, maximal flow and Fuss-Catalan distributions

    Full text link
    For any graph consisting of kk vertices and mm edges we construct an ensemble of random pure quantum states which describe a system composed of 2m2m subsystems. Each edge of the graph represents a bi-partite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated to a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.Comment: 37 pages, 24 figure
    corecore