4,216 research outputs found

    Computing Contingent Plans via Fully Observable Non-Deterministic Planning

    Get PDF
    Planning with sensing actions under partial observability is a computationally challenging problem that is fundamental to the realization of AI tasks in areas as diverse as robotics, game playing, and diagnostic problem solving. Recent work on generating plans for partially observable domains has advocated for online planning, claiming that offline plans are often too large to generate. Here we push the envelope on this challenging problem, proposing a technique for generating conditional (aka contingent) plans offline. The key to our planner's success is the reliance on state-of-the-art techniques for fully observable non-deterministic (FOND) planning. In particular, we use an existing compilation for converting a planning problem under partial observability and sensing to a FOND planning problem. With a modified FOND planner in hand, we are able to scale beyond previous techniques for generating conditional plans with solutions that are orders of magnitude smaller than previously possible in some domains

    Fully Observable Non-deterministic Planning as Assumption-Based Reactive Synthesis

    Get PDF
    We contribute to recent efforts in relating two approaches to automatic synthesis, namely, automated planning and discrete reactive synthesis. First, we develop a declarative characterization of the standard “fairness” assumption on environments in non-deterministic planning, and show that strong-cyclic plans are correct solution concepts for fair environments. This complements, and arguably completes, the existing foundational work on non-deterministic planning, which focuses on characterizing (and computing) plans enjoying special “structural” properties, namely loopy but closed policy structures. Second, we provide an encoding suitable for reactive synthesis that avoids the naive exponential state space blowup. To do so, special care has to be taken to specify the fairness assumption on the environment in a succinct manner.Fil: D'ippolito, Nicolás Roque. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Rodriguez, Natalia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Sardina, Sebastian. RMIT University; Australi

    Conformant plans and beyond: Principles and complexity

    Get PDF
    AbstractConformant planning is used to refer to planning for unobservable problems whose solutions, like classical planning, are linear sequences of operators called linear plans. The term ‘conformant’ is automatically associated with both the unobservable planning model and with linear plans, mainly because the only possible solutions for unobservable problems are linear plans. In this paper we show that linear plans are not only meaningful for unobservable problems but also for partially-observable problems. In such case, the execution of a linear plan generates observations from the environment which must be collected by the agent during the execution of the plan and used at the end in order to determine whether the goal had been achieved or not; this is the typical case in problems of diagnosis in which all the actions are knowledge-gathering actions.Thus, there are substantial differences about linear plans for the case of unobservable or fully-observable problems, and for the case of partially-observable problems: while linear plans for the former model must conform with properties in state space, linear plans for partially-observable problems must conform with properties in belief space. This differences surface when the problems are allowed to express epistemic goals and conditions using modal logic, and place the plan-existence decision problem in different complexity classes.Linear plans is one extreme point in a discrete spectrum of solution forms for planning problems. The other extreme point is contingent plans in which there is a branch point for every possible observation at each time step, and thus the number of branch points is not bounded a priori. In the middle of the spectrum, there are plans with a bounded number of branch points. Thus, linear plans are plans with zero branch points and contingent plans are plans with unbounded number of branch points.In this work, we lay down foundations and principles for the general treatment of linear plans and plans of bounded branching, and provide exact complexity results for novel decision problems. We also show that linear plans for partially-observable problems are not only of theoretical interest since some challenging real-life problems can be dealt with them

    Engineering a Conformant Probabilistic Planner

    Full text link
    We present a partial-order, conformant, probabilistic planner, Probapop which competed in the blind track of the Probabilistic Planning Competition in IPC-4. We explain how we adapt distance based heuristics for use with probabilistic domains. Probapop also incorporates heuristics based on probability of success. We explain the successes and difficulties encountered during the design and implementation of Probapop

    Contingent planning under uncertainty via stochastic satisfiability

    Get PDF
    We describe a new planning technique that efficiently solves probabilistic propositional contingent planning problems by converting them into instances of stochastic satisfiability (SSAT) and solving these problems instead. We make fundamental contributions in two areas: the solution of SSAT problems and the solution of stochastic planning problems. This is the first work extending the planning-as-satisfiability paradigm to stochastic domains. Our planner, ZANDER, can solve arbitrary, goal-oriented, finite-horizon partially observable Markov decision processes (POMDPs). An empirical study comparing ZANDER to seven other leading planners shows that its performance is competitive on a range of problems. © 2003 Elsevier Science B.V. All rights reserved

    PRP Rebooted: Advancing the State of the Art in FOND Planning

    Full text link
    Fully Observable Non-Deterministic (FOND) planning is a variant of classical symbolic planning in which actions are nondeterministic, with an action's outcome known only upon execution. It is a popular planning paradigm with applications ranging from robot planning to dialogue-agent design and reactive synthesis. Over the last 20 years, a number of approaches to FOND planning have emerged. In this work, we establish a new state of the art, following in the footsteps of some of the most powerful FOND planners to date. Our planner, PR2, decisively outperforms the four leading FOND planners, at times by a large margin, in 17 of 18 domains that represent a comprehensive benchmark suite. Ablation studies demonstrate the impact of various techniques we introduce, with the largest improvement coming from our novel FOND-aware heuristic.Comment: 13 pages, 4 figures, AAAI conference paper Update: Fixed abstract and typo
    corecore