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Abstract

We describe a new planning technique that efficiently solves probabilistic propositional contingent
planning problems by converting them into instances of stochastic satisfiability (SSAT) and solving
these problems instead. We make fundamental contributions in two areas: the solution of SSAT

problems and the solution of stochastic planning problems. This is the first work extending the
planning-as-satisfiability paradigm to stochastic domains. Our planner, ZANDER, can solve arbitrary,
goal-oriented, finite-horizon partially observable Markov decision processes (POMDPs). An empirical
study comparing ZANDER to seven other leading planners shows that its performance is competitive
on a range of problems.
 2003 Elsevier Science B.V. All rights reserved.

Keywords: Probabilistic planning; Partially observable Markov decision processes; Decision-theoretic planning;
Planning-as-satisfiability; Stochastic satisfiability; Contingent planning; Uncertainty; Incomplete knowledge;
Probability of success

1. Introduction

Planning—making a sequence of action choices to achieve a goal—has been an
important area of artificial intelligence (AI) research since the field began and this
prominence is not difficult to explain. First, the need to plan is pervasive; to a greater
or lesser extent, all problems can be characterized as planning problems: how should
one act (bring resources to bear) to change an existing state into a more desired state?
The ability to act in a goal-directed fashion is critical to any notion of intelligent agency.
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Second, planning is an extremely hard problem. Deterministic STRIPS planning (arguably
the “easiest” type of propositional planning that is still capable of expressing interesting
problems) is PSPACE-complete [13]; unrestricted probabilistic propositional planning in
partially observable domains is undecidable [46].

Traditionally, the decision-making models that have been studied in AI planning admit
no uncertainty: every aspect of the world that is relevant to the generation and execution
of a plan is known to the agent in advance. This unrealistic assumption has been a major
impediment to the practical use of AI planning techniques, and there has been a great deal
of research in the past decade to create planning techniques that are capable of handling
uncertainty in the environment (uncertain initial conditions, probabilistic effects of actions,
and uncertain state estimation). One of the attractive features of AI planning is its ability,
in some cases, to operate in large domains (∼ 1020 states). One reason for this ability is
that AI planning typically uses a problem representation that allows significant features of
the problem states and actions to be exploited by the solution method.

Researchers in operations research (OR) have studied a planning formalism that di-
rectly addresses uncertainty—Markov decision processes (MDPs) and partially observable
Markov decision processes (POMDPs). Classical OR algorithms, however, use an impov-
erished problem representation that does not capture relationships among states, and these
techniques are capable of solving problems only in relatively small domains (∼ 106 states
for exact MDP solution methods and many fewer for exact POMDP solution methods in
typical domains).

Our work investigates the potential of merging the best characteristics of AI planning
(large domains) and OR planning (stochastic domains) to produce a system that can
reason efficiently about plans in complex, uncertain applications. The planners we have
developed are rooted in the planning-as-satisfiability paradigm. In this paradigm, the
planning problem is converted into a satisfiability problem and the efficient solution of
the resulting satisfiability problem produces the required plan. This work is inspired in
large measure by the success of SATPLAN, a similar planning technique for deterministic
domains [34] that encodes the planning problem as a Boolean satisfiability problem and
uses stochastic local search to solve the resulting satisfiability problem.

There are significant problems in developing a probabilistic version of SATPLAN. Plans
in a stochastic domain can be very complex. Unlike plans in a deterministic setting, optimal
plans in a stochastic domain frequently require contingent branches that specify different
actions depending on the stochastic outcome of the current action, or loops that repeat an
action until a desired result is achieved. In addition, evaluating plans in stochastic domains
is difficult. In the deterministic setting, plan evaluation can be accomplished by executing
the plan and checking the single execution trace to see whether the final state is a goal
state. In the stochastic setting, the uncertainty in the domain means that, in general, there
will be multiple possible execution traces for a given plan, with some subset of these traces
ending in a goal state. For this reason, plan evaluation requires the equivalent of checking
each possible execution trace and summing the probability of each trace whose final state
is a goal state.

The main contribution of our research is to show that the planning-as-satisfiability
paradigm can be successfully extended to support contingent planning in partially
observable stochastic domains. To our knowledge, ours is the only existing planner that
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augments the planning-as-satisfiability paradigm to support stochastic domains. ZANDER,
the most advanced planner we developed and the one described here, can solve arbitrary,
goal-oriented, finite-horizon partially observable Markov decision processes (POMDPs).1

An empirical study comparing ZANDER’s performance to that of seven other leading
probabilistic planners—a dynamic programming POMDP algorithm, MAHINUR, SENSORY

GRAPHPLAN (SGP), PGRAPHPLAN, SPUDD (stochastic planning using decision diagrams),
GPT (general planning tool), and HANSEN-FENG—shows that ZANDER’s performance is
competitive on a range of problems.

2. Background

This section presents the research context in which we developed our planner.

2.1. Deterministic planning

Informally, a deterministic planning problem is characterized by a finite set of states
that the planning agent could find itself in, a finite set of operators, or actions, that
transform states to states deterministically, a designated initial state, and a set of goal states.
A solution to the planning problem is a sequence of actions that transforms the initial state
into one of the goal states.

In recent years, two planning methods based on constraint satisfaction—GRAPHPLAN

and SATPLAN—have received a great deal of attention in the planning research community.
Both GRAPHPLAN and SATPLAN make use of the notion of search through plan space by
considering, in a sense, all plans up to a certain length simultaneously and attempting to
extract a successful plan from this collection.

GRAPHPLAN [5] works by creating a planning graph that interleaves layers of nodes
representing the status of propositions at a time step with layers of nodes representing
possible actions at a time step. Edges in this directed, leveled graph connect actions to
their preconditions and their add and delete effects, thus indicating all feasible actions
at each time step and their impact on the domain propositions. GRAPHPLAN operates
by constructing a planning graph forward from the initial conditions until a layer of
propositions appears that contains all the goal propositions. The planner then searches
for a plan using backward chaining; if none is found it extends the graph another time step
and the search is repeated. The key element of GRAPHPLAN is a scheme for efficiently
identifying and propagating pairwise inconsistencies (e.g., two actions that cannot be
executed at the same time). GRAPHPLAN outperforms a state-of-the-art planner called
UCPOP on several natural and artificial planning problems [5]; it remains one of the best
current planners and research on this paradigm is quite active.

SATPLAN [33,34] works by first converting the bounded-horizon planning problem
to a propositional satisfiability problem and then using stochastic local search to solve

1 Since reward-oriented POMDPs can be expressed as probabilistic goal-oriented POMDPs, ZANDER could be
applied to arbitrary POMDPs; see note in Section 6.1.
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the resulting satisfiability problem. Kautz and Selman [34], in an early paper describing
SATPLAN, argue that the planning community, in rejecting general reasoning systems in
favor of specialized planning algorithms, learned the wrong lesson from the failure of
Green’s theorem-proving problem solver. They argue that the lesson to be learned was not
that general reasoning systems are inappropriate for planning but that first-order deductive
theorem-proving does not scale well. In contrast, propositional satisfiability testing has
great potential as a tool for reasoning about plans.

Briefly, SATPLAN converts a deterministic planning problem to a Boolean satisfiability
problem by constructing a Boolean formula in conjunctive normal form (CNF) that
has the property that any satisfying assignment to the variables in the formula—any
model—corresponds to a plan that achieves the goal. The satisfiability of the resulting
CNF formula is determined using WALKSAT, a generic satisfiability algorithm based on
stochastic local search. It is worth noting here that although SATPLAN uses stochastic local
search, other satisfiability testing algorithms have been used in the context of planning.
The original Davis–Putnam procedure for satisfiability testing [17] uses resolution as a
key algorithmic component. Resolution was later replaced by variable splitting [16], and
this latter procedure has completely overshadowed the earlier version. Other systematic
solvers that incorporate efficient data structures (SATO, [73]), better heuristics (SATZ, [42]),
and constraint satisfaction solution techniques (RELSAT, [3]) have been developed more
recently. BLACKBOX [35,37] integrates several of these approaches—WALKSAT (stochastic
local search), SATZ, and RELSAT—in a planning system that allows the user to try different
solvers on the SAT encoding of a planning problem. Although stochastic local search
generally outperforms systematic satisfiability testers by an order of magnitude or more
on hard random satisfiability problems, there is some evidence that the systematic testers
are competitive with stochastic local search on more structured, real-world planning
problems [3]. We use a modified version of the Davis–Putnam–Logemann–Loveland
satisfiability tester [16] in our planner (Section 5.1).

There are a number of advantages to the planning-as-satisfiability approach. The
expressiveness of Boolean satisfiability allows us to construct a very general planning
framework. It is relatively straightforward to express planning problems in the framework
of propositional satisfiability and this framework makes it easy to add constraints to the
planning problem (such as domain-specific knowledge, [36]) to improve the efficiency
of the planner. Another advantage echoes the intuition behind reduced instruction set
computers; we wish to translate planning problems into satisfiability problems for which
we can develop highly optimized solution techniques using a small number of extremely
efficient operations. Supporting this goal is the fact that satisfiability is a fundamental
problem in computer science and, as such, has been studied intensively. Numerous
heuristics and solution techniques have been developed to solve satisfiability problems
as efficiently as possible.

There are disadvantages to this approach. Problems that can be compactly expressed in
representations used by other planning techniques often suffer a significant blowup in size
when encoded as Boolean satisfiability problems, degrading the planner’s performance.
Automatically producing maximally efficient plan encodings is a difficult unsolved
problem. In addition, translating the planning problem into a satisfiability problem may
obscure the structure of the problem, making it difficult to use one’s knowledge of and
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intuition about the planning process to develop search control heuristics or prune plans.
This issue has also been addressed; Kautz and Selman [36], for example, report impressive
performance gains resulting from the incorporation of domain-specific heuristic axioms in
the SAT encodings of deterministic planning problems.

Planning as satisfiability has been an active area of research. Researchers have
looked at the issues that arise in connection with efficient conversion of planning
problems to satisfiability problems [20,31], improving systematic satisfiability testers [3,
42], understanding and improving stochastic local search [32,54,68], accelerating the
search for a plan by including domain-specific knowledge [36], and incorporating the
various constraint satisfaction planning techniques in a single planning system [35,37].

2.2. Probabilistic planning

Like a deterministic planning problem, a probabilistic planning problem is specified
by a finite set of states, a finite set of actions, an initial state, and a set of goal states.
In a probabilistic domain, however, actions transform states to states probabilistically;
for a given state and action, there is a probability distribution over possible next states.
The solution to a probabilistic planning problem is an action selection mechanism for the
planning domain that reaches a goal state with sufficiently high probability. Probability of
success is not the only objective that makes sense to consider; other possible objectives
include minimizing the length or size of the plan, or maximizing the expected utility
achieved by the plan (if there is a utility function that assigns a numerical value to each
component of the goal, thus providing a quantitative measure of the importance, or utility,
of each goal component). In our work, we focused on finding plans that maximize the
probability of reaching a goal state given a fixed number of plan steps (finite horizon).

The defining characteristic of probabilistic planning is that the actions are probabilistic;
the outcome of an action in a given state is a probability distribution over possible next
states. There is another type of nondeterministic planning that is relevant in this review,
however. It is possible to frame planning problems using non-probabilistic actions.2 A non-
probabilistic action can have multiple possible outcomes that depend only on the state
in which the action is executed. The effect of the action is deterministic given the state
in which it is executed, but the agent may not know a priori the state in which it will
be executing the action and, hence, its effect. Thus, the uncertainty is represented as a
list of possible state/outcome pairs, rather than as a probability distribution over possible
outcomes.

A simple example will clarify this distinction between probabilistic actions and non-
probabilistic actions. A probabilistic action move(a,b,c) in a blocks-world domain (i.e.,
move block a off of block b onto block c) might specify that the action is successful
with probability 0.85, that block a ends up on the table with probability 0.10, and that
nothing happens with probability 0.05. A non-probabilistic version of the same action
might specify that if the gripper is functioning and dry, the action will succeed, if the

2 Such actions have historically been called conditional actions [24,25,62]. In our taxonomy of planning under
uncertainty, however, we wish to make a distinction between the type of planning and the type of actions used, so
we will use the term non-probabilistic action to avoid confusion.
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gripper is functioning, but wet, block a will end up on the table, and if the gripper is not
functioning, nothing will happen. We are concerned here with the former type of action.

The type of planning an agent engages in is, in this sense, a function of the agent’s
knowledge about the domain. A probability distribution over possible outcomes of an
action may, in some cases, be a substitute for better domain knowledge. In the blocks
world example, the agent may not know that the move action fails sometimes because the
gripper is wet. But experience may allow the agent to estimate a probability distribution
over outcomes of that action. Or it may be the case, to extend this example further, that the
agent knows that when the gripper is wet, the action usually fails, but that with probability
0.05 it succeeds. If the agent does not know why the action sometimes succeeds, the agent
may still be able to attach a probability distribution to the execution of the action, and plan
using that probability distribution.

We will also make a distinction between conditional planning and contingent planning.
In conditional planning, the effects, but not the execution, of actions are contingent on the
outcomes of previous actions. In contingent planning, both the effects and execution of
actions are contingent on the outcomes of previous actions.3 Thus, in contingent planning,
the agent can make observations and construct a branching plan in which actions are
made contingent on these observations. Without the ability to observe its environment and
condition its actions accordingly, an agent can only execute a straight-line plan, a simple
non-contingent sequence of actions, and hope for the best. Such a plan can also be called
“open loop”, in contrast to “closed loop” plans that condition action choices on run-time
observations.

These two distinctions (conditional planning v. contingent planning and non-probabilis-
tic actions v. probabilistic actions) produce the following taxonomy of planners:

1. Conditional planning with non-probabilistic actions: These types of planners engage
in conformant planning: producing a straight-line plan that is guaranteed to succeed no
matter what conditions are encountered. Example: CONFORMANT GRAPHPLAN [69].

2. Contingent planning with non-probabilistic actions: Sensing allows this type of
planner to produce a contingent plan, but the lack of probabilistic actions means that
the planner must look for a plan that will succeed under all circumstances. Examples:
CNLP [62], PLINTH [25], SENSORY GRAPHPLAN [72], CASSANDRA [64].

3. Conditional planning with probabilistic actions: As in Case 1, these planners engage
in conformant planning, but the probabilities attached to action outcomes allow the
planner to specify the straight-line plan that has the highest probability of succeeding,
even if that probability is less than 1.0. Example: BURIDAN [41] and UDTPOP [63].
The first planner we developed, MAXPLAN [49], falls into this category.

4. Contingent planning with probabilistic actions: As in case 2, sensing allows planners in
this category to produce contingent plans. As in case 3, probabilistic actions allow the

3 Note that the term conditional has been used in different ways in the literature. Plans in which the execution
of actions depends on the outcomes of earlier actions were originally called “conditional plans” [71]. Some
researchers [19] suggested calling such plans “contingent plans”, reserving the term “conditional” for plans in
which only the effects of actions are contingent on the outcomes of earlier actions, and this terminology has been
generally adopted.
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planner to specify the plan that has the highest probability of succeeding. Examples:
C-BURIDAN [19], DTPOP [63], MAHINUR [58,59], PGRAPHPLAN/TGRAPHPLAN [7],
POMDP:INC−PRUNE [14], HANSEN-FENG [27], GPT [8], and SPUDD [28]. ZANDER,
the contingent planner we developed (Section 6), falls into this category, as do
traditional OR approaches [4,18,29,65].

Note that cases 2 and 3 subsume case 1, and case 4 subsumes all the other cases; thus, a
planner for addressing case 4 can be used in all four scenarios.

Our research has established a novel framework for planning with probabilities based
on stochastic satisfiability. In what follows, we will describe the planning-as-satisfiability
paradigm and discuss complexity issues that suggest what is necessary to extend the
paradigm to probabilistic planning. We will describe the planner we have developed based
on this extension, and report results indicating that this is a promising alternative approach
to attacking problems in case 4 above.

3. Deterministic planning as satisfiability

Since our work is an extension of the planning-as-satisfiability paradigm for determin-
istic planning problems, we will describe a representation for such problems, provide a
formal definition for the satisfiability problem, show how deterministic planning problems
can be encoded as SAT problems, and briefly describe how SATPLAN solves the SAT en-
coding of a planning problem.

3.1. Representing deterministic planning problems

A planning domain M = 〈S, s0,A,G〉 is characterized by a finite set of states S , an
initial state s0 ∈ S , a finite set of operators or actions A, and a set of goal states G ⊆ S .
The application of an action a in a state s results in a deterministic transition to a new state
s′. The objective is to choose actions, one after another, to move from the initial state s0 to
one of the goal states.

The STRIPS representation [21] of M , which we will describe informally, uses a
propositional state representation; a state is described by an assignment to a set of Boolean
variables. Actions are specified by three sets of propositions:

1. The preconditions set specifies what propositions need to be True for the action to be
executed.

2. The add effects set specifies those propositions that become True as a result of
executing the action, and

3. The delete effects set specifies those propositions that become False as a result of
executing the action.
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3.2. Deterministic satisfiability

Informally, a deterministic satisfiability (SAT) problem asks whether a given Boolean
formula has a satisfying assignment; that is, is there an assignment of truth values to
the variables used in the formula such that the formula evaluates to True. SAT is a
fundamental problem in computer science. It was the first NP-complete problem and many
important, practical problems in areas such as planning and scheduling, network design,
and data storage and retrieval (to name just a few) can be expressed as SAT problems [22].
As such, SAT is a very well-studied problem, both from a theoretical point of view (e.g.,
how does the solution difficulty of random SAT problems vary as one varies the parameters
of the problem?) as well as a practical point of view (e.g., how can one solve SAT problems
efficiently?).

Formally, let x = 〈x1, x2, . . . , xn〉 be a collection of n Boolean variables, and φ(x) be a
Boolean formula on these variables in conjunctive normal form (CNF) with m clauses.
Each clause is a disjunction of literals; a literal is a variable or its negation. Thus, φ
evaluates to True if and only if there is at least one literal with the value True in every
clause. (Note: We will sometimes use 1/0 to denote True/False.) An assignment is a
mapping from x to the set {True, False}. An assignmentA is satisfying, and φ(x) is said
to be satisfied, if φ(x) evaluates to True under the mappingA. This can be expressed using
existential quantifiers and, anticipating the notation necessary for stochastic satisfiability,
the expectation of formula satisfaction:

∃x1, . . . ,∃xn
(
E[φ(x)↔ True] = 1.0

)
.

In words, this asks whether there exist values for all the variables such that the probability
of the formula evaluating to True is certain. Note that we use equivalence (↔ True) to
denote the event of the formula evaluating to True.

3.3. Encoding deterministic planning problems as SAT problems

The generality of propositional satisfiability makes it possible to encode deterministic
planning problems in a number of different ways; many different approaches to planning
can be converted to propositional satisfiability. Both state-space planning and plan-space
(causal) planning can be used as a basis for satisfiability encodings [31,53]. For example,
one possible SAT encoding of a planning problem is the linear encoding with classical
frame axioms [31]. In this type of SAT encoding, satisfiability is made equivalent to goal
achievement by enforcing the following conditions:

• the initial conditions and goal conditions hold at the appropriate times (note that
the initial state is completely specified whereas the goal state may be only partially
specified),

• exactly one action is taken at each time step,
• if an action holds at time t , its preconditions hold at time t − 1, its add effects hold at

time t , and the negation of each of its delete effects holds at time t , and
• if an action does not affect a state variable, then that state variable remains unchanged

when that action is executed (classical frame conditions).
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The advantages of SAT’s expressive generality are clear, but there is also a disadvantage.
The multiplicity of possible SAT encodings for a particular problem and the absence of a
principled way of selecting the best encoding make it difficult to develop a system that
operates as efficiently as possible on a broad range of planning problems. In fact, one of
the current challenges in the planning-as-satisfiability paradigm is to automate the process
of producing the most efficient SAT encoding of a planning problem [20].

3.4. Solving deterministic satisfiability problems

The most straightforward technique for solving the SAT encoding of the planning
problem is systematic search for a satisfying assignment. This can perhaps best be
visualized by thinking of it as a search on an assignment tree. First, impose an arbitrary
ordering on the variables. An assignment tree is a binary tree in which each node represents
a variable and a partial assignment. The root node at level 0 represents the first variable
in the ordering and the empty partial assignment. For node q at level d representing the
d th variable v in the variable ordering and partial assignment A, the left child of node q ,
ql , represents the variable following v in the variable ordering and the partial assignment
A extended by setting v to True. The right child of node q , qr , represents the variable
following v in the variable ordering and the partial assignment A extended by setting v

to False. The 2n nodes at level n represent all possible complete assignments to the n
variables. A traversal of this tree, evaluating the Boolean formula given the full assignment
at each leaf, will consider all possible assignments and, hence, is guaranteed to find a
satisfying assignment if one exists. The full assignment tree is, of course, exponential in the
number of variables, and practical considerations demand that a systematic solver search
as little of this tree as possible. We will describe heuristics for this purpose later in this
section.

Even using heuristics, however, systematic search is impractical for very large problems.
SAT encodings of even moderately-sized planning problems can be very large (> 5000
variables), and for problems of this size a more practical approach is to use stochastic local
search. SATPLAN, in fact, uses WALKSAT [68], a generic satisfiability algorithm based on
stochastic local search. WALKSAT is not complete; it may not find a satisfying assignment
when one exists. In addition, it cannot report that a satisfying assignment does not exist
(although recent work by Schöning [66] provides probability bounds on the likelihood of
missing a satisfying assignment if one exists). WALKSAT, however, can solve satisfiability
problems that are orders of magnitude larger than those the best systematic solvers can
handle [68].

4. Complexity results

In its most general form, a plan is a program that takes as input observable aspects
of the environment and produces actions as output. We will classify plans by their size
(the number of internal states) and horizon (the number of actions produced en route to a
goal state). The computational complexity of propositional planning varies with bounds on
the plan size and plan horizon. In the deterministic case, for example, unbounded STRIPS
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planning is PSPACE-complete [13]. If we put a polynomial bound on the plan horizon [34],
however, STRIPS planning becomes an NP-complete problem.

The complexity of probabilistic propositional planning varies in a similar fashion. If
the plan size is unbounded and the plan horizon is infinite, the problem is EXP-complete
if states are completely observable [43], or, in the more general case, undecidable [46]. If
plan size or plan horizon alone is bounded by a polynomial in the size of the representation
of the problem, the problem is PSPACE-complete ([44] for plan size and [43] for plan
horizon). Contingent planning with polynomial bounds on the plan horizon falls into
this class. Evaluating a probabilistic plan—calculating the probability that the given plan
reaches a goal state—is PP-complete [44]. Finally, if we place bounds—polynomial in the
size of the planning problem—on both plan size and plan horizon, the planning problem is
NPPP-complete [44].

The class PP can be informally characterized as the set of problems in which one
needs to count the number of answers that satisfy some conditions (it is the decision-
problem version of #P). PSPACE is the class of problems solvable using polynomial space.
Papadimitriou [61] describes these classes in detail.

To the extent that we take the planning problem to be one of constructing a good
controller and executing it to solve the problem, polynomial bounds on plan size and plan
horizon are reasonable. In some cases, it may not help to know whether a plan exists
if that plan is intractable to express, requiring, say, exponential space (and exponential
time) to write down. The polynomial bound on plan horizon is perhaps less defensible
but nonetheless seems like a reasonable restriction. When a contingent plan is required
(see Section 6), the polynomial restriction on plan size may be too severe to allow a good
plan (one with a sufficiently high probability of reaching a goal state) to be found, but the
polynomial bound on plan horizon is still necessary to keep the problem in a “reasonable”
complexity class (PSPACE).

The success of SATPLAN encourages us to try a similar approach for probabilistic
planning problems, but these complexity results make it clear that we cannot encode
probabilistic planning problems as SAT problems. The relationship among these classes
can be summarized as follows:

NP ⊆ PP ⊆ NPPP ⊆ PSPACE.

We currently cannot express an NPPP-complete or PSPACE-complete problem as a
compact instance of SAT; if we want to extend the planning-as-satisfiability paradigm to
probabilistic planning, we will need a different type of satisfiability problem.

To extend the planning-as-satisfiability paradigm, we need a satisfiability problem that
can be used to capture probabilistic planning problems. Stochastic satisfiability, which we
describe next, satisfies this requirement.

5. Stochastic satisfiability

Stochastic satisfiability (SSAT) is at the core of the probabilistic planning technique we
have developed; ZANDER operates by converting the planning problem to an instance of
stochastic satisfiability and solving that problem instead.
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Recall the definition of satisfiability from Section 3.2. Given Boolean variables x = 〈x1,

x2, . . . , xn〉 and a CNF formula φ(x) constructed from these variables, the satisfiability
problem asks

∃x1, . . . ,∃xn
(
E[φ(x)↔ True] = 1.0

) :
Do there exist values for x1, x2, . . . , xn such that the probability of φ(x) evaluating to True
is certain?

The key idea underlying stochastic satisfiability (SSAT) is the introduction of a
randomized quantifier:

R

. Randomized quantifiers introduce uncertainty into the question
of whether there is a satisfying assignment. We will formalize this notion later in this
section but, for now, a simple example will illustrate the operation of this quantifier.
Suppose we have the following formula:

∃x1,

R

y2
(
E[(x1 ∨ ȳ2)∧ (x̄1 ∨ y2)↔ True] � 0.75

)
. (1)

This instance of SSAT asks whether a value for x1 can be chosen such that for random
values of y2 (choose True or False with equal probability) the expected probability of
satisfying the indicated Boolean formula is at least 0.75. This extension of SAT was first
explored by [60].

There are two important points to be made here. First, the presence of randomized
quantifiers means that obtaining a satisfying assignment is no longer completely under
the control of the solver. In the above example, after the solver has chosen a value for the
existentially quantified variable x1, the value of the randomly quantified variable y2 will
be chosen by flipping a fair coin. Thus, there is a certain probability that the choice of
a value for x1 will lead to a satisfied formula. If the solver sets x1 to True, then there
is a 0.5 probability that the formula will be satisfied (if the coin flip for y2 comes up
True) and a 0.5 probability that the formula will be unsatisfied (if the coin flip comes
up False). The situation is similar if the solver sets x1 to False. (Since the solver can
choose values for the existentially quantified variables and the probability of satisfaction
depends on the chance outcomes of the randomized variables, we will sometimes refer to
existentially quantified variables as choice variables and randomly quantified variables as
chance variables.)

Second, quantifier ordering is now critical. In the example, a value for x1 must be chosen
that yields a sufficiently high probability of satisfaction regardless of the randomly chosen
value for y2. This is impossible; either value of x1 will result in an unsatisfied formula for
one of y2’s values, so the maximum probability of satisfaction is 0.5. Suppose, however,
the order of the quantifiers were reversed:

R

y1,∃x2
(
E[(x2 ∨ ȳ1)∧ (x̄2 ∨ y1)↔ True] � 0.75

)
.

Here, the choice of a value for x2 can be made contingent on the random outcome of the
coin flip establishing y1’s value. In this case, choosing x2’s value to be the same as y1’s
value leads to a satisfied formula regardless of the coin flip. The probability of satisfaction
is now 1.0, exceeding the specified threshold.

Formally, an SSAT formula is defined by a triple (φ,Q, θ) where φ is a CNF formula
with underlying ordered variables x1, . . . , xn, Q is a mapping from variables to quantifiers
(existential ∃ and randomized

R

), and 0 � θ � 1 is a satisfaction threshold. Define φ�xi=b
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to be the (n − 1)-variable CNF formula obtained by assigning the single variable xi the
Boolean value b in the n-variable CNF formula φ and simplifying the result, including
any necessary variable renumbering. (Variables are numbered so that x1 corresponds to the
outermost, or leftmost, quantifier and xn to the innermost.)

The maximum probability of satisfaction, or value, of φ (under quantifier order Q),
val(φ,Q), is defined by induction on the number of quantifiers. Let x1 be the variable
associated with the outermost quantifier. Then:

1. if φ contains an empty clause, then val(φ,Q)= 0.0;
2. if φ contains no clauses then val(φ,Q)= 1.0;
3. if Q(x1)= ∃, then val(φ,Q)= max(val(φ�x1=0,Q), val(φ�x1=1,Q));
4. if Q(x1)= R

, then val(φ,Q)= (val(φ�x1=0,Q)+ val(φ�x1=1,Q))/2.

Given φ, Q, and a threshold θ , (φ,Q, θ) is True if and only if val(φ,Q)� θ .
Let us examine the application of this definition to the original example (Eq. 1). The

outermost quantifier is existential, so Rule 3 dictates that the value of the formula is the
maximum of the value of the subformula if x1 is True and the value of the subformula if
x1 is False. If x1 is True, the formula reduces to

R

y1(E[(y1)↔ True] � 0.75) (after
variable renumbering). Since the outermost quantifier is now randomized, Rule 4 dictates
that the value of this subformula is the average of the values if y1 is True and if y1
is False. If y1 is True, the new subformula contains no clauses and the value is 1.0
(Rule 2). If y1 is False, the new subformula contains an empty clause and the value is 0.0
(Rule 1). The average of these, 0.5, is thus the value of the subformula when x1 is True. If
x1 is False, a similar calculation establishes the value of the subformula to be 0.5. Taking
the maximum, the value of the original formula is 0.5. Since the threshold θ is 0.75, the
SSAT instance (φ = (x1 ∨ ȳ2)∧ (x̄1 ∨ y2), Q= {(x1,∃), (y2,

R

)}, θ = 0.75) is False.
One further modification is necessary to encode planning problems as stochastic

satisfiability problems. We will allow an arbitrary, rational probability to be attached to
a randomly quantified variable. This probability will specify the likelihood with which that
variable will have the value True. Thus, the value of a randomly quantified variable will
be determined according to this probability, rather than choosing True or False with
equal probability. This has an impact both on notation and on the inductive definition of
value. Randomized quantifiers can now be superscripted with an associated probability
other than 0.5. For example,

R0.65y1 indicates that the chance variable y1 is True with
probability 0.65. Rule 4 in the inductive definition of val(φ,Q) becomes:

4. if Q(x1)= Rπ , then
val(φ,Q)= (val(φ�x1=0,Q)× (1.0 − π)+ val(φ�x1=1,Q)× π).

In other words, the value in this case is the probability weighted average of the values of
the two possible subformulas.

For the sake of completeness, we note here that stochastic satisfiability can be extended
to include universally quantified variables as well as existentially and randomly quantified
variables. Although this version of stochastic satisfiability might be useful for encoding
planning problems when there is an adversarial influence, we do not use this version in any
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of our SSAT-based planners. Details regarding this Extended SSAT problem are available
elsewhere [45].

5.1. Solving stochastic satisfiability problems

We describe evalssat, a sound and complete algorithm for solving SSAT problems.
Given an arbitrary SSAT instance (φ, θ,Q), this algorithm is guaranteed to return the
correct answer, although the running time can be exponential. The evalssat algorithm
can be viewed as an extension of the Davis–Putnam–Logemann–Loveland (DPLL)
algorithm for solving SAT problems [16]. To our knowledge, DPLL and its variants
are the best systematic satisfiability solvers known. As such (and also because of its
simplicity), DPLL was the obvious choice as a basis for an SSAT solver. DPLL works by
enumerating all possible assignments, simplifying the formula whenever possible. These
simplifications, or pruning rules, make it possible to solve problems whose entire set of
assignments could not be completely enumerated. Since DPLL is designed to solve SAT

problems, the pruning rules only need to deal with existential quantifiers. The evalssat
algorithm extends the DPLL algorithm to SSAT by providing pruning rules for randomized
quantifiers.

The evalssat algorithm (Fig. 1) takes formula φ, quantifier order Q, and low and
high thresholds θl and θh. It returns a value less than θl if and only if the value of the
SSAT formula is less than θl , a value greater than θh if and only if the value of the SSAT

formula is greater than θh, and otherwise the exact value of the SSAT formula. (Note that
πvb denotes the probability that randomized variable v has value b.) Thus, this algorithm
can be used to solve the SSAT decision problem by setting θl = θh = θ . It can also be used
to compute the exact value of the formula by setting θl = 0 and θh = 1. The algorithm’s
basic structure is to compute the value of the SSAT formula from its definition (Section 5);
this takes place in the first two lines of pseudocode and in the section of pseudocode labeled
“Splitting”, which enumerates all assignments, applying operators recursively from left to
right. However, it is made more complex (and efficient) by a set of pruning rules, described
next.

5.1.1. Unit propagation
When a Boolean formula φ is evaluated that contains a variable xi that appears alone

in a clause in φ with sign b (0 if x̄i is in the clause, 1 if xi is in the clause), the normal
left-to-right evaluation of quantifiers can be interrupted to deal with this variable. This is
called unit propagation and xi is referred to as a unit variable, by analogy with DPLL.

If the quantifier associated with xi is existential, xi can be eliminated from the formula
by assigning it value b and recurring. As in DPLL, this is valid because assigning xi = 1−b

is guaranteed to make φ False, and xi = b can be no worse. Similarly, if the quantifier
associated with xi is randomized, it is the case that one branch of the computation will
return a zero, so xi can be eliminated from the formula by assigning it value b and
continuing recursively. The resulting value is multiplied by the probability associated with
the forced value of the randomized quantifier (πxib ), since it represents the value of only
one branch.



132 S.M. Majercik, M.L. Littman / Artificial Intelligence 147 (2003) 119–162

evalssat(φ,Q,θl , θh) := {
if φ is the empty set, return 1.0
if φ contains an empty clause, return 0.0
/* Unit Propagation */
if xi is a unit variable with sign b and Q(xi)= ∃,

return evalssat(φ�xi=b,Q,θl , θh)
if xi is a unit variable with sign b and Q(xi)= R

,
return evalssat(φ�xi=b,Q,θl /π

xi
b
, θh/π

xi
b
)π

xi
b

/* Pure Variable Elimination */
if xi is a pure variable with sign b and Q(xi)= ∃,

return evalssat(φ�xi=b,Q,θl , θh)
/* Splitting */
if Q(x1)= ∃, {
v0 = evalssat(φ�x1=0,Q, θl , θh)

if v0 � θh , return v0
v1 = evalssat(φ�x1=1,Q,max(θl , v0), θh)

return max(v0, v1)

}
if Q(x1)= R

, {
v0 = evalssat(φ�x1=0,Q, (θl − π

x1
1 )/π

x1
0 , θh/π

x1
0 )

if v0π
x1
0 + π

x1
1 < θl , return v0π

x1
0

if v0π
x1
0 � θh , return v0π

x1
0

v1 = evalssat(φ�x1=1,Q, (θl − v0π
x1
0 )/π

x1
1 , (θh − v0π

x1
0 )/π

x1
1 )

return v0π
x1
0 + v1π

x1
1

}
}

Fig. 1. The evalssat algorithm generalizes the DPLL algorithm for satisfiability to solve SSAT problems.
Note: πv

b
denotes the probability that randomized variable v has value b.

5.1.2. Pure variable elimination
Pure variable elimination applies when there is a pure variable; i.e., a variable xi that

appears only with one sign b in φ. If Q(xi)= ∃, the algorithm assigns xi = b and recurs.
This is valid because there are no unsatisfied clauses that would be satisfied if xi = 1 − b

but unsatisfied if xi = b. Interestingly, pure variable elimination does not appear to be
possible for randomized variables. Both assignments to a randomized variable give some
contribution to the value of the SSAT formula, and must be considered independently.4

5.1.3. Threshold pruning
Another useful class of pruning rules concerns the threshold parameters θl and θh. While

some care must be taken to pass meaningful thresholds when applying unit propagation,
threshold pruning mainly comes into play when variables are split to try to prevent
recursively computing both assignments to x1, the outermost quantified variable. Note that
threshold pruning is similar to MINIMAX tree *cutoffs [1].

4 In fact, pure variable elimination complicated our implementation and did not appear to provide a significant
improvement. We did not use this optimization in our experimental results.
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IfQ(x1)= ∃, after the first recursive call computing v0 (the value of the current formula
with x1 set to False), it is possible that θh has already been exceeded. In this case, the
algorithm can simply return v0, without ever computing v1 (the value of the current formula
with x1 set to True). In particular, it is possible that v1 > v0, but all that is significant is
whether one of the two exceeds θh. If v0 exceeds θl but falls short of θh, this can be used to
increase the lower threshold for the recursive computation of v1; since the algorithm must
take the larger of v0 and v1, the precise value of v1 is not needed if it less than v0.

Threshold pruning is not as strong for randomized variables, although it can be done.
There are two types of threshold pruning that apply. First, if the value obtained by assigning
0 to x1 (v0) is so low that, even if the value obtained by assigning 1 to x1 (v1) attains its
maximum value of 1.0, the low threshold will not be met (v0π

x1
0 + π

x1
1 < θl), then the

algorithm can return v0π
x1
0 without calculating v1. Second, if v0 is high enough to meet

the high threshold even if v1 = 0.0 (v0π
x1
0 � θh), the algorithm can, again, return v0π

x1
0

without computing v1. If both tests fail, the algorithm needs to compute v1, but can adjust
the thresholds accordingly.

The opportunities for threshold pruning are greatest when θl = θh, but, in this case, the
evalssat algorithm may not return the optimum probability of satisfaction. Empirical
tests, however, indicate that there can be significant—although possibly diminished—
benefits from threshold pruning even when θl is set to 0.0 and θh is set to 1.0, thus
forcing the evalssat algorithm to find the optimum probability of satisfaction while
still applying threshold pruning wherever possible internally.

For a detailed explanation of thresholds, see the proof of correctness of evalssat by
Littman et al. [45].

6. Contingent planning

When planning under uncertainty, any information about the state of the world is
precious. A contingent plan is one that can make action choices contingent on such
information. In this section, we will describe the sequential-effects-tree representation
(ST) [43], the propositional representation we use for probabilistic contingent planning
problems, and provide an example to illustrate the representation.

6.1. Representing probabilistic contingent planning problems

ZANDER, which we will describe in Section 7, works on partially observable prob-
abilistic propositional planning domains. Recall from Section 3.1 that a deterministic
planning domain M = 〈S, s0,A,G〉 is characterized by a finite set of states S , an initial
state s0 ∈ S , a finite set of operators or actions A, and a set of goal states G ⊆ S . Nearly the
same tuple characterizes probabilistic planning problems, except that now the initial state is
a probability distribution over states (i.e., the initial state is uncertain), the application of an
action a in a state s results in a probabilistic transition to a new state s′, and an observation
function is needed to specify how states are “perceived” to allow for contingent planning.
The objective is to choose actions, one after another, to move from the initial probability
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distribution to a probability distribution in which the probability of being in a goal state is
greater than or equal to some threshold θ in a fixed number of steps.5

We use a propositional representation called the sequential-effects-tree representation
(ST) [43], which is a syntactic variant of two-time-slice Baye’s nets (2TBNs) with
conditional probability tables represented as trees [9,11]. (This representation is also
equivalent to the STRIPS-like probabilistic state-space operators, or PSOs, [26,43].)

The ST representation of a planning domain can be defined formally as M = 〈P, I,A,T,
GT,GF,O〉. Here, P is a finite set of n distinct propositions. The set of states is the power
set of P; the propositions in state s are said to be “true” in s.

The transition function is represented by a function T, which maps each action in A
to an ordered sequence of binary decision trees. Each of these decision trees has a label
proposition, decision propositions at the nodes (optionally labeled with the suffix “:new”),
and probabilities at the leaves. The decision trees T(a) for action a define the transition
probability from state s to state s′ as follows. For each decision tree i , let pi be its label
proposition. Define ρi to be the value of the leaf node found by traversing decision tree
T(a)i , taking the left branch if the decision proposition is in s (or s′ if the decision
proposition has the “:new” suffix) and the right branch otherwise. Finally, we define the
transition probability to be

∏
i

{
ρi, if pi ∈ s′,
1 − ρi, otherwise.

This definition ensures a well-defined probability distribution over s′ for each a and
s. Using decision trees for next-state distributions captures variable independence
(independence among variables regardless of their values) as well as propositional
independence (independence of specific variable assignments) [9].

To ensure the validity of the representation, we only allow “p:new” to appear as a
decision proposition in T(a)i if p is a label proposition for some decision tree T(a)j
for j < i . For this reason, the order of the decision trees in T(a) is significant. This is
analogous to the requirement of acyclicity in belief networks.

The initial state I can be thought of as a special transition from a state sinit in which all
propositions are False (the actual truth values are immaterial) via a mandatory “set-up”
action aset-up that establishes the actual initial state for a particular instance of the planning
problem. Note that any propositions appearing in the decision trees for aset-up must have the
suffix :new, as there is no previous state to refer to.

The sets GT and GF are the sets of propositions that are, respectively,True and False
in a goal state, so the set of goal states G is the set of states s such that GT ⊆ s and
GF ⊆ P − s.

To represent contingent planning problems, the original ST representation is augmented
by declaring a subset of the state propositions O ⊆ P to be observable propositions.
These are the propositions on which the agent’s action decisions can be conditioned.

5 This is just one possibility. Another commonly used objective is that of maximizing expected discounted
reward [10,11,39,40]. A planning problem with this objective can be transformed into an equivalent goal-oriented
probabilistic planning problem [15,74]. See Appendix A for a proof.
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This observation model is a natural generalization of the observation functions used
in POMDPs—it is straightforward to emulate the POMDP representation via observable
propositions, as we show in our example in the next section. Because the truth values
of observable propositions can be set probabilistically, a domain designer can make a
domain fully observable, unobservable, or have observations depend on actions and states
in probabilistic ways.

The planning task is to find a plan that selects an action for each step t as a function of
the value of observable propositions for steps before t . We want to find a plan that exceeds
a user-specified threshold for the probability of reaching a goal state in a fixed number of
steps, if one exists. An alternate formulation is to maximize the probability of reaching a
goal state.

6.2. Example domain

Consider a simple domain based on the TIGER problem [30]. The domain consists of
four propositions: tiger-behind-left-door, dead, rewarded and hear-tiger-behind-left-
door, the last of which is observable. In the initial state, tiger-behind-left-door is True
with probability 0.5, dead is False, rewarded is False, and hear-tiger-behind-left-
door is irrelevant. The goal states are specified by the partial assignment (rewarded, (not
dead)). The three actions are listen-for-tiger, open-left-door, and open-right-door (Fig. 2).
Actions open-left-door and open-right-door make rewarded True, as long as the tiger is

Fig. 2. The effects of the actions in the TIGER problem are represented by a set of decision trees.
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not behind that door (we assume the tiger is behind the right door if tiger-behind-left-
door is False). Since tiger-behind-left-door is not observable, the listen action becomes
important; it causes the observable hear-tiger-behind-left-door proposition to become
equal to tiger-behind-left-door with probability 0.85 (and its negation otherwise). By
listening multiple times, it becomes possible to determine the likely location of the tiger.

As the tiger problem was originally specified as a POMDP, this example illustrates how
a POMDP representation is converted to ST. First, the reward for opening the correct door is
captured by transitions to the goal state. Similarly, the punishment for opening the incorrect
door is captured by a transition to a state in which dead is True, eliminating the possibility
of future goal achievement. To emulate a slight cost for listening, a low probability of
making dead True could have been added to the description of the listen-for-tiger action.

In the original problem, the listen-for-tiger action has an associated observation
function. This idea is captured directly through the observable hear-tiger-behind-left-
door proposition—the observation probabilities map exactly to the probability that the
observable proposition is True after the action.

This particular example does not make use of :new suffix, as propositions are in-
dependent functions of the previous state.

6.3. Probabilistic planning language

Although the ST representation is the formal representation language underlying
ZANDER, for convenience we write down this representation using the Probabilistic
Planning Language (PPL). PPL is a high-level action language that extends the action
language AR [23] to support probabilistic domains. An ST representation can be easily
expressed by PPL. Each path through each decision tree is replaced by a PPL statement.
The general form of a PPL statement for a path through the decision tree describing action
a’s impact on proposition p is:

a causes p withp π if c1 and c2 and . . . and cm,

where 0.0 � π � 1.0 is the probability at the leaf, and ci,1 � i � m, are the state
propositions described by the particular path. In words, the statement says that if conditions
ci,1 � i �m, are True when action a is executed, p will become True with probability
π . For example, the left path in the decision tree describing listen-for-tiger’s effect on hear-
tiger-behind-left-door (Fig. 2) would be expressed in the following PPL statement:

listen-for-tiger causes hear-tiger-behind-left-door withp 0.85

if tiger-behind-left-door.

In addition to providing a convenient way of writing down ST decision trees, PPL gives
users the (optional) opportunity to easily express state invariants, equivalences, irreversible
conditions, and action preconditions—information that can greatly decrease the time
required for the SSAT solver to find a solution.
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7. ZANDER

In this section, we present ZANDER, an implemented framework for contingent planning
under uncertainty using stochastic satisfiability. ZANDER is based on MAXPLAN, a
noncontingent planner we developed earlier [49].

7.1. Encoding contingent planning problems as SSAT problems

The problem conversion unit of ZANDER is a Java program that takes as input an ST

representation of a planning problem expressed in PPL and converts it into an SSAT

formula. As with SATPLAN, the conversion process requires that the number of steps in
the plan be chosen in advance. Searching for the appropriate plan length is external to the
encoding process.

In Section 7.1.1, we discuss how the ordering of quantified variables is used to encode
a contingent planning problem. In Sections 7.1.2 and 7.1.3, we describe in detail how the
clauses in the SSAT problem are generated from the ST representation of the planning
problem.

7.1.1. Quantifier ordering
In an SSAT formula, the value of an existential variable x can be selected on the basis

of the values of all the variables to x’s left in the quantifier sequence. Thus, viewing an
existential variable as an action choice, the values of all “earlier” variables in the quantifier
sequence are observable at the time x’s value is selected. So, the choice represented by x is
contingent on the earlier variables. This allows one to map contingent planning problems
to stochastic satisfiability by encoding the contingent plan in the decision tree induced
by the quantifier ordering associated with the SSAT formula. By alternating blocks of
existential variables that encode actions and blocks of randomized variables that encode
observations, one can condition the value chosen for any action variable on the possible
values for all the observation variables that appear earlier in the ordering. A generic SSAT

encoding for contingent plans appears in Fig. 3. Note that this approach is agnostic as
to the structure of the plan; the type of plan returned is algorithm dependent. ZANDER

solves an SSAT instance by constructing a tree-structured proof; this corresponds to
generating tree-structured plans that contain a branch for each observable variable. Other
SSAT solvers could produce DAG-structured, subroutine-structured, or value-function-
based plans, depending on how they attack SSAT problems.

The quantifiers naturally fall into three segments: a plan-execution history, the domain
uncertainty, and the result of the plan-execution history given the domain uncertainty.
The plan-execution-history segment is an alternating sequence of choice-variable blocks
(one for each action choice) and chance-variable blocks (one for each set of possible
observations at a time step). This segment begins with the action-variable block for the first
(non-contingent) action choice and ends with the action-variable block for the last action
choice. The action choice encoded in each action-variable block can, thus, be conditioned
on the values of all the preceding observation variables in all the observation-variable
blocks to the left of that action-variable block. In the TIGER problem, each action-variable
block would be composed of the three possible actions—listen-for-tiger, open-left-door, and
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first action︷ ︸︸ ︷
∃x1,1, . . . ,∃x1,c1

first observation︷ ︸︸ ︷R

w1,1, . . . ,

R

w1,c2 · · ·
last observation︷ ︸︸ ︷R

wn−1,1, . . . ,

R

wn−1,c2

last action︷ ︸︸ ︷
∃xn,1, . . . ,∃xn,c1

domain
uncertainty︷ ︸︸ ︷Rρ1z1, . . . ,

Rρc4 zc4

states
encountered︷ ︸︸ ︷

∃y1, . . . ,∃yc3

(E[(initial/goal conditions (y,z)-clauses)

(action exclusion (x)-clauses)

(action outcome (w,x,y,z)-clauses)] � θ).

c1 = number of variables it takes to specify a single action step (the number of actions),
c2 = number of variables it takes to specify a single observation,
c3 = number of state variables (one for each proposition at each time step), and
c4 = number of chance variables (one for each possible stochastic outcome at each

time step).

Fig. 3. A generic SSAT encoding of a contingent planning problem.

open-right-door—and each observation-variable block would be composed of the single
variable hear-tiger-behind-left-door. This means that the values of the variables in the
second action-variable block (i.e., the action chosen) can be conditioned on the value
of hear-tiger-behind-left-door in the observation-variable block immediately preceding
them; i.e., the planner can specify one action if the tiger is heard behind the left door, and
a different action otherwise.

The domain uncertainty segment is a single block containing all the chance variables
that modulate the impact of the actions on the observation and state variables. These
variables are associated with randomized quantifiers; when the algorithm considers a
variable that represents uncertainty in the environment, it needs to take the probability
weighted average of the success probabilities associated with the two possible settings of
the variable. In the TIGER problem, there would be a chance variable (probability = 0.85)
associated with the outcome of each listen-for-tiger action.

The result segment is a single block containing all the non-observation state variables.
These variables are associated with existential quantifiers, indicating that the algorithm
can choose the best truth setting for each variable. In reality, all such “choices” are forced
by the settings of the action variables in the first segment and the chance variables in the
second segment. If these forced choices are compatible, then the preceding plan-execution
history is possible and has a non-zero probability of achieving the goals. Otherwise, either
the plan-execution history is impossible, given the effects of the actions, or it has a zero
probability of achieving the goals.

Let φ and Q represent an SSAT encoding of a contingent planning problem. The
probability of satisfaction, or value, val(φ,Q) is defined by induction on the number of
quantifiers, and is similar to the value of an SSAT formula defined in Section 5. Let x1 be
the variable associated with the outermost quantifier. Then:

1. if φ contains an empty clause, then val(φ,Q)= 0.0;
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2. if φ contains no clauses then val(φ,Q)= 1.0;
3. if Q(x1)= ∃, then val(φ,Q)= max(val(φ�x1=0,Q), val(φ�x1=1,Q));
4. if Q(x1)= Rπ and x1 is not an observation variable, then

val(φ,Q)= (val(φ�x1=0,Q)× (1.0 − π)+ val(φ�x1=1,Q)× π);
5. if Q(x1)= R0.5 and x1 is an observation variable, then

val(φ,Q)= val(φ�x1=0,Q)+ val(φ�x1=1,Q).

The only difference between these rules and those stated in Section 5 for a general
SSAT formula is the addition of Rule 5 to handle chance (randomized) variables encoding
observations. This rule states that the value of a formula whose outermost quantifier is
a chance variable encoding an observation is the sum of the value of the formula if that
variable is assigned the value True and the value of the formula if that variable is assigned
the value False, rather than the probability weighted average of these two values (as in
Rule 4, for the value of a formula whose outermost quantifier is a chance variable that does
not encode an observation). This special treatment of some chance variables requires some
explanation.

The chance variables representing observations in the plan-execution history are used
only to mark possible branch points in the plan, and not to encode the probability of
actually making that observation. (The actual probability of the observation being True
is encoded by a chance variable that appears in the domain uncertainty segment.) For
example, in the 2-step TIGER problem, there is a choice-variable block representing a
choice between actions listen-for-tiger, open-left-door, and open-right-door at time step 1,
followed by a single observation chance variable hear-tiger-behind-left-door, followed
by another choice-variable block, representing a choice between actions listen-for-tiger,
open-left-door, and open-right-door at time step 2. The function of chance variable hear-
tiger-behind-left-door is to allow the solver to choose one action at time step 2 if hear-
tiger-behind-left-door is True and a different action if hear-tiger-behind-left-door is
False.

In order to calculate the correct probability of success of such a branching plan, the
algorithm needs to sum the success probabilities over all branches. Making hear-tiger-
behind-left-door a chance variable (instead of a choice variable) allows one to combine
the success probabilities of the two branches, but, as defined for a standard SSAT problem
(Rule 4 above), chance variables must combine the success probabilities associated with
their two values (True/False) by taking the probability weighted average of these
success probabilities, instead of the sum. To simulate Rule 5 within the SSAT framework,
we would associate a probability of 0.5 with the chance variable hear-tiger-behind-left-
door and adjust the calculated probability of success upward by a factor of 2. This would
be equivalent to the more straightforward approach actually used (summing the success
probabilities of the two branches).

In the next two sections, we illustrate the variable and clause production process by
describing the construction of the CNF formula corresponding to a one-step plan for the
TIGER domain.
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7.1.2. Variables
The converter first creates a set of propositions that capture the uncertainty in the

domain. For each decision-tree leaf l labeled with a probability πl that is strictly between
0.0 and 1.0, the converter creates a random proposition rl that is true with probability
πl . For example, in the second decision tree of the listen-for-tiger action (Fig. 2), s1 is a
random proposition that is True with probability 0.85. The leaf l is then replaced with a
node labeled rl having a left leaf of 1.0 and a right leaf of 0.0. This has the effect of slightly
increasing the size of decision trees and the number of propositions, but also of simplifying
the decision trees so that all leaves are labeled with either 0.0 or 1.0 probabilities.

The converter is given a plan horizon T and time-indexes each proposition and action
so the planner can reason about what happens when. Variables are created to record the
status of actions and propositions in a T -step plan by taking three separate cross products:
actions and time steps 1 through T , propositions and time steps 0 through T , and random
propositions and time steps 1 through T . The total number of variables in the CNF formula
is

V = (A+ P +R)T + P,

where A, P , and R are the number of actions, propositions, and random propositions,
respectively.

The variables generated by the actions are the choice variables. In our example, these
are the variables listen-for-tiger-1, open-left-door-1, and open-right-door-1. The variables
generated by the random propositions are the chance variables. In our example, we have
two random propositions (s1 and s2 and the variables generated are s1-1 and s2-1). (We
will describe the generation and use of these chance variables in more detail later in this
section.)

The variables generated by the propositions for time steps 1 through T are choice
variables. In the TIGER domain, these choice variables are tiger-behind-left-door-1,
hear-tiger-behind-left-door-1, dead-1, and rewarded-1. These variables are encoded as
“choice” variables, but the choice is forced, given a choice of values for the action variables
and an instantiation of values for the chance variables encoding the domain uncertainty.
Variables generated by the propositions at time step 0 are either choice variables, if their
status is deterministically specified in the initial conditions, or chance variables, if their
status is probabilistically specified in the initial conditions.

Each variable indicates the status of an action, proposition, or decision-tree leaf node
at a particular time step. So, for example, the variable open-left-door-1, if True, indicates
that the open-left-door action was taken at time step 1, and the variable s1-1, if True,
indicates that the decision-tree leaf node associated with s1 is True at time step 1.

7.1.3. Clauses
The SSAT encoding of the planning problem is constructed to enforce the following

conditions:

1. the initial conditions hold at time step 0 and the goal conditions at time step T ,
2. actions at time step t are mutually exclusive (1 � t � T ),
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Initial Conditions: Goal Conditions:
1. (dead-0) ∧ 3. (dead-1) ∧
2. (rewarded-0) ∧ 4. (rewarded-1) ∧
Exactly One Action Per Time Step:
5. (listen-for-tiger-1 ∨ open-left-door-1 ∨ open-right-door-1) ∧
Action Effects:
6. (listen-for-tiger-1 ∨ tiger-behind-left-door-0 ∨ s1-1 ∨ hear-tiger-behind-left-door-1) ∧
7. (listen-for-tiger-1 ∨ tiger-behind-left-door-0 ∨ s1-1 ∨ hear-tiger-behind-left-door-1) ∧
8. (listen-for-tiger-1 ∨ tiger-behind-left-door-0 ∨ s2-1 ∨ hear-tiger-behind-left-door-1) ∧
9. (listen-for-tiger-1 ∨ tiger-behind-left-door-0 ∨ s2-1 ∨ hear-tiger-behind-left-door-1) ∧
10. (open-left-door-1 ∨ hear-tiger-behind-left-door-1) ∧
11. (open-right-door-1 ∨ hear-tiger-behind-left-door-1) ∧
12. (listen-for-tiger-1 ∨ tiger-behind-left-door-0 ∨ tiger-behind-left-door-1) ∧
13. (listen-for-tiger-1 ∨ tiger-behind-left-door-0 ∨ tiger-behind-left-door-1 ∧
14. (open-left-door-1 ∨ tiger-behind-left-door-0 ∨ tiger-behind-left-door-1) ∧
15. (open-left-door-1 ∨ tiger-behind-left-door-0 ∨ tiger-behind-left-door-1) ∧
16. (open-right-door-1 ∨ tiger-behind-left-door-0 ∨ tiger-behind-left-door-1) ∧
17. (open-right-door-1 ∨ tiger-behind-left-door-0 ∨ tiger-behind-left-door-1) ∧
18. (listen-for-tiger-1 ∨ dead-0 ∨ dead-1) ∧
19. (listen-for-tiger-1 ∨ dead-0 ∨ dead-1) ∧
20. (open-left-door-1 ∨ dead-0 ∨ dead-1) ∧
21. (open-left-door-1 ∨ dead-0 ∨ tiger-behind-left-door-0 ∨ dead-1) ∧
22. (open-left-door-1 ∨ dead-0 ∨ tiger-behind-left-door-0 ∨ dead-1) ∧
23. (open-right-door-1 ∨ dead-0 ∨ dead-1) ∧
24. (open-right-door-1 ∨ dead-0 ∨ tiger-behind-left-door-0 ∨ dead-1) ∧
25. (open-right-door-1 ∨ dead-0 ∨ tiger-behind-left-door-0 ∨ dead-1) ∧
26. (listen-for-tiger-1 ∨ rewarded-0 ∨ rewarded-1) ∧
27. (listen-for-tiger-1 ∨ rewarded-0 ∨ rewarded-1) ∧
28. (open-left-door-1 ∨ tiger-behind-left-door-0 ∨ rewarded-1) ∧
29. (open-left-door-1 ∨ tiger-behind-left-door-0 ∨ rewarded-1) ∧
30. (open-right-door-1 ∨ tiger-behind-left-door-0 ∨ rewarded-1) ∧
31. (open-left-door-1 ∨ tiger-behind-left-door-0 ∨ rewarded-1)

Fig. 4. The SSAT formula for a 1-step TIGER plan constrains the variable assignments.

3. proposition p is True at time step t if it was True at time step t − 1 and the action
taken at time step t does not make it False, or the action at time step t makes p
True (1 � t � T ).

Each deterministic initial condition and goal condition in the problem generates a unit
clause in the CNF formula. The initial conditions in our example generate the clauses
(dead-0) and (rewarded-0) and the goal conditions generate the clauses (dead-1) and
(rewarded-1). The fact that the tiger is behind each door with equal probability is encoded
by making the the variable tiger-behind-left-door-0 a chance variable with associated
probability of 0.5. The number of clauses thus generated is bounded by 2P .
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The second condition, mutual exclusivity of actions for each time step, generates one
clause with a special “exactly-one-of” operator that ensures that one and only one of the
literals in the clause is True. When a literal in an exactly-one-of action clause is set to
True, the solver immediately sets all other literals (actions) in that clause to False.
This type of clause can be simulated by a small collection of standard clauses: one clause
specifies that some action must be taken, and a quadratic (in the number of actions)
number of clauses specify that for each possible pair of action variables, one action variable
must be False. This approach, however, requires a more time-consuming series of unit
propagations to set the other action literals in a clause to False when one of them is set
to True. For this reason, we found that exactly-one-of clauses led to more compact and
more efficiently solved encodings.

The third condition, effects of actions on propositions, generates one clause for each
path through each decision tree in each action. Because of the transformation described at
the beginning of Section 7.1.2, the probability of each leaf is either 0.0 or 1.0, and this path
generates a single clause modeling the action’s deterministic impact on the proposition
given the circumstances described by that path. Note, however, that if these circumstances
include a random proposition (described in Section 7.1.2), the net impact of the action
modeled by the clause will be probabilistic. An example will clarify this process.

Fig. 2 shows the ordered list of decision trees associated with the listen-for-tiger action.
The second decision tree describes the impact of the listen-for-tiger action on the hear-
tiger-behind-left-door proposition. The left path of the tree specifies that when tiger-
behind-left-door is True, the probability that hear-tiger-behind-left-door is True is
0.85. Since the probability in the leaf is strictly between 0.0 and 1.0, the converter generates
a chance variable associated with this probability (s1). This path in the decision tree results
in two clauses, one describing the impact of the action if the chance variable is True and
one describing its impact if the chance variable is False. For the 1-step plan, this path
generates the following two implications:

listen-for-tiger-1∧ tiger-behind-left-door-0 ∧ s1-1

→ hear-tiger-behind-left-door-1

listen-for-tiger-1∧ tiger-behind-left-door-0 ∧ s1-1

→ hear-tiger-behind-left-door-1

Note that a chance variable has the same time index as the action it modifies. Negating
the antecedent and replacing the implication with a disjunction produces clauses 6 and 7
(Fig. 4):

listen-for-tiger-1∨ tiger-behind-left-door-0 ∨ s1-1

∨hear-tiger-behind-left-door-1

listen-for-tiger-1∨ tiger-behind-left-door-0 ∨ s1-1

∨hear-tiger-behind-left-door-1

Fig. 4 shows the complete formula for a 1-step plan.
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The total number of action-effect clauses is bounded by 2T
∑A

i=1Li where Li is the
number of leaves in the decision trees of action i , so the total number of clauses C is
bounded by

2P + T + 2T
A∑
i=1

Li,

which is a low-order polynomial in the size of the problem. The average clause size is
dominated by the average path length of all the decision trees.

Note that by using a compact representation of a factored state space, such as the ST

representation, and translating that representation directly into SSAT form, we preserve the
compactness of such a representation in our SSAT formula. The alternative—using a flat
state space in which states are simply enumerated without regard to their characteristics,
encoding states as propositions, and encoding in our clauses the impact of each action on
each possible state—would be prohibitively expensive.

Also note that fixing a plan horizon does not prevent ZANDER from solving planning
problems in which the horizon is unknown. By using iterative lengthening, a process in
which successive instances of the planning problem with increasing horizons are solved,
the optimal plan horizon can be discovered dynamically. We have not yet determined the
feasibility of incremental iterative lengthening, a more sophisticated approach, in which
the current instance of the planning problem with horizon T is incrementally extended to
the instance with horizon T + 1 and earlier results are reused to help solve the extended
problem.

7.1.4. Explanatory frame axioms
The example encoding in Fig. 4 uses classical frame axioms. If a state proposition

is unaffected by an action, there are clauses that explicitly model this (e.g., clauses 12
through 17 model the fact that none of the actions can change tiger-behind-left-door).
Since actions typically affect only a relatively small number of state propositions, thus
generating a large number of classical frame axioms, we replace the classical frame axioms
with explanatory frame axioms. Explanatory frame axioms generate fewer clauses by
encoding possible explanations for changes in a proposition. For example, if the truth value
of proposition p changes from True to False, it must be because some action capable
of inducing that change was executed; otherwise, the proposition remains unchanged:

pt−1 ∧ pt → at1 ∨ at3,

where a1 and a3 are the only actions that can cause the proposition p to change from True
to False, and superscripts refer to time indices. We call these “simple” explanatory frame
axioms because they do not make distinctions among the possible effects of an action.
Unlike deterministic, unconditioned actions, it may be that, under certain circumstances,
a3 leaves p unchanged; its presence in the above list merely states that there is a set
of circumstances under which a3 would change p to p. Thus, our simple explanatory
frame axioms are similar to the frame axioms proposed by Schubert [67] for the situation
calculus in deterministic worlds, and like his frame axioms, depend on the explanation
closure assumption: that the actions specified in the domain specify all possible ways that
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propositions can change. Details regarding this and other alternative SSAT encodings of
probabilistic planning problems are available elsewhere [51].

Using explanatory frame axioms not only reduces the size of the encoding significantly
in many cases, but sometimes produces clauses specifying invariants, which can speed up
the SSAT solution process. The frame axioms for tiger-behind-left-door in Fig. 4 (clauses
12 through 17) illustrate both of these possibilities. Since there are no actions that can
change the truth value of this state proposition, we can replace the classical frame axioms
with the following explanatory frame axioms:

(tiger-behind-left-door-0 ∨ tiger-behind-left-door-1)∧
(tiger-behind-left-door-0 ∨ tiger-behind-left-door-1)

which not only reduces the number of clauses from six to two, but makes explicit that the
truth value of tiger-behind-left-door does not change.

We used simple explanatory frame axioms for all the SSAT encodings of the domains
in Section 8.

7.2. Solving the SSAT encodings

The SSAT solution unit of ZANDER is a C++ program that takes as input an SSAT

representation of a planning problem and finds an assignment tree that specifies the optimal
choice-variable assignment given all possible settings of the observation variables. The
assignment tree can be exponential in the size of the problem. The most basic variant of
the solver follows the variable ordering exactly, constructing a binary tree of all possible
assignments. Fig. 5 depicts such a tree; each node contains a variable under consideration,
and each path through the tree describes a plan-execution history, an instantiation of the
domain uncertainty, and a possible setting of the state variables. The tree shows the first
seven variables in the ordering for the 2-step TIGER problem: the three choice variables
encoding the action at time step 1— listen-for-tiger-1, open-left-door-1, open-right-door-1,
the single observation chance variable hear-tiger-behind-left-door-1, and the three choice
variables encoding the action at time step 2—listen-for-tiger-2, open-left-door-2, open-right-
door-2. The root node of the tree contains the variable listen-for-tiger-1, the two nodes on the
next level of the tree contain the variable open-left-door-1, and so forth (triangles indicate
subtrees for which details are not shown). The observation variable hear-tiger-behind-
left-door-1 is a branch point; the optimal assignment to the remaining choice variables
(listen-for-tiger-2, open-left-door-2, open-right-door-2) will be different for different values
of this variable.

This representation of the planning problem is similar to AND/OR trees and MINIMAX
trees [55]. Choice variable nodes are analogous to OR, or MAX, nodes, and chance variable
nodes are analogous to AND, or MIN, nodes. However, the probabilities associated with
chance variables (our opponent is nature) make the analogy somewhat inexact. Our trees
are more similar to MINIMAX trees with chance nodes [1] but without the MIN nodes—
instead of a sequence of alternating moves by opposing players mediated by random events,
our trees represent a sequence of moves by a single player mediated by the randomness in
the planning domain.
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Fig. 5. ZANDER selects an optimal subtree.

The solver essentially implements the DPLL-based algorithm described in Section 5.1.
It does a depth-first search of the tree, constructing a solution subtree by calculating,
for each node, the probability of a satisfying assignment given the partial assignment so
far. For a choice variable, this is a maximum probability and produces no branch in the
solution subtree; the solver notes which value of the variable yields this maximum. For a
chance variable, the probability will be the probability weighted average of the satisfaction
probabilities for that node’s subtrees. For an observation variable, the probability will be
the sum of the satisfaction probabilities for that node’s subtrees and will produce a branch
point in the solution subtree. The solver finds the optimal plan by determining the subtree
with the highest probability of success. In Fig. 5, the plan portion of this subtree appears in
bold, with action choices (action variables set to True) in extra bold. The optimal plan is:
listen-for-tiger; if hear-tiger-behind-left-door is True, open-right-door; if False, open-
left-door.

In contrast to heuristic search approaches, which must follow a prescribed variable
ordering, ZANDER can consider variables out of the quantifier ordering specified in the
SSAT problem when this allows it to prune subtrees. The main novelty of our approach,
in fact, lies in our use of the stochastic satisfiability formulation of the problem, which
allows ZANDER to use satisfiability heuristics, such as unit propagation and pure variable
elimination, to prune subtrees. It is possible that the algorithm could use heuristic search to
solve the trees generated by our planning problems. A worthwhile area of research would
be to compare the performance of these two approaches and attempt to develop techniques
that combine the advantages of both.
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8. Results

This section reports results comparing ZANDER to seven other planning techniques.
All experiments were conducted on an 866 MHz Dell Precision 620 with 256 Mbytes of
RAM, running Linux 7.2. We note here that the timings reported below do not include the
time needed for any of the planners to translate the initial problem representation into
the form necessary for the planner’s solver. This means, for example, that the PPL-
to-SSAT translation times for ZANDER are not included, the parse and compile times
required for GPT to create the C program that solves the planning problem are not included,
and the time to translate a user-friendly POMDP specification into the required form for
POMDP:INC−PRUNE is not included. These costs tend to be small and generally do not
grow rapidly with horizon length.

8.1. Sample domains

The problems selected cover a range of different possibilities with respect to initial
conditions (deterministic, nondeterministic, or probabilistic) and the effects of causal
actions (deterministic, nonprobabilistic, or probabilistic). Observability is complete or
(usually) partial. In all cases when the observability is partial, the agent can never observe
the state completely in a single step.

In the GO-5 domain (General Operations, 5 operations), adapted from a problem
described by Onder [56], there are deterministic initial conditions, probabilistic causal
actions, and partial, but completely accurate, observability. There are five actions—paint,
clean, polish, trim, and vacuum—each of which produces a single desired effect with
probability 0.5. Initially none of the effects have been achieved; the goal conditions require
that all these effects be accomplished without falling into an error condition, which results
when the agent attempts to execute an action whose effect has already been achieved. The
agent is able to observe the effect of any action just executed with complete accuracy.

In the MEDICAL-5ILL domain [72], there are probabilistic initial conditions, determin-
istic causal actions, and partial, but completely accurate, observability. A patient is either
healthy or has one of five illnesses (with equal probability). Fortunately, there is a med-
ication for each illness that will cure the patient with certainty. The patient, however, will
die if she receives any medication for which she does not have the corresponding illness.
Thus, it is critical to disambiguate the initial conditions. There is a stain test that allows the
agent to determine which of the following three categories the patient’s illness falls into:
(1) illness 1 or illness 2, (2) illness 3 or illness 4, or (3) illness 5. There is a white cell
count test that allows the agent to distinguish between illnesses 1 and 2 and illnesses 3 and
4. Together, these tests allow the agent to determine the patient’s illness with certainty and
administer the correct medication.

The COFFEE-ROBOT domain, a slightly modified version of a domain described by
Boutilier and Poole [12], contains nondeterministic or probabilistic initial conditions
(depending on the planner’s capabilities), deterministic causal actions, and partial, but
completely accurate, observability. A robot must determine whether its user wants coffee
and, if so, go to the cafeteria, buy some coffee, and return to the office and deliver it to the
user. In addition, it might be raining and, since the robot should not get wet, it must take
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Table 1
The size of the state space and the degree of observability
varied among the tested domains

Domain Number of:

Actions State Observation
variables variables

GO-5 6 6 5
MEDICAL-5ILL 7 10 4
COFFEE-ROBOT

(partially 6 8 2
observable)
COFFEE-ROBOT

(completely 4 8 8
observable)
SHIP-REJECT 4 5 1
TIGER 3 3 1

an umbrella if it is raining.6 If the user does not want coffee, the robot should do nothing,
since having coffee when it is not wanted makes the user unhappy. Initially, it is uncertain
whether it is raining and whether the user wants coffee. In versions of the problem that
use probabilistic initial conditions, both these conditions are true with probability 0.50.
The robot can ask the user if she wants coffee and can look out the window to see if it
is raining. These observations are always accurate. All the other actions—get-umbrella,
change-location, buy-coffee, and deliver-coffee—have probabilistic effects. Note that in
order to make a better comparison between ZANDER and SPUDD (which assumes complete
observability), we also created a completely observable version of this problem.

The SHIP-REJECT domain [19] has probabilistic initial conditions, probabilistic actions,
and partial, noisy observability. A part is initially flawed (not visible) and blemished
(visible, and perfectly correlated with flawed) with probability 0.30. The objective is to
paint and process the part, where processing consists of deciding whether to ship the part
(if not flawed) or reject the part (if flawed). While painting the part erases the blemish, it
does not correct the internal flaw, so the agent must observe whether the part is blemished,
paint the part, and then condition the ship/reject decision on its earlier observation.

The TIGER domain [30] has probabilistic initial conditions, deterministic actions, and
partial, noisy observability. The agent is faced with two doors, one concealing a hungry
tiger, the other concealing a treasure. The objective is to get the treasure. Before opening
one of the doors, the agent can listen for the tiger, but this observation is only accurate with
probability 0.85. A unique feature of this problem is that, in general, the agent needs to
condition its actions on the entire observation history in order to act correctly.

Some idea of the size of these domains can be obtained from the Table 1, listing the
number of actions, state variables, and observation variables in each domain.

6 In the original version of this problem, the robot incurs a small cost for getting wet. In our version, the robot
is required to stay dry. We could emulate a slight cost by introducing a small probability of failure for getting wet.
Thus, the probability of goal achievement for a plan in which the robot gets wet will be non-zero, but less than
that of a plan that keeps the robot dry.
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Note that these numbers vary slightly among the planners due to minor changes made
to accommodate the abilities of the planners. For example, ZANDER needs a noop action
in the GO-5 domain to execute if the goal is achieved before the end of the fixed-length
plan is reached, while the other planners that can handle this problem do not need such an
action.

8.2. Planners

All of the planners we tested are able to solve planning problems with some degree
of uncertainty. There is considerable variation, however, in the kinds of uncertainty they
are capable of dealing with. The planner may only be able to cope with deterministic
initial conditions (only one possible initial state), or it may be able to deal with
nondeterministic initial conditions (a set of possible initial states) or probabilistic initial
conditions (a probability distribution over possible initial states). The planner may be
able to cope with partial observability (partial in scope and/or accuracy) or may assume
complete observability. Finally, the planner may be able to reason about non-probabilistic
actions (a list of possible outcomes) or probabilistic actions (a probability distribution
over possible outcomes. Before briefly describing the seven planners we tested in addition
to ZANDER, we summarize these characteristics in the following table. The version of
ZANDER we used ran the SSAT solver described in Section 5.1 with θl = 0 and θh = 1.

The eight planners can be placed into three broad categories of approaches to proba-
bilistic planning: the MDP/POMDP approach (GPT, POMDP:INC−PRUNE, HANSEN-FENG,
and SPUDD), the classical causal-reasoning approach (MAHINUR), and the constraint-based
approach (ZANDER, SGP, and PGRAPHPLAN).

GPT (General Planning Tool) is an integrated software package for modeling, analyz-
ing, and solving planning problems that involve uncertainty and partial information [8].
It uses optimal heuristic search for conformant planning and real-time dynamic program-

Table 2
The eight tested planners vary in their abilities to handle different types of uncertainty

Planner Type of Type Type
initial of of

conditions observability actions

ZANDER Probabilistic Partial Probabilistic
GPT Probabilistic Partial Probabilistic
POMDP:INC−PRUNE Probabilistic Partial Probabilistic
HANSEN-FENG Probabilistic Partial Probabilistic
SPUDD Deterministica Complete Probabilistic
MAHINUR Probabilistic Limited Partialb Probabilistic
SGP Nondeterministic Limited Partialc Non-probabilistic
PGRAPHPLAN Deterministica Complete Probabilistic

a Probabilistic initial conditions can be simulated by forcing an initial action that probabilistically sets the
initial conditions.

b MAHINUR cannot currently handle multiple observations or a series of instances of the same observation
although, in principle, it could do so.

c SGP cannot currently handle noisy observations.
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ming (RTDP) [2] for nondeterministic (non-probabilistic), probabilistic, and contingent
planning. RTDP is a version of dynamic programming that finds a policy by running a
number of trials, each one starting in the initial state and ending either in a goal state or af-
ter some step limit has been reached. During a trial, the current approximation of the policy
is used as a heuristic function to determine the action to be taken in a particular state, and
that approximation is updated after every action. GPT attempts to construct a plan graph
for the specified initial state that will reach a goal state with certainty.

POMDP:INC−PRUNE [14] uses a method of dynamic-programming updates called
incremental pruning to solve POMDPS more efficiently. Value functions are represented
as sets of vectors and it is crucial in a step of value iteration to be able to reduce such a
set of vectors to its minimum size form. Incremental pruning sequences the vector purging
operations involved in this process so as to reduce the number of linear programs that have
to be solved and to reduce the number of constraints in the linear programs themselves.
We ran POMDP:INC−PRUNE on the corresponding finite-horizon POMDP formulations of
our domains; POMDP:INC−PRUNE attempts to produce a planning graph that specifies the
course of action from any initial state that maximizes the expected reward.

The HANSEN-FENG algorithm [27] exploits a factored state representation to accelerate
the incremental pruning algorithm for solving POMDPS. Based on a framework described
by Boutilier and Poole [12], it uses algebraic decision diagrams (ADDs) to compactly
represent the transition probabilities, value function, and reward function of a POMDP

(ADDs are a generalization of binary decision diagrams that can be used to represent
real-valued functions). This allows the pruning step involved in the dynamic programming
solution of a POMDP to be implemented much more efficiently. We ran HANSEN-
FENG on the corresponding finite-horizon POMDP formulations of our domains. Like
POMDP:INC−PRUNE, HANSEN-FENG attempts to produce a planning graph that specifies
the course of action from any initial state that maximizes the expected reward.

Note that we used a discount factor of 0.9 for both POMDP:INC−PRUNE and HANSEN-
FENG. Although a discount factor of 1.0 would have been more appropriate for a
comparison with ZANDER, these planners did not converge in a competitive amount of
time using a discount factor of 1.0.

SPUDD [28] is a dynamic abstraction method for solving MDPS (and, thus, assumes
complete observability). SPUDD uses ADDs to represent value functions and policies in
a compact way. This compact representation allows SPUDD to perform value iteration
efficiently enough to solve MDPS with tens of millions of states exactly. SPUDD attempts
to produce an ADD that prescribes the best action to take in any given state. Repeated
application of this ADD provides a plan to reach a goal state from any initial state.

MAHINUR [58,59], a contingent, probabilistic, partial-order planner combines BURI-
DAN’s probabilistic action representation [41] and a system for managing these actions
with a CNLP-style approach to handling contingencies. The novel feature of MAHINUR is
that it identifies those contingencies whose failure would have the greatest negative im-
pact on the plan’s success and focuses its planning efforts on generating plan branches to
deal with those contingencies. This selectivity in adding branches to the plan can boost
MAHINUR’s speed considerably (see MAHINUR’s performance on the GO-5 domain), but
Onder and Pollack [58] identify several domain assumptions (including a type of subgoal
decomposability) that underlie the design of MAHINUR, and there are no guarantees on the
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correctness of MAHINUR for domains in which these assumptions are violated. None of
the problems in our test suite violate any of these assumptions, but we were unable to test
MAHINUR on all the problems. Although MAHINUR provides a framework to reason about
the relationship between observation actions (either the same observation action repeated
or a sequence of different observation actions), this capability has not been implemented
yet [57]. MAHINUR produces a contingent plan that reaches a goal state from a specified
start state with a probability that meets or exceeds a specified threshold.

SENSORY GRAPHPLAN (SGP) [72] is based on GRAPHPLAN [5] (see Section 2.1). SGP

deals with uncertainty by constructing a planning graph that captures all possible worlds
the agent could be in at any given time. SGP constructs plans with sensing actions that
gather information to be used later in distinguishing between different plan branches.
However, SGP has not been extended to handle probabilistic actions and noisy observations,
so it is only applicable to two of the domains tested (MEDICAL-5ILL and COFFEE-
ROBOT). SGP produces a contingent plan that reaches a goal state from a specified start
state with certainty.

PGRAPHPLAN [7], also based on GRAPHPLAN, employs forward search through the
planning graph to find a contingent plan with the highest expected utility. PGRAPHPLAN

operates in the MDP framework (complete observability). PGRAPHPLAN does forward
dynamic programming using the planning graph as an aid in pruning search. We note here
that ZANDER essentially does the same thing by following the action/observation variable
ordering specified in the SSAT problem. When ZANDER instantiates an action, the resulting
simplified formula implicitly describes the possible states that the agent could reach after
this action has been executed. If the action is probabilistic, the resulting subformula (and
the chance variables in that subformula) encodes a probability distribution over the possible
states that could result from taking that action. And the algorithm is called recursively
to generate a new implicit probability distribution every time an action is instantiated.
PGRAPHPLAN returns a contingent plan to reach a specified set of goal states from a
specified initial state (if such a plan exists).

8.3. Comparisons between planning techniques

Many factors make it difficult to do a straightforward comparison of these eight
planners, and a good deal of caution must be exercised in interpreting the results of our
experiments.

• As described above, not all of the planners are attacking the same type of planning
problems (e.g., in degree of observability).

• The planners are developed to varying degrees of their potential (e.g., MAHINUR

cannot currently handle multiple observations although, in principle, it could).
• They use different state representations (a flat representation for POMDP:INC−PRUNE,

factored for all the others), and their problem representation languages allow different
types of problem information to be expressed (e.g., ZANDER allows irreversible
conditions to be stated explicitly).

• The planners produce different kinds of output. ZANDER, MAHINUR, and PGRAPH-
PLAN produce a contingent plan that will reach a goal state from the specified initial
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conditions with highest probability. GPT produces a controller for the specified ini-
tial conditions that will succeed with certainty. POMDP:INC−PRUNE, HANSEN-FENG,
and SPUDD produce a universal controller that maximizes expected reward. SGP finds
a contingent plan that will succeed with certainty. Due to this variability in output,
we have not included an exhaustive comparison of the quality of the plans produced,
describing rather instances where differences in plan quality seemed noteworthy.

• The planners are not all written in the same language and may have been optimized
to differing degrees. Most of them are written in C and C++; MAHINUR and SGP are
written in LISP.

In addition, although we tried to use each planner to its best advantage, we were probably
unsuccessful due to limited familiarity with the planners (except ZANDER). In several
cases, the developers of the algorithm pointed out better problem formulations or provided
a working formulation where we had been unable to construct one. For all these reasons,
it is probably most useful to view these experiments as an exploration of a number of
planners currently being developed that can deal with uncertainty. Note that all times are
in CPU seconds.

Fig. 6 plots running time versus horizon length (number of steps in the plan) for four
of the test domains and all applicable planners. Fig. 6(a) shows the results for GO-5.
GPT and SPUDD produced plans that are not dependent on horizon length, and so are
shown as straight lines. SPUDD ran in under a second, and GPT took over a half an hour
because of memory limitations. ZANDER and POMDP:INC−PRUNE (discount factor 0.9)
had running times that grew dramatically with horizon, although ZANDER demonstrated
faster running times and better scaling properties on this problem. PGRAPHPLAN’s time
to plan grew so slowly with horizon that at a horizon length of 1000 (not shown) it took
about 4 seconds. MAHINUR carried out a series of plan refinements (not actually plan
extensions, as suggested by the graph). In fact, in a direct comparison of time versus plan-
success probability, MAHINUR dominated ZANDER on this problem by about an order of
magnitude. For obscure reasons, HANSEN-FENG did not run properly on our encoding of
this problem.

Of the planners applicable to MEDICAL-5ILL (Fig. 6(b)), SGP and GPT do not depend
on horizon length; GPT ran in about a tenth of a second here, and SGP took about a minute
and a half. ZANDER and POMDP:INC−PRUNE (discount factor 0.9) had running times that
again grew dramatically with horizon. Note, however, that a 3-step plan is sufficient to
guarantee goal attainment on this problem and, at this horizon, ZANDER finds the optimal
plan more quickly than the other planners (0.01 s). Again, ZANDER ran more quickly than
POMDP:INC−PRUNE, and POMDP:INC−PRUNE experienced a segmentation fault on the
10-step plan. Once again, for obscure reasons, HANSEN-FENG did not run properly on this
problem. We think this is a problem with our use of the representation used by HANSEN-
FENG, not a failure of the algorithm.

The COFFEE-ROBOT problem (Fig. 6(c)) was the most general and largest problem
we tested. POMDP:INC−PRUNE (discount factor 0.9) and ZANDER were able to solve the
problem; HANSEN-FENG (discount factor 0.9) produced an incorrect controller, due to
either a modeling error we could not track down or a problem with the planner itself.
ZANDER ran significantly faster than POMDP:INC−PRUNE (460 s v. 3600 s for an 8-
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Fig. 6. Each applicable planner was run on each of the test domains.

step plan). While both MAHINUR and GPT were applicable to this problem, MAHINUR

crashed for unknown reasons and GPT ran out of memory while planning. SPUDD solved
a completely observable version of the problem in 0.60 s; adding observability reduced
ZANDER’s solution time by 56% for an 8-step plan.

On the SHIP-REJECT problem (Fig. 6(d)), MAHINUR produced a 3-step plan in 0.03 s,
but could not produce a better, longer plan due to the implementation limitations cited
in Section 8.2. GPT’s plan was produced in 0.08 s, but this plan succeeds only with
probability 0.9975. (ZANDER needed 0.02 s to produce a comparable plan and was
able to produce plans that succeeded with a higher probability.) We attempted to coax
GPT to produce a plan that succeeded with higher probability by increasing the cost of
failure, but this succeeded only in increasing the solution time in direct proportion to the
cost. POMDP:INC−PRUNE scaled badly with horizon, but tapered off after about 8 steps.
ZANDER took about a hundredth of a second to produce plans up to 5 steps, then ran into
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trouble with longer plans. HANSEN-FENG took longer at first, but appeared to scale well.
The plans produced by HANSEN-FENG, however, never paint the part more than once, thus
capping the probability of success at 0.9215, whereas ZANDER produces plans that succeed
with a higher probability as the horizon increases.

We also ran comparisons on TIGER (not shown), which followed a very similar
pattern. GPT took about a tenth of a second. ZANDER took about a hundredth of
a second for plan lengths up to 5. Both ZANDER (at horizons greater than 5) and
POMDP:INC−PRUNE scaled poorly. HANSEN-FENG, although starting out slower than
ZANDER and POMDP:INC−PRUNE, scaled better (but always produced a segmentation fault
just after finding the plan).

In principle, there are efficient conversion procedures to translate planning domains
from one representation to equivalent planning domains in another. However, we frequently
found that the resulting domains violated assumptions built into the design of the
planners, rendering these formulations unworkable. When this happened, we tweaked
the representations by hand. However, in the TIGER domain, these tweaks significantly
changed the domain, causing the resulting plans to differ from planner to planner. Of
course, this undercuts the usefulness of the empirical comparison, as the planners were
solving different problems.

8.4. General observations

Although our test domains varied quite a bit, the results we saw were fairly consistent,
ignoring differences in implementation and output. When applicable, PGRAPHPLAN was
the fastest, with SPUDD, MAHINUR, GPT, HANSEN-FENG, SGP, and POMDP:INC−PRUNE

behind it, in order. The relative performance of ZANDER varied with horizon. At a horizon
length of about 5, ZANDER was the second fastest, whereas at a horizon length of about
10, it fell to sixth fastest.

We believe all the planners have strengths and limitations. For example, the two
planners that turn in exceptionally good performances on some problems—SPUDD

and PGRAPHPLAN—are the two planners that assume complete observability. GPT

runs best if the number of reachable information states is finite and relatively small,
while POMDP:INC−PRUNE runs into trouble if the number of undominated plans grows
exponentially.

ZANDER also appears better suited to some problems than others. It appears to work
best when:

1. not many plans have the same probability of success (leads to more effective pruning,
unlike GO-5),

2. each proposition is changed by relatively few actions (leads to few clauses),
3. paths in decision trees are not too long (leads to shorter clauses, providing more

opportunities for ZANDER’s SSAT heuristics to operate), and
4. few action effects are probabilistic (leads to fewer branches to consider in the search

tree, unlike COFFEE-ROBOT).
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Our ongoing exploration will likely bring additional insight into expanding the
applicability of ZANDER and increasing our understanding of its appropriateness for
specific domains.

9. Further work

ZANDER, like most of the planners we tested, exploits the state information available
in a factored state space to efficiently solve planning problems in stochastic, partially
observable domains. Because ZANDER can encode any degree of observability (both
in terms of which state propositions can be observed, and how accurately they can be
observed) and because ZANDER does not limit the size (only the horizon) of the resulting
plan, ZANDER can solve arbitrary, goal-oriented, finite-horizon, factored POMDPS. This is
in sharp contrast to SPUDD, MAHINUR, SGP, and PGRAPHPLAN, all of which are limited
in the types of problems they can handle.

Although an exact assessment is impossible due to the differences among planners
discussed in Section 8.3, ZANDER appears competitive with all the planners we tested.
These results are especially encouraging, given that there are a number of improvements
to ZANDER that have shown promise for scaling up to larger problems.

9.1. Improvements to ZANDER

Given ZANDER’s two-phase approach, these improvement naturally fall into two
categories:

• improvements in the SSAT encoding of planning problems, and
• improvements in the algorithm for solving the SSAT encodings.

In the following sections, we will describe each of these improvements and discuss initial
efforts to implement them in ZANDER.

9.1.1. Improved SSAT encodings
The encodings with explanatory frame axioms used in this paper were developed

by Majercik and Rusczek [51]; several other alternative SSAT encodings, including
parallel-action encodings, were also described in that paper. But, even more efficient
SSAT encodings like those with explanatory frame axioms suffer from the fact that
they frequently contain clauses at a particular time step that are superfluous since they
describe the effects of an action that cannot be taken at that time step (or will have
no impact if executed). The first author is currently working on an approach that is
analogous to the GRAPHPLAN [6] approach of incrementally extending the depth of the
planning graph in the search for a successful plan. The idea is to build the SSAT encoding
incrementally, attempting to find a satisfactory plan in t time steps (starting with t = 1)
and, if unsuccessful, using the knowledge of what state the agent could be in after time t
to guide the construction of the SSAT encoding for the next time step. This reachability
analysis would not only prevent superfluous clauses from being generated, but would also



S.M. Majercik, M.L. Littman / Artificial Intelligence 147 (2003) 119–162 155

make it unnecessary to pick a plan length for the encoding, and would give the planner
an anytime capability, producing a plan that succeeds with some probability as soon as
possible and increasing the plan’s probability of success as time permits.

Kautz et al. [31] note that it is possible to use resolution to eliminate any subset
of variables in a SAT formula, but that this usually leads to an exponential blowup
in the number of clauses in the encoding. For GRAPHPLAN-based encodings, however,
eliminating the propositional variables that describe the state of the environment leads to
an increase that is polynomial in the number of these propositions. Although we have not
conducted extensive tests, our SSAT solver seems to be more sensitive to the number of
variables than to the number of clauses. It is possible that the efficiency of the solver could
be improved as the result of identifying a group of variables whose elimination would
entail only a polynomial increase in the number of clauses.

Domain-specific knowledge could be exploited in either the construction of the SSAT

formula or its subsequent solution. The first approach has been explored by Kautz and
Selman [36] in the context of SATPLAN. In their work, four types of clauses that can be
added to a SAT encoding of a planning problem were described:

• Conflict clauses and derived effect clauses implied by the domain’s action descriptions.
• State invariant clauses implied by the domain’s actions and initial conditions.
• Optimality condition clauses implied by the actions, initial conditions, and plan length.
• Simplifying assumption clauses.

The first three types of clauses make knowledge that was previously implicit in the problem
domain explicit and are analogous to providing lemmas to a theorem prover. The fourth
type of clause is not implicit in the domain and, in fact, may prevent some solutions from
being found [36]. Adding such clauses to the SAT encoding can accelerate the solution
process enormously, particularly for systematic satisfiability testers, reducing the solution
time on some problems from in excess of 48 hours to a few seconds [36].

Another way of incorporating domain-specific knowledge is to use such knowledge
to guide the SSAT solution process. For example, we might be able to use optimality
criteria or means-ends analysis to efficiently identify high probability plans or prune low
probability plans.

9.1.2. Improved SSAT solution techniques
More sophisticated data structures in which to store the CNF encoding would almost

certainly improve the efficiency of the solver. For example, the trie data structure has
been used to represent SAT problems, and several advantages have been claimed for
this approach [73], including automatic elimination of duplicate clauses when the trie
is constructed, reduced memory requirements, and more efficient unit propagation.

The current splitting heuristic orders groups of candidate variables according to the
order of their appearance in the quantifier ordering. In the plan-execution history segment
(variables encoding actions and observations), this coincides with the ordering that would
be imposed by time-ordered splitting (give priority to variables with lower time indices).
The chance variables in the domain-uncertainty segment and the choice variables in the
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segment that encodes the result of the plan-execution history given the domain uncertainty
are time-ordered.

The current heuristic, however, does not specify an ordering for variables within the
blocks of similarly quantified variables that have the same time index. This may be
insignificant in small problems, but in real-world problems with a large number of variables
at each time step, a splitting heuristic that addresses this subordering issue could provide a
significant performance gain.

ZANDER separately explores and saves two plan execution histories that diverge and
remerge, constructing a plan tree when a directed acyclic graph would be more efficient.
ZANDER should be able to memoize subplan results so that when it encounters previously
solved subproblems, it can merge the current plan execution history with the old history.
Memoization boosted MAXPLAN’s performance tremendously [50] and it is likely that it
would have a similar beneficial effect on ZANDER’s performance.

ZANDER could probably be improved by adapting other techniques that have been
developed for constraint satisfaction problems (CSPs). In CSP terms, ZANDER uses
backtrack search with forward checking and a variable ordering heuristic that gives priority
to unit-domained variables. We would like to explore the possibility of incorporating CSP
look-back techniques, such as backjumping and learning (deriving no-goods) [3]. Perhaps a
more direct way of exploiting the connection to CSPs is to model planning problems using
stochastic constraint satisfaction [70], as this provides a more direct way of expressing
multivalued domain variables.

9.2. Extending ZANDER

The improvements discussed in the sections above focus on accelerating ZANDER’s
performance. An extension to ZANDER that would significantly broaden the scope of
planning problems it is able to handle is the ability to produce more complex plans.

ZANDER produces acyclic, contingent plans. This is a significant improvement over
straight-line plans, but it is not hard to think of planning domains in which the only
realistic plan is a looping plan, in which an action—or sequence of actions—is repeated
an indefinite number of times until some effect is achieved. We would like to extend
ZANDER to be able to produce looping plans. The problem of finding such plans is still
in PSPACE [44], so it is possible that ZANDER could be extended to find such plans.

One possibility is suggested by C-MAXPLAN, a less successful contingent planning
extension of MAXPLAN [47]. In one version of C-MAXPLAN, instead of searching for
the optimal contingent plan of a given length, the algorithm searches for an optimal
small policy to be applied for a given number of steps. Perhaps the SSAT encodings of
ZANDER could be modified to generate policy-like solutions as well. Such solutions would
allow ZANDER to specify plans in which an action is to be repeated as many times as
is necessary, up to the step limit specified. If no successful policy could be found for a
given step limit, because a particular action could not be repeated often enough, iteratively
increasing the step limit would eventually lead to a successful combination of policy and
step limit.
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9.3. Approximation techniques for solving SSAT problems

Although improvements to the current planner may allow ZANDER to scale up to
problems of moderate complexity, they are unlikely to be sufficient to achieve our ultimate
goal of planning efficiently in large, real-world domains. We think it is likely that we will
need to develop an approximation technique for solving SSAT problems to scale up to
problems of this size. Optimality is sacrificed for “anytime” planning and performance
bounds, and although this may not improve worst-case complexity, it is likely to help for
typical problems.

The first author is currently developing APROPOS2, a probabilistic contingent planner
based on ZANDER that produces an approximate contingent plan and improves that plan as
time permits [48]. APROPOS2 does this by considering the most probable situations facing
the agent and constructing a plan, if possible, that succeeds under those circumstances.
Given more time, less likely situations are considered and the plan is revised if necessary. In
some cases, a plan constructed to address a relatively low percentage of possible situations
will succeed for situations not explicitly considered as well, and may return an optimal or
near-optimal plan. This means that APROPOS2 can sometimes find optimal plans faster
than ZANDER. And the anytime quality of APROPOS2 means that suboptimal plans could
be efficiently derived in larger time-critical domains where ZANDER might not have time
to calculate the optimal plan.

Another possibility is to convert the probabilistic planning problem into a determinis-
tic planning problem by rounding each decision-tree leaf probability to 0.0 or 1.0, solv-
ing the resulting deterministic planning problem relatively efficiently and then gradually
reintroducing uncertainty to improve the quality of the solution. It is not clear, however,
how to reintroduce the uncertainty without sacrificing the efficiency gained by remov-
ing it.

ZANDER systematically searches for satisfying assignments by setting the truth value
of each variable in turn and considering the remaining subformula. This is significantly
different from the WALKSAT approach in SATPLAN, which begins with a complete truth
assignment and adjusts it through stochastic local search to achieve a satisfying assignment.
In the same way that stochastic local search can solve much larger SAT problems than
systematic search (in general), it is possible that adapting stochastic local search to the
solution of SSAT problems would provide significant performance gains. The fact that an
SSAT solver needs to systematically evaluate all possible assignments to solve the SSAT

problem exactly argues for a systematic approach. There are, however, a number of ways
that stochastic local search could be incorporated into an SSAT solver [52].

One possible use for an approximation technique is in a framework that interleaves
planning and execution, in order to scale up to even larger domains than approximation
alone could attack. The idea here would be to use the approximation technique to calculate
a “pretty good” first action (or action sequence), execute that action or action sequence, and
then continue this planning/execution cycle from the new initial state (see, for example,
the work of [38]). This approach could improve efficiency greatly (at the expense of
optimality) by focusing the planner’s efforts only on those contingencies that actually
materialize.



158 S.M. Majercik, M.L. Littman / Artificial Intelligence 147 (2003) 119–162

10. Summary

Probabilistic planning attempts to merge traditional artificial intelligence planning
(propositional representations of large domains) with operations research planning
(stochastic modeling of uncertainty) to produce systems that can reason efficiently about
plans in complex, uncertain applications. Our approach to probabilistic planning is rooted
in the planning-as-satisfiability paradigm, in which the specification of a planning problem
is “compiled” to its computational core in the form of an equivalent Boolean satisfiability
problem.

Our planner, ZANDER, accepts propositional representations of partially observable
Markov decision processes, making it highly general. It can cope with initial-state
uncertainty, observation uncertainty, and transition uncertainty. Although it is tuned
to solve goal-oriented problems, it can be used for more general reward-maximizing
applications as well. ZANDER directly converts planning problems into a stochastic
satisfiability format, which can be solved relatively quickly using a general purpose
stochastic satisfiability solver. Due to the generality of the satisfiability representation,
it would be easy to extend ZANDER to model, for example, extrinsic events and factored
actions by changing the conversion module only. Although ZANDER is still far from solving
a wide range of practical problems, it represents a promising new direction in domain
independent planning under uncertainty.
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Appendix A

Theorem 1. Any probabilistic planning problem with a discounted expected reward
criterion can be reformulated in polynomial time using a probability of goal achievement
criterion.

Proof. Consider a probabilistic problem with a discounted expected reward criterion
defined by a set of states S, a set of actions A, transition probabilities T (s, a, s′), rewards
R(s, a), and discount factor γ < 1. Assume without loss of generality all rewards are in the
range 0 �R(s, a) < 1−γ . (Any affine transformation of the rewards leads to an equivalent
probabilistic planning problem with identical optimal and approximately optimal policies.)

We now define an equivalent probabilistic planning problem with a probability of goal
achievement criterion. The new problem uses the same action space A∗ = A and a state
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space S∗ = S ∪ {goal, sink}, where the sink state cannot be escaped and the goal state is
the goal. Define the transitions

T ∗(s, a,goal) = R(s, a),

T ∗(s, a, sink) = (1 − γ )−R(s, a),

T ∗(s, a, s′) = γ T (s, a, s′), for all s and s′ in S, a in A.

According to this definition, on each step the system terminates with probability 1 − γ

and continues with probability γ . When it terminates, the goal probability is proportional
to R(s, a). Under most reasonable representation schemes, including dynamic Bayes’ nets
and the sequential-effects-tree representation, a representation of T ∗ can be created from
the representation of T in time linear in its size.

The value function for a policy π in the original probabilistic planning problem with a
discounted expected reward criterion is the unique solution to the system of equations:

Vπ(s)=R
(
s,π(s)

) +
∑
s ′∈S

γ T
(
s,π(s), s′

)
Vπ(s

′). (A.1)

The value function for a policy π in the revised probabilistic planning problem with a
probability of goal achievement criterion is the unique solution to the system of equations:

V ∗
π (s) = T ∗(s,π(s),goal

) +
∑
s ′∈S

T ∗(s,π(s), s′)V ∗
π (s

′)

= R
(
s,π(s)

) +
∑
s ′∈S

γ T
(
s,π(s), s′

)
V ∗
π (s

′). (A.2)

Note that Eqs. (A.1) and (A.2) define the same value function, showing that the value of
a policy in the revised probabilistic planning problem is precisely the same as that of the
original problem; they are equivalent.
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