621,755 research outputs found

    A fixed point formula for the index of multi-centered N=2 black holes

    Get PDF
    We propose a formula for computing the (moduli-dependent) contribution of multi-centered solutions to the total BPS index in terms of the (moduli-independent) indices associated to single-centered solutions. The main tool in our analysis is the computation of the refined index Tr(-y)^{2J_3} of configurational degrees of freedom of multi-centered BPS black hole solutions in N=2 supergravity by localization methods. When the charges carried by the centers do not allow for scaling solutions (i.e. solutions where a subset of the centers can come arbitrarily close to each other), the phase space of classical BPS solutions is compact and the refined index localizes to a finite set of isolated fixed points under rotations, corresponding to collinear solutions. When the charges allow for scaling solutions, the phase space is non-compact but appears to admit a compactification with finite volume and additional non-isolated fixed points. We give a prescription for determining the contributions of these fixed submanifolds by means of a `minimal modification hypothesis', which we prove in the special case of dipole halo configurations.Comment: 61 pages, 3 figure

    Athena: A New Code for Astrophysical MHD

    Full text link
    A new code for astrophysical magnetohydrodynamics (MHD) is described. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The source code is freely available for download on the web.Comment: 61 pages, 36 figures. accepted by ApJ
    • 

    corecore