113,978 research outputs found

    How Ordinary Elimination Became Gaussian Elimination

    Get PDF
    Newton, in notes that he would rather not have seen published, described a process for solving simultaneous equations that later authors applied specifically to linear equations. This method that Euler did not recommend, that Legendre called "ordinary," and that Gauss called "common" - is now named after Gauss: "Gaussian" elimination. Gauss's name became associated with elimination through the adoption, by professional computers, of a specialized notation that Gauss devised for his own least squares calculations. The notation allowed elimination to be viewed as a sequence of arithmetic operations that were repeatedly optimized for hand computing and eventually were described by matrices.Comment: 56 pages, 21 figures, 1 tabl

    On the Identification of Symmetric Quadrature Rules for Finite Element Methods

    Get PDF
    In this paper we describe a methodology for the identification of symmetric quadrature rules inside of quadrilaterals, triangles, tetrahedra, prisms, pyramids, and hexahedra. The methodology is free from manual intervention and is capable of identifying an ensemble of rules with a given strength and a given number of points. We also present polyquad which is an implementation of our methodology. Using polyquad we proceed to derive a complete set of symmetric rules on the aforementioned domains. All rules possess purely positive weights and have all points inside the domain. Many of the rules appear to be new, and an improvement over those tabulated in the literature.Comment: 17 pages, 6 figures, 1 tabl
    corecore