112,476 research outputs found

    Yang-Baxter Equations, Computational Methods and Applications

    Full text link
    Computational methods are an important tool for solving the Yang-Baxter equations(in small dimensions), for classifying (unifying) structures, and for solving related problems. This paper is an account of some of the latest developments on the Yang-Baxter equation, its set-theoretical version, and its applications. We construct new set-theoretical solutions for the Yang-Baxter equation. Unification theories and other results are proposed or proved.Comment: 12 page

    How Ordinary Elimination Became Gaussian Elimination

    Get PDF
    Newton, in notes that he would rather not have seen published, described a process for solving simultaneous equations that later authors applied specifically to linear equations. This method that Euler did not recommend, that Legendre called "ordinary," and that Gauss called "common" - is now named after Gauss: "Gaussian" elimination. Gauss's name became associated with elimination through the adoption, by professional computers, of a specialized notation that Gauss devised for his own least squares calculations. The notation allowed elimination to be viewed as a sequence of arithmetic operations that were repeatedly optimized for hand computing and eventually were described by matrices.Comment: 56 pages, 21 figures, 1 tabl

    The Road to Quantum Computational Supremacy

    Full text link
    We present an idiosyncratic view of the race for quantum computational supremacy. Google's approach and IBM challenge are examined. An unexpected side-effect of the race is the significant progress in designing fast classical algorithms. Quantum supremacy, if achieved, won't make classical computing obsolete.Comment: 15 pages, 1 figur
    corecore