20,441 research outputs found

    Yielding of rockfill in relative humidity-controlled triaxial experiments

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11440-016-0437-9The paper reports the results of suction controlled triaxial tests performed on compacted samples of two well graded granular materials in the range of coarse sand-medium gravel particle sizes: a quartzitic slate and a hard limestone. The evolution of grain size distributions is discussed. Dilatancy rules were investigated. Dilatancy could be described in terms of stress ratio, plastic work input and average confining stress. The shape of the yield locus in a triaxial plane was established by different experimental techniques. Yielding loci in both types of lithology is well represented by approximate elliptic shapes whose major axis follows approximately the Ko line. Relative humidity was found to affect in a significant way the evolution of grain size distribution, the deviatoric stress-strain response and the dilatancy rules.Peer ReviewedPostprint (author's final draft

    A fractal fragmentation model for rockfalls

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10346-016-0773-8The impact-induced rock mass fragmentation in a rockfall is analyzed by comparing the in situ block size distribution (IBSD) of the rock mass detached from the cliff face and the resultant rockfall block size distribution (RBSD) of the rockfall fragments on the slope. The analysis of several inventoried rockfall events suggests that the volumes of the rockfall fragments can be characterized by a power law distribution. We propose the application of a three-parameter rockfall fractal fragmentation model (RFFM) for the transformation of the IBSD into the RBSD. A discrete fracture network model is used to simulate the discontinuity pattern of the detached rock mass and to generate the IBSD. Each block of the IBSD of the detached rock mass is an initiator. A survival rate is included to express the proportion of the unbroken blocks after the impact on the ground surface. The model was calibrated using the volume distribution of a rockfall event in Vilanova de Banat in the CadĂ­ Sierra, Eastern Pyrenees, Spain. The RBSD was obtained directly in the field, by measuring the rock block fragments deposited on the slope. The IBSD and the RBSD were fitted by exponential and power law functions, respectively. The results show that the proposed fractal model can successfully generate the RBSD from the IBSD and indicate the model parameter values for the case study.Peer ReviewedPostprint (author's final draft

    Reconstruction of three-dimensional porous media using generative adversarial neural networks

    Full text link
    To evaluate the variability of multi-phase flow properties of porous media at the pore scale, it is necessary to acquire a number of representative samples of the void-solid structure. While modern x-ray computer tomography has made it possible to extract three-dimensional images of the pore space, assessment of the variability in the inherent material properties is often experimentally not feasible. We present a novel method to reconstruct the solid-void structure of porous media by applying a generative neural network that allows an implicit description of the probability distribution represented by three-dimensional image datasets. We show, by using an adversarial learning approach for neural networks, that this method of unsupervised learning is able to generate representative samples of porous media that honor their statistics. We successfully compare measures of pore morphology, such as the Euler characteristic, two-point statistics and directional single-phase permeability of synthetic realizations with the calculated properties of a bead pack, Berea sandstone, and Ketton limestone. Results show that GANs can be used to reconstruct high-resolution three-dimensional images of porous media at different scales that are representative of the morphology of the images used to train the neural network. The fully convolutional nature of the trained neural network allows the generation of large samples while maintaining computational efficiency. Compared to classical stochastic methods of image reconstruction, the implicit representation of the learned data distribution can be stored and reused to generate multiple realizations of the pore structure very rapidly.Comment: 21 pages, 20 figure

    NASA guidelines on report literature

    Get PDF
    NASA seeks for inclusion in its Scientific and Technical Information System research reports, conference proceedings, meeting papers, monographs, and doctoral and post graduate theses which relate to the NASA mission and objectives. Topics of interest to NASA are presented

    Mathematical models for erosion and the optimal transportation of sediment

    No full text
    We investigate a mathematical theory for the erosion of sediment which begins with the study of a non-linear, parabolic, weighted 4-Laplace equation on a rectangular domain corresponding to a base segment of an extended landscape. Imposing natural boundary conditions, we show that the equation admits entropy solutions and prove regularity and uniqueness of weak solutions when they exist. We then investigate a particular class of weak solutions studied in previous work of the first author and produce numerical simulations of these solutions. After introducing an optimal transportation problem for the sediment flow, we show that this class of weak solutions implements the optimal transportation of the sediment
    • …
    corecore