214 research outputs found

    Mobility improvement of heavy tracked vehicles: The "pan" tank experience

    Get PDF
    This paper shows that the sinkage of the tracked vehicle is the most important parameter in its mobility. Power and fuel consumption follow cubic power law with sinkage. So the usual strategy to increase power is not the more convenient way to improve vehicle off road performance. The Ground Pressure (GP) is the critical parameter. Power requirement goes with the cubic power of sinkage. GP above 0.9 daN/cm2 should be avoided at all costs. The best way to obtain this result on an existing design is to increase track length. However it is easier to work on track width. The easiest modification is to add "Duckbill extensions" in the outer part of the shoe. This system was used on the Sherman Tank when additional armor was added. With modern technology it is perfectly possible to perform experimental tests with new shoes. This can be done by manufacturing prototypes of high stress nitrided steel shoes, usually with 300M high strength steel. Comparative fuel consumption is a good index of vehicle performance. Also wheel diameter and width can be increased to improve off-road performance. Specialized tracks for different terrains should also be designed. The gravity center should be kept slightly rearward. This attitude should not be excessive to keep the pressure value more even possible along the track. In any case the vehicle naturally assumes the backward inclination due to terrain compression. Another important improvement is the addition of computer controlled directional control to improve the accuracy of trajectories. This is particularly important for tracked vehicles where turning involves extremely high energy consumption

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    Next generation main battle tank. Part II: Converting old MBTS into unmanned MBTS (UMBT)

    Get PDF
    Modern MBTs (Main Battle Tank) are extremely expensive. Many outdated MBTs and other armored vehicles, often lacking the required armor protection, are still kept in depots. It is now convenient to upgrade them to optionally unmanned weapons by adding a humanoid driver, and a robotic arm as a loader. Sensors, an optional automatic driving system, a control and communication suite would complete the transformation. The main armament and secondary armament may be also changed or upgraded. The off-the-shelf huge electronic equipment can be installed wireless inside the hull. The old crew compartment may be spoiled of all the human related parts. Only the driver seat may be kept in order to leave the capability to remove the humanoid, robotized driver and reinstate the human one. This upgrade should also include a diagnostic system for the vehicle, the sensors and the additional systems to reduce the maintenance burden. An additional, specialized, lightweight armor suite should be focused to protect the mobilization system, the robots, the control and the communication system. This second part of the paper introduces a few options to convert the Leopard 1 MBT to an optionally piloted UMBT (Unmanned Main Battle Tank). A first, minimal step, is just the automation of the original tank. In a second step, the weight is reduced by installing a smaller 60mm cannon with a lighter, but more numerous ammunition storage. A third step increases the firepower by installing on the main turret an automated turret with a 12.7 or 30mm cannon with an optional additional 7.62 machinegun. It is also highly advisable to add an APU (Auxiliary Power Unit) and a battery to reduce IR (infrared) signature, improve main engine life and reduce maintenance

    NASA Tech Briefs, June 2008

    Get PDF
    Topics covered include: Charge-Control Unit for Testing Lithium-Ion Cells; Measuring Positions of Objects Using Two or More Cameras; Lidar System for Airborne Measurement of Clouds and Aerosols; Radiation-Insensitive Inverse Majority Gates; Reduced-Order Kalman Filtering for Processing Relative Measurements; Spaceborne Processor Array; Instrumentation System Diagnoses a Thermocouple; Chromatic Modulator for a High-Resolution CCD or APS; Commercial Product Activation Using RFID; Cup Cylindrical Waveguide Antenna; Aerobraking Maneuver (ABM) Report Generator; ABM Drag_Pass Report Generator; Transformation of OODT CAS to Perform Larger Tasks; Visualization Component of Vehicle Health Decision Support System; Mars Reconnaissance Orbiter Uplink Analysis Tool; Problem Reporting System; G-Guidance Interface Design for Small Body Mission Simulation; DSN Scheduling Engine; Replacement Sequence of Events Generator; Force-Control Algorithm for Surface Sampling; Tool for Merging Proposals Into DSN Schedules; Micromachined Slits for Imaging Spectrometers; Fabricating Nanodots Using Lift-Off of a Nanopore Template; Making Complex Electrically Conductive Patterns on Cloth; Special Polymer/Carbon Composite Films for Detecting SO2; Nickel-Based Superalloy Resists Embrittlement by Hydrogen; Chemical Passivation of Li+-Conducting Solid Electrolytes; Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction; Composite Cathodes for Dual-Rate Li-Ion Batteries; Improved Descent-Rate Limiting Mechanism; Alignment-Insensitive Lower-Cost Telescope Architecture; Micro-Resistojet for Small Satellites; Using Piezoelectric Devices to Transmit Power through Walls; Miniature Latching Valve; Apparatus for Sampling Surface Contamination; Novel Species of Non-Spore-Forming Bacteria; Chamber for Aerosol Deposition of Bioparticles; Hyperspectral Sun Photometer for Atmospheric Characterization and Vicarious Calibrations; Dynamic Stability and Gravitational Balancing of Multiple Extended Bodies; Simulation of Stochastic Processes by Coupled ODE-PDE; Cluster Inter-Spacecraft Communications; Genetic Algorithm Optimizes Q-LAW Control Parameters; Low-Impact Mating System for Docking Spacecraft; Non-Destructive Evaluation of Materials via Ultraviolet Spectroscopy; Gold-on-Polymer-Based Sensing Films for Detection of Organic and Inorganic Analytes in the Air; and Quantum-Inspired Maximizer

    Prediction of Robot Execution Failures Using Neural Networks

    Get PDF
    In recent years, the industrial robotic systems are designed with abilities to adapt and to learn in a structured or unstructured environment. They are able to predict and to react to the undesirable and uncontrollable disturbances which frequently interfere in mission accomplishment. In order to prevent system failure and/or unwanted robot behaviour, various techniques have been addressed. In this study, a novel approach based on the neural networks (NNs) is employed for prediction of robot execution failures. The training and testing dataset used in the experiment consists of forces and torques memorized immediately after the real robot failed in assignment execution. Two types of networks are utilized in order to find best prediction method - recurrent NNs and feedforward NNs. Moreover, we investigated 24 neural architectures implemented in Matlab software package. The experimental results confirm that this approach can be successfully applied to the failures prediction problem, and that the NNs outperform other artificial intelligence techniques in this domain. To further validate a novel method, real world experiments are conducted on a Khepera II mobile robot in an indoor structured environment. The obtained results for trajectory tracking problem proved usefulness and the applicability of the proposed solution

    Neural Extended Kalman Filter for State Estimation of Automated Guided Vehicle in Manufacturing Environment

    Get PDF
    To navigate autonomously in a manufacturing environment Automated Guided Vehicle (AGV) needs the ability to infer its pose. This paper presents the implementation of the Extended Kalman Filter (EKF) coupled with a feedforward neural network for the Visual Simultaneous Localization and Mapping (VSLAM). The neural extended Kalman filter (NEKF) is applied on-line to model error between real and estimated robot motion. Implementation of the NEKF is achieved by using mobile robot, an experimental environment and a simple camera. By introducing neural network into the EKF estimation procedure, the quality of performance can be improved

    Marine Vessel Inspection as a Novel Field for Service Robotics: A Contribution to Systems, Control Methods and Semantic Perception Algorithms.

    Get PDF
    This cumulative thesis introduces a novel field for service robotics: the inspection of marine vessels using mobile inspection robots. In this thesis, three scientific contributions are provided and experimentally verified in the field of marine inspection, but are not limited to this type of application. The inspection scenario is merely a golden thread to combine the cumulative scientific results presented in this thesis. The first contribution is an adaptive, proprioceptive control approach for hybrid leg-wheel robots, such as the robot ASGUARD described in this thesis. The robot is able to deal with rough terrain and stairs, due to the control concept introduced in this thesis. The proposed system is a suitable platform to move inside the cargo holds of bulk carriers and to deliver visual data from inside the hold. Additionally, the proposed system also has stair climbing abilities, allowing the system to move between different decks. The robot adapts its gait pattern dynamically based on proprioceptive data received from the joint motors and based on the pitch and tilt angle of the robot's body during locomotion. The second major contribution of the thesis is an independent ship inspection system, consisting of a magnetic wall climbing robot for bulkhead inspection, a particle filter based localization method, and a spatial content management system (SCMS) for spatial inspection data representation and organization. The system described in this work was evaluated in several laboratory experiments and field trials on two different marine vessels in close collaboration with ship surveyors. The third scientific contribution of the thesis is a novel approach to structural classification using semantic perception approaches. By these methods, a structured environment can be semantically annotated, based on the spatial relationships between spatial entities and spatial features. This method was verified in the domain of indoor perception (logistics and household environment), for soil sample classification, and for the classification of the structural parts of a marine vessel. The proposed method allows the description of the structural parts of a cargo hold in order to localize the inspection robot or any detected damage. The algorithms proposed in this thesis are based on unorganized 3D point clouds, generated by a LIDAR within a ship's cargo hold. Two different semantic perception methods are proposed in this thesis. One approach is based on probabilistic constraint networks; the second approach is based on Fuzzy Description Logic and spatial reasoning using a spatial ontology about the environment

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    corecore