587 research outputs found

    Detecting and classifying lesions in mammograms with Deep Learning

    Get PDF
    In the last two decades Computer Aided Diagnostics (CAD) systems were developed to help radiologists analyze screening mammograms. The benefits of current CAD technologies appear to be contradictory and they should be improved to be ultimately considered useful. Since 2012 deep convolutional neural networks (CNN) have been a tremendous success in image recognition, reaching human performance. These methods have greatly surpassed the traditional approaches, which are similar to currently used CAD solutions. Deep CNN-s have the potential to revolutionize medical image analysis. We propose a CAD system based on one of the most successful object detection frameworks, Faster R-CNN. The system detects and classifies malignant or benign lesions on a mammogram without any human intervention. The proposed method sets the state of the art classification performance on the public INbreast database, AUC = 0.95 . The approach described here has achieved the 2nd place in the Digital Mammography DREAM Challenge with AUC = 0.85 . When used as a detector, the system reaches high sensitivity with very few false positive marks per image on the INbreast dataset. Source code, the trained model and an OsiriX plugin are availaible online at https://github.com/riblidezso/frcnn_cad

    Computer aids and human second reading as interventions in screening mammography: two systematic reviews to compare effects on cancer detection and recall rate

    Get PDF
    Background: There are two competing methods for improving the accuracy of a radiologist interpreting screening mammograms: computer aids (CAD) or independent second reading. Methods: Bibliographic databases were searched for clinical trials. Meta-analyses estimated impacts of CAD and double reading on odds ratios for cancer detection and recall rates. Sub-group analyses considered double reading with arbitration. Results: Ten studies compared single reading with CAD to single reading. Seventeen compared double to single reading. Double reading increases cancer detection and recall rates. Double reading with arbitration increases detection rate (CI: 1.02-1.15) and decreases recall rate (CI: 0.92-0.96). CAD does not have a significant effect on cancer detection rate (CI: 0.96-1.13) and increases recall rate (95% CI: 1.09-1.12). However, there is considerable heterogeneity in the impact on recall rate in both sets of studies. Conclusion: The evidence that double reading with arbitration enhances screening is stronger than that for single reading with CAD

    Digital mammography, cancer screening: Factors important for image compression

    Get PDF
    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers

    A comparative evaluation of two algorithms of detection of masses on mammograms

    Full text link
    In this paper, we implement and carry out the comparison of two methods of computer-aided-detection of masses on mammograms. The two algorithms basically consist of 3 steps each: segmentation, binarization and noise suppression using different techniques for each step. A database of 60 images was used to compare the performance of the two algorithms in terms of general detection efficiency, conservation of size and shape of detected masses.Comment: 9 pages, 5 figures, 1 table, Vol.3, No.1, February 2012,pp19-27; Signal & Image Processing : An International Journal (SIPIJ),201

    Healthcare technologies and professional vision

    Get PDF
    This paper presents some details from an observational evaluation of a computer assisted detection tool in mammography. The use of the tool, its strengths and weaknesses, are documented and its impact on reader's 'professional vision' (Goodwin 1994) considered. The paper suggests issues for the design, use and, importantly, evaluation of new technologies in everyday medical work, pointing to general issues concerning trust – users’ perception of the dependability of the evidence generated by such tools and suggesting that evaluations require an emphasis on the complex issue of what technologies afford their users in everyday work

    Reproducibility of Computer-Aided Detection Marks in Digital Mammography

    Get PDF
    OBJECTIVE: To evaluate the performance and reproducibility of a computeraided detection (CAD) system in mediolateral oblique (MLO) digital mammograms taken serially, without release of breast compression. MATERIALS AND METHODS: A CAD system was applied preoperatively to the fullfield digital mammograms of two MLO views taken without release of breast compression in 82 patients (age range: 33-83 years; mean age: 49 years) with previously diagnosed breast cancers. The total number of visible lesion components in 82 patients was 101: 66 masses and 35 microcalcifications. We analyzed the sensitivity and reproducibility of the CAD marks. RESULTS: The sensitivity of the CAD system for first MLO views was 71% (47/66) for masses and 80% (28/35) for microcalcifications. The sensitivity of the CAD system for second MLO views was 68% (45/66) for masses and 17% (6/35) for microcalcifications. In 84 ipsilateral serial MLO image sets (two patients had bilateral cancers), identical images, regardless of the existence of CAD marks, were obtained for 35% (29/84) and identical images with CAD marks were obtained for 29% (23/78). Identical images, regardless of the existence of CAD marks, for contralateral MLO images were 65% (52/80) and identical images with CAD marks were obtained for 28% (11/39). The reproducibility of CAD marks for the true positive masses in serial MLO views was 84% (42/50) and that for the true positive microcalcifications was 0% (0/34). CONCLUSION: The CAD system in digital mammograms showed a high sensitivity for detecting masses and microcalcifications. However, reproducibility of microcalcification marks was very low in MLO views taken serially without release of breast compression. Minute positional change and patient movement can alter the images and result in a significant effect on the algorithm utilized by the CAD for detecting microcalcifications

    Is computer aided detection (CAD) cost effective in screening mammography? A model based on the CADET II study

    Get PDF
    BACKGROUND: Single reading with computer aided detection (CAD) is an alternative to double reading for detecting cancer in screening mammograms. The aim of this study is to investigate whether the use of a single reader with CAD is more cost-effective than double reading. METHODS: Based on data from the CADET II study, the cost-effectiveness of single reading with CAD versus double reading was measured in terms of cost per cancer detected. Cost (Pound (£), year 2007/08) of single reading with CAD versus double reading was estimated assuming a health and social service perspective and a 7 year time horizon. As the equipment cost varies according to the unit size a separate analysis was conducted for high, average and low volume screening units. One-way sensitivity analyses were performed by varying the reading time, equipment and assessment cost, recall rate and reader qualification. RESULTS: CAD is cost increasing for all sizes of screening unit. The introduction of CAD is cost-increasing compared to double reading because the cost of CAD equipment, staff training and the higher assessment cost associated with CAD are greater than the saving in reading costs. The introduction of single reading with CAD, in place of double reading, would produce an additional cost of £227 and £253 per 1,000 women screened in high and average volume units respectively. In low volume screening units, the high cost of purchasing the equipment will results in an additional cost of £590 per 1,000 women screened.One-way sensitivity analysis showed that the factors having the greatest effect on the cost-effectiveness of CAD with single reading compared with double reading were the reading time and the reader's professional qualification (radiologist versus advanced practitioner). CONCLUSIONS: Without improvements in CAD effectiveness (e.g. a decrease in the recall rate) CAD is unlikely to be a cost effective alternative to double reading for mammography screening in UK. This study provides updated estimates of CAD costs in a full-field digital system and assessment cost for women who are re-called after initial screening. However, the model is highly sensitive to various parameters e.g. reading time, reader qualification, and equipment cost
    corecore