2,368 research outputs found

    Computational Approaches to Exploring Persian-Accented English

    Get PDF
    Methods involving phonetic speech recognition are discussed for detecting Persian-accented English. These methods offer promise for both the identification and mitigation of L2 pronunciation errors. Pronunciation errors, both segmental and suprasegmental, particular to Persian speakers of English are discussed

    Automatic Pronunciation Assessment -- A Review

    Full text link
    Pronunciation assessment and its application in computer-aided pronunciation training (CAPT) have seen impressive progress in recent years. With the rapid growth in language processing and deep learning over the past few years, there is a need for an updated review. In this paper, we review methods employed in pronunciation assessment for both phonemic and prosodic. We categorize the main challenges observed in prominent research trends, and highlight existing limitations, and available resources. This is followed by a discussion of the remaining challenges and possible directions for future work.Comment: 9 pages, accepted to EMNLP Finding

    Parallel Reference Speaker Weighting for Kinematic-Independent Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-articulatory inversion, the estimation of articulatory kinematics from an acoustic waveform, is a challenging but important problem. Accurate estimation of articulatory movements has the potential for significant impact on our understanding of speech production, on our capacity to assess and treat pathologies in a clinical setting, and on speech technologies such as computer aided pronunciation assessment and audio-video synthesis. However, because of the complex and speaker-specific relationship between articulation and acoustics, existing approaches for inversion do not generalize well across speakers. As acquiring speaker-specific kinematic data for training is not feasible in many practical applications, this remains an important and open problem. This paper proposes a novel approach to acoustic-to-articulatory inversion, Parallel Reference Speaker Weighting (PRSW), which requires no kinematic data for the target speaker and a small amount of acoustic adaptation data. PRSW hypothesizes that acoustic and kinematic similarities are correlated and uses speaker-adapted articulatory models derived from acoustically derived weights. The system was assessed using a 20-speaker data set of synchronous acoustic and Electromagnetic Articulography (EMA) kinematic data. Results demonstrate that by restricting the reference group to a subset consisting of speakers with strong individual speaker-dependent inversion performance, the PRSW method is able to attain kinematic-independent acoustic-to-articulatory inversion performance nearly matching that of the speaker-dependent model, with an average correlation of 0.62 versus 0.63. This indicates that given a sufficiently complete and appropriately selected reference speaker set for adaptation, it is possible to create effective articulatory models without kinematic training data

    Comprehensibility and Prosody Ratings for Pronunciation Software Development

    Get PDF
    In the context of a project developing software for pronunciation practice and feedback for Mandarin-speaking learners of English, a key issue is how to decide which features of pronunciation to focus on in giving feedback. We used naïve and experienced native speaker ratings of comprehensibility and nativeness to establish the key features affecting comprehensibility of the utterances of a group of Chinese learners of English. Native speaker raters assessed the comprehensibility of recorded utterances, pinpointed areas of difficulty and then rated for nativeness the same utterances, but after segmental information had been filtered out. The results show that prosodic information is important for comprehensibility, and that there are no significant differences between naïve and experienced raters on either comprehensibility or nativeness judgements. This suggests that naïve judgements are a useful and accessible source of data for identifying the parameters to be used in setting up automated feedback

    Articulatory-WaveNet: Deep Autoregressive Model for Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-Articulatory Inversion, the estimation of articulatory kinematics from speech, is an important problem which has received significant attention in recent years. Estimated articulatory movements from such models can be used for many applications, including speech synthesis, automatic speech recognition, and facial kinematics for talking-head animation devices. Knowledge about the position of the articulators can also be extremely useful in speech therapy systems and Computer-Aided Language Learning (CALL) and Computer-Aided Pronunciation Training (CAPT) systems for second language learners. Acoustic-to-Articulatory Inversion is a challenging problem due to the complexity of articulation patterns and significant inter-speaker differences. This is even more challenging when applied to non-native speakers without any kinematic training data. This dissertation attempts to address these problems through the development of up-graded architectures for Articulatory Inversion. The proposed Articulatory-WaveNet architecture is based on a dilated causal convolutional layer structure that improves the Acoustic-to-Articulatory Inversion estimated results for both speaker-dependent and speaker-independent scenarios. The system has been evaluated on the ElectroMagnetic Articulography corpus of Mandarin Accented English (EMA-MAE) corpus, consisting of 39 speakers including both native English speakers and Mandarin accented English speakers. Results show that Articulatory-WaveNet improves the performance of the speaker-dependent and speaker-independent Acoustic-to-Articulatory Inversion systems significantly compared to the previously reported results

    An interactive speech training system with virtual reality articulation for Mandarin-speaking hearing impaired children

    Get PDF
    The present project involved the development of a novel interactive speech training system based on virtual reality articulation and examination of the efficacy of the system for hearing impaired (HI) children. Twenty meaningful Mandarin words were presented to the HI children via a 3-D talking head during articulation training. Electromagnetic Articulography (EMA) and graphic transform technology were used to depict movements of various articulators. In addition, speech corpuses were organized in listening and speaking training modules of the system to help improve language skills of the HI children. Accuracy of virtual reality articulatory movement was evaluated through a series of experiments. Finally, a pilot test was performed to train two HI children using the system. Preliminary results showed improvement in speech production by the HI children, and the system was recognized as acceptable and interesting for children. It can be concluded that the training system is effective and valid in articulation training for HI children. © 2013 IEEE.published_or_final_versio

    Development of Kinematic Templates for Automatic Pronunciation Assessment Using Acoustic-to-Articulatory Inversion

    Get PDF
    Computer-aided pronunciation training (CAPT) is a subcategory of computer-aided language learning (CALL) that deals with the correction of mispronunciation during language learning. For a CAPT system to be effective, it must provide useful and informative feedback that is comprehensive, qualitative, quantitative, and corrective. While the majority of modern systems address the first 3 aspects of feedback, most of these systems do not provide corrective feedback. As part of the National Science Foundation (NSF) funded study “RI: Small: Speaker Independent Acoustic-Articulator Inversion for Pronunciation Assessment”, the Marquette Speech and Swallowing Lab and Marquette Speech and Signal Processing Lab are conducting a pilot study on the feasibility of the use of acoustic-to-articulatory inversion for CAPT. In order to evaluate the results of a speaker’s acoustic-to-articulatory inversion to determine pronunciation accuracy, kinematic templates are required. The templates would represent the vowels, consonant clusters, and stress characteristics of a typical American English (AE) speaker in the midsagittal plane. The Marquette University electromagnetic articulography Mandarin-accented English (EMA-MAE) database, which contains acoustic and kinematic speech data for 40 speakers (20 of which are native AE speakers), provides the data used to form the kinematic templates. The objective of this work is the development and implementation of these templates. The data provided in the EMA-MAE database is analyzed in detail, and the information obtained from the analysis is used to develop the kinematic templates. The vowel templates are designed as sets of concentric confidence ellipses, which specify (in the midsagittal plane) the ranges of tongue and lip positions corresponding to correct pronunciation. These ranges were defined using the typical articulator positioning of all English speakers of the EMA-MAE database. The data from these English speakers were also used to model the magnitude, speed history, movement pattern, and duration (MSTD) features of each consonant cluster in the EMA-MAE corpus. Cluster templates were designed as set of average MSTD parameters across English speakers for each cluster. Finally, English stress characteristics were similarly modeled as a set of average magnitude, speed, and duration parameters across English speakers. The kinematic templates developed in this work, while still in early stages, form the groundwork for assessment of features returned by the acoustic-to-articulatory inversion system. This in turn allows for assessment of articulatory inversion as a pronunciation training tool
    corecore