9,861 research outputs found

    Computer languages

    Get PDF
    The basic knowledge of programming is not possible without the knowledge of its history. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2852

    Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C

    Get PDF
    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples

    Design and Delivery of Multiple Server-Side Computer Languages Course

    Get PDF
    Given the emergence of service-oriented architecture, IS students need to be knowledgeable of multiple server-side computer programming languages to be able to meet the needs of the job market. This paper outlines the pedagogy of an innovative course of multiple server-side computer languages for the undergraduate IS majors. The paper discusses the rationale of why the proposed pedagogy is different from and improves the traditional methods. The paper provides a description of the approach to teaching a multiple server-side computer languages course. Based on our experiences in the past years, it is concluded that a single course of multiple server-side computer languages is useful and feasible for the IS programs

    An Approach to Teaching Multiple Computer Languages

    Get PDF
    In the digital economy era, business information systems students need to be knowledgeable of multiple computer programming languages in order to meet the requirements of computer literacy. This paper outlines the pedagogy of an innovated course of multiple computer languages for business students in the major of information systems. It discusses the rationale of why the proposed pedagogy is different from and better than traditional ones, and describes the approach to teaching this course. Based on our experiences in the past three years, it is concluded that a single course of multiple computer languages is useful and feasible

    Research in advanced formal theorem-proving techniques

    Get PDF
    The results are summarised of a project aimed at the design and implementation of computer languages to aid in expressing problem solving procedures in several areas of artificial intelligence including automatic programming, theorem proving, and robot planning. The principal results of the project were the design and implementation of two complete systems, QA4 and QLISP, and their preliminary experimental use. The various applications of both QA4 and QLISP are given

    Map Calculus in GIS: a proposal and demonstration

    Get PDF
    This paper provides a new representation for fields (continuous surfaces) in Geographical Information Systems (GIS), based on the notion of spatial functions and their combinations. Following Tomlin's (1990) Map Algebra, the term 'Map Calculus' is used for this new representation. In Map Calculus, GIS layers are stored as functions, and new layers can be created by combinations of other functions. This paper explains the principles of Map Calculus and demonstrates the creation of function-based layers and their supporting management mechanism. The proposal is based on Church's (1941) Lambda Calculus and elements of functional computer languages (such as Lisp or Scheme)

    Adjunctions for exceptions

    Full text link
    An algebraic method is used to study the semantics of exceptions in computer languages. The exceptions form a computational effect, in the sense that there is an apparent mismatch between the syntax of exceptions and their intended semantics. We solve this apparent contradiction by efining a logic for exceptions with a proof system which is close to their syntax and where their intended semantics can be seen as a model. This requires a robust framework for logics and their morphisms, which is provided by categorical tools relying on adjunctions, fractions and limit sketches.Comment: In this Version 2, minor improvements are made to Version

    Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language

    Get PDF
    The traditional split-up into a low level language and a high level language in the design of computer algebra systems may become obsolete with the advent of more versatile computer languages. We describe GiNaC, a special-purpose system that deliberately denies the need for such a distinction. It is entirely written in C++ and the user can interact with it directly in that language. It was designed to provide efficient handling of multivariate polynomials, algebras and special functions that are needed for loop calculations in theoretical quantum field theory. It also bears some potential to become a more general purpose symbolic package
    corecore