4,287 research outputs found

    Copyrights in Computer-Generated Works: Whom, if Anyone, Do We Reward?

    Get PDF
    Computer-generated works raise grave authorship concerns under U.S. copyright law, with arguments in favor of allocating copyrights to the computer user, programmer, the computer itself, or some combination therein. The author discusses the issues and paradoxes inherent in these choices, and assesses the nature of mathematical graphical processes in light of the idea/expression dichotomy

    Computational Batik Motif Generation: Innovation of Traditional Heritage by Fractal Computation\ud

    Get PDF
    Human-computer interaction has been the cause of the emerging innovations in many fields, including in design and art, architectural, technological artifacts, and even traditional heritage. In the case of Indonesian traditional heritages, the computation of fractal designs has been introduced to develop batik design – the genuine textile art and skill that becomes a symbol of Indonesian culture. The uniqueness of Batik, which depicted in the richness of its motifs, is regarded as one of interesting aspect to be researched and innovated using computational techniques. Recent studies of batik motifs have discovered conjecture to the existence of fractal geometry in batik designs. This finding has given some inspiration of implementing certain fractal concepts, such escape-time fractal (complex plane) and iterated function system to generate batik motifs. We develop motif generator based upon the Collage Theorem by using Java TM platform. This software is equipped by interface that can be used by user to generate basic patterns, which could be interpreted and painted as batik motif. Experimentally, we found that computationally generated fractal motifs are appropriated to be implemented as batik motif. However, human made batik motifs are less detail and some of them differ significantly with the computationally generated ones for tools used to draw batik and human aesthetic constraints

    An Alternative Postulate to see Melody as “Language”

    Get PDF
    The paper proposes a way to see melodic features in music/songs in the terms of “letters” constituting “words”, while in return investigating the fulfillment of Zipf-Mandelbrot Law in them. Some interesting findings are reported including some possible conjectures for classification of melodic and musical artifacts considering several aspects of culture. The paper ends with some discussions related to further directions, be it enrichment in musicology and the possible plan for musical generative art

    Target Detection Using Fractal Geometry

    Get PDF
    The concepts and theory of fractal geometry were applied to the problem of segmenting a 256 x 256 pixel image so that manmade objects could be extracted from natural backgrounds. The two most important measurements necessary to extract these manmade objects were fractal dimension and lacunarity. Provision was made to pass the manmade portion to a lookup table for subsequent identification. A computer program was written to construct cloud backgrounds of fractal dimensions which were allowed to vary between 2.2 and 2.8. Images of three model space targets were combined with these backgrounds to provide a data set for testing the validity of the approach. Once the data set was constructed, computer programs were written to extract estimates of the fractal dimension and lacunarity on 4 x 4 pixel subsets of the image. It was shown that for clouds of fractal dimension 2.7 or less, appropriate thresholding on fractal dimension and lacunarity yielded a 64 x 64 edge-detected image with all or most of the cloud background removed. These images were enhanced by an erosion and dilation to provide the final image passed to the lookup table. While the ultimate goal was to pass the final image to a neural network for identification, this work shows the applicability of fractal geometry to the problems of image segmentation, edge detection and separating a target of interest from a natural background

    MaSiF: Machine learning guided auto-tuning of parallel skeletons

    Get PDF

    rDLB: A Novel Approach for Robust Dynamic Load Balancing of Scientific Applications with Parallel Independent Tasks

    Full text link
    Scientific applications often contain large and computationally intensive parallel loops. Dynamic loop self scheduling (DLS) is used to achieve a balanced load execution of such applications on high performance computing (HPC) systems. Large HPC systems are vulnerable to processors or node failures and perturbations in the availability of resources. Most self-scheduling approaches do not consider fault-tolerant scheduling or depend on failure or perturbation detection and react by rescheduling failed tasks. In this work, a robust dynamic load balancing (rDLB) approach is proposed for the robust self scheduling of independent tasks. The proposed approach is proactive and does not depend on failure or perturbation detection. The theoretical analysis of the proposed approach shows that it is linearly scalable and its cost decrease quadratically by increasing the system size. rDLB is integrated into an MPI DLS library to evaluate its performance experimentally with two computationally intensive scientific applications. Results show that rDLB enables the tolerance of up to (P minus one) processor failures, where P is the number of processors executing an application. In the presence of perturbations, rDLB boosted the robustness of DLS techniques up to 30 times and decreased application execution time up to 7 times compared to their counterparts without rDLB
    corecore