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Abstract—Parallel skeletons provide a predefined set of parallel
templates that can be combined, nested and parameterized with
sequential code to produce complex parallel programs. The
implementation of each skeleton includes parameters that have
a significant effect on performance; so carefully tuning them
is vital. The optimization space formed by these parameters
is complex, non-linear, exhibits multiple local optima and is
program dependent. This makes manual tuning impractical. Ef-
fective automatic tuning is therefore essential for the performance
of parallel skeleton programs.

In this paper we present MaSiF, a novel tool to auto-tune
the parallelization parameters of skeleton parallel programs. It
reduces the size of the parameter space using a combination of
machine learning, via nearest neighbor classification, and linear
dimensionality reduction using Principal Components Analysis.
To auto-tune a new program, a set of program features is
determined statically and used to compute k nearest neighbors
from a set of training programs. Previously collected performance
data for the nearest neighbors is used to reduce the size of
the search space using Principal Components Analysis. Good
parallelization parameters are found quickly by searching this
smaller search space. We evaluate MaSiF for two existing parallel
frameworks: Threading Building Blocks and FastFlow. MaSiF
achieves 89% of the performance of the oracle on average. This
exploration requires just 45 parameters values on average, which
is ~0.05% of the optimization space. In contrast, a state-of-the-
art machine learning approach achieves 51%. MaSiF achieves an
average speedup of 1.32× over parallelization parameters chosen
by human experts.

I. INTRODUCTION

The use of multiple simpler processing elements, or cores,
is now a focus for industry and research as it is a promising
avenue to continue improving processor performance. By
utilizing multiple cores, separate parts of a program can be
executed in parallel. However, performance relies heavily on
the ability of the program to fully utilize these cores. This
requirement adds additional complexity at the software level,
and has led to the design of parallel abstractions that aim to
hide this from the programmer without introducing significant
or unpredictable overheads.

Parallel skeletons, also known as algorithmic skeletons, are
one such abstraction [1], [2]. They separate algorithm de-
scription from implementation, whilst preserving performance.
This enables platform independence and removes low-level
implementation concerns from the application programmer.
The idea is to provide a collection of templates, or skeletons,
each of which implements a standard algorithmic technique.
A skeleton library provides implementations for the skeletons,
which are used to compile the program into a form that can

be executed. Common skeletons include task farms, pipelines,
divide and conquer, and data-parallel map and reduce [1], [3].

The performance of parallel skeleton programs relies on
an appropriate choice of skeletons, efficient implementation
of the sequential code fragments, and efficient library imple-
mentations of of each skeleton [4], [5]. The latter involves
parallelization parameters. Finding the optimal settings for
these parameters is complex, since they depend on both target
machine and application. By tuning these parameters, we
improve the performance of two skeleton parallel frameworks:
Intel’s Threading Building Blocks (TBB) [6] by 1.47× and
FastFlow [7], [8] by 1.17×, on average compared to settings
chosen by expert developers (the authors of FastFlow, TBB
and the PARSEC [9] TBB benchmarks).

As the search space is too large for exhaustive search,
previous work on auto-tuning parameters either predicts the
best settings directly or uses iterative compilation (which may
be guided). We show that a state of the art predictive approach
fails to achieve better performance than the human expert,
whereas our approach improves performance.

We present MaSiF, a domain-specific tool that auto-tunes
parallel skeleton programs. In an offline phase, we identify
a set of parallelization parameters for MaSiF to tune and
collect performance data for a set of training programs. We
identify 4 such parameters in TBB and 5 in FastFlow. Given
a new program, static program features are extracted and
used to identify similar programs from the training set. The
performance data for these training programs is used to search
for optimal parameter values for the new program. Domain
specific search space reduction techniques are used to reduce
the number of parameters investigated.

It is not feasible to perform an exhaustive search of the
space due to its size (104 for TBB and 105 for FastFlow)
therefore our oracle examines a random 10% subset of the
space. Our results show that MaSiF achieves 91% of the
oracle performance for TBB and 86% for FastFlow. This
demonstrates that our technique is effective at automatically
optimizing parallel skeleton programs without the need for
human expertise. In contrast, the parameters predicted by a
state of the art machine-learning approach developed by Wang
and O’Boyle [10] achieve 55% of the oracle for TBB and 47%
for FastFlow. Compared to parallelization parameters chosen
by a human expert, MaSiF achieves an average speedup of
1.47× for TBB and 1.17× for FastFlow. MaSiF achieves this
performance by searching 0.05% of the parameter space.



A. Contributions

We make the following contributions:
• We present MaSiF, a tool for machine learning guided

auto-tuning of parallelization parameters in parallel skele-
ton frameworks. It uses a novel parameter space reduction
and search technique based on Principal Components
Analysis, reducing the size of the space to 0.05%. Un-
like previous approaches, it uses skeleton-based program
features that are directly available to the application
developer.

• We demonstrate that MaSiF works for both the Thread-
ing Building Blocks [6] and FastFlow [7], [8] parallel
skeleton frameworks.

• We show that our technique achieves 91% of the perfor-
mance of the oracle for TBB and 86% for FastFlow. This
equates to a speedup of 1.47× over human experts for
TBB and 1.17× for FastFlow.

The remainder of this paper is structured as follows. Sec-
tion II provides a brief introduction to the MaSiF search
strategy. Section III describes the tuning parameters we iden-
tified in Intel’s TBB [6] and the FastFlow skeleton framework
developed by Aldinucci et al. [8], [7]. Section IV describes
MaSiF; our novel, machine learning guided auto-tuning tool
for parallel skeleton programs. Section V explains our exper-
imental methodology to evaluate MaSiF, the results of which
are presented in Section VI. Section VII follows with related
work, and Section VIII summarizes our conclusions and future
work.

II. THE MASIF SEARCH STRATEGY

The left plot in Fig. 1 shows the optimization space of
the FastFlow mandelbrot program with Principal Components
Analysis (PCA) applied to reduce the dimensionality to 2.
Grey shaded areas mark parallelization parameters that obtain
95% or more of the best performance. The plot also shows
the mean and the two most significant eigenvectors.

The right plot in Fig. 1 shows the optimization space of
a different program: bzip2, under the same transformation
that was applied to the mandelbrot program. Again, the grey
shaded area indicates 95% or more of the best available
performance. Even though the optimization space looks com-
pletely different, we can apply a search technique that uses
the mean and eigenvectors from the mandelbrot optimization
space. Starting at that mean, we exhaustively search along
the first eigenvector in both directions to find the best point.
From there, we now search along the direction of the second
eigenvector. The search finds a point that obtains 97% of the
best available performance.

This motivating example shows that the eigenvectors pro-
vided by the PCA for one program can be used to guide the
search in the optimization space of a different program, if the
programs are a good match. In Section IV-C, we show how
matching programs can be found.

1st eigenvector
2nd eigenvector

Mean

Mandelbrot

1st search
direction

2nd search direction

97% of optimum

bzip2

Starting point
of search

Fig. 1: The left plot shows the optimization space of the mandelbrot program
after PCA has been applied to reduce the dimensionality to 2. The shaded
areas show points in the space that are within 95% or closer of the optimal
performance available. The plot of the mandelbrot program shows in addition
the mean and the two most important eigenvectors. In the right plot, we show
the optimization space of the bzip2 program after the same transformation
produced by PCA on the mandelbrot has been applied. Starting at the mean
of the mandelbrot program in the bzip2 space and searching in the direction
of the first and then the second eigenvector, we are able to find a point that
provides 97% of the best performance.

Parameter Description Values

threads Number of threads 1, . . . , # cores × 1.5
grainsize Grain size for

subdividing inputs
1, 2, 4, 8, . . . , 216

partitioner Input partitioning
strategy

auto_partitioner,
affinity_partitioner,
simple_partitioner

allocator Memory allocator std::allocator,
tbb_allocator,
zero_allocator,
cache_aligned_allocator,
scalable_allocator

TABLE I: Optimization parameters in Threading Building Blocks. The value
column specifies the points considered in the search space.

III. PARALLEL SKELETON FRAMEWORKS

In this section we discuss the two parallel skeleton frame-
works that MaSiF integrates with and describe parameters that
MaSiF uses to tune performance, and we evaluate the success
of this tuning in Sections V and VI.

A. Threading Building Blocks

Intel Threading Building Blocks (TBB) [6] is a parallel
skeleton library for shared-memory multi-core systems. It
provides a set of parallel patterns, including parallel_for
and parallel_reduce, built on top of a work-stealing task
scheduler, or thread pool. Its programming interface is similar
to the algorithms and containers provided by the C++ Standard
Template Library.

Table I summarizes the four tunable parameters in TBB. In
more detail, these parameters are:

• Number of threads. This controls the number of threads
in TBB’s thread pool.

• Grain size. This configures how TBB divides the input
to parallel_for and parallel_reduce skeletons
into tasks. It controls the granularity of tasks executed by
the thread pool.

• Partitioner. This provides further control of how inputs
are subdivided, and affects the distribution of tasks by
the scheduler.
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Fig. 2: FastFlow’s skeletons. Arrows represent single-producer single-
consumer queues and boxes represent threads.

Parameter Description Values

numworkers Number of threads 1, . . . , # cores × 1.5
buffertype Type of queue Bounded or unbounded
buffersize Buffer size of queues 1, 2, 4, 8, . . . , 220

batchsize Number of items in a
batch

1, 2, 4, 8, . . . , 220

cachealign Memory allocation
alignment of items

64, 128 or 256 bytes

TABLE II: Optimization parameters in FastFlow. The values column specifies
the points considered in the search space.

• Memory allocator. TBB provides several memory alloca-
tors that can be used with its collection classes (including
tbb::concurrent_vector). The best choice of al-
locator is application dependent. For example, making
thread-local memory allocations improves performance
for some applications but harms it for others.

B. FastFlow

FastFlow [11], [7] is a parallel programming framework for
shared memory multi-core systems. FastFlow was specifically
designed to introduce minimal overhead and be scalable.
Aldinucci et al. [12], [8], [13], [11] demonstrate this by com-
paring the performance of a variety of programs implemented
using FastFlow to carefully hand optimized versions written
using lower-level parallel abstractions. FastFlow therefore rep-
resents the state-of-the-art in terms of performance for parallel
skeleton libraries. It is implemented as a library in C++.

FastFlow provides three parallel skeletons: farm,
farm-with-feedback and pipe. These are implemented
using threads and single-producer single-consumer queues
as shown in Fig. 2. They are arbitrarily nestable and are
parameterized with sequential C++ code.

Table II summarizes the five tunable parameters in FastFlow.
In more detail, these parameters are:

• Number of workers. This controls the number of threads
used by the farm and farm-with-feedback skele-
tons.

• Bounded/unbounded queues. Bounded queues may be
more efficient than unbounded queues, as they do not
need to resize their buffer. However they may cause
deadlock in programs with cyclic communication pat-
terns. The developer can specify ‘unsafe’ regions of the
parameter space so that MaSiF can avoid deadlock.

• Queue length. In the case of bounded queues, this is the
maximum number of items that can be buffered by the
queue. If this limit is reached, producers for the queue

Program A Program B

e2

e1

m

Fig. 3: Extracting the search vectors from the training data. The left and
middle plot show a set of ‘near optimal’ parameter values for two nearest
neighbor programs from the training set. The right plot shows the mean m
and eigenvectors e1 and e2 (as dotted arrows) resulting from the PCA.

p1
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e2 q
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Fig. 4: Visualization of the eigenvector search on a two-dimensional parameter
space, formed by parameters p1 and p2. Plot Ê shows the parameter space.
Parameter values that provide near optimal performance are shaded. Applying
PCA to these near optimal parameter values gives mean m, eigenvectors e1
and e2, and eigenvalues λ1 and λ2. First, we search exhaustively along a line
centered on m with direction e1 and length 1.5 × λ1 as shown in Ë. The
best parameter values found are at p. We then search exhaustively along a
line centered on p with direction e2 and length 1.5×λ2 as shown in Ì. The
best parameter values found are q. This is repeated for a chosen number of
eigenvectors, and the best parameters found are the result of the search.

will block when attempting to push items into it. For
unbounded queues, this controls the size of each chunk
of memory allocated to buffer items.

• Task granularity. Tasks sent between threads can be
grouped into batches of a chosen size. This is likely
to reduce communication/synchronization overhead at
the cost of reducing the available task-parallelism and
adversely effecting load balancing.

• Cache alignment. FastFlow’s memory allocator adds
padding between tasks to better exploit the cache, and
the amount of padding is controlled by this parameter.

IV. AUTO-TUNING USING MASIF

This section describes the operation of MaSiF, our machine
learning guided auto-tuning tool. Sections IV-A and IV-B de-
scribe how MaSiF optimizes a new program given knowledge
of where regions of good parameter values lie. Section IV-C
details how MaSiF estimates where these good regions lie,
using training data collected a priori. Section IV-D describes
how a developer uses the tool.

A. Reducing the Size of the Search Space

The parameter space that needs to be searched contains
about 104 points for TBB, and 105 points for FastFlow.
MaSiF uses Principal Components Analysis [14] to reduce
this significantly, without excluding all of the parameter values
that provide good performance. PCA is used in two ways: to
reduce the size of the space and to provide directions for the
search, explained in Section IV-B.



Feature Description

ske The skeleton used; 0 = parallel for, 1 = parallel reduce
rs Data structure read from; 0 = blocked range,

1 = shared array, 2 = concurrent vector
wr Data structure written to;

0 = atomic variable, 1 = shared array,
2 = concurrent vector, 3 = shared variable

cost Computational time complexity per task;
0 = O(1), 1 = O(n) (potentially statically unknowable)

(a) TBB

Feature Description

ske The skeleton used;
0 = farm, 1 = farm-with-feedback

col Whether the program uses a collector thread;
Yes/No

bf The number of tasks created by a task
(potentially statically unknowable)

ts The size of the task passed to workers
(potentially statically unknowable)

(b) FastFlow

TABLE III: Program features for TBB and FastFlow. Some of these features might be statically unknowable.
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Fig. 5: Schematic of how machine learning guides the search. The dotted box
indicates the offline training phase. Ê Extract program features from training
programs. Ë Find a set of near optimal parameter values for each training
program, by measuring a random subset of the space. Ì Extract program
features from the new program. Í Compute the k-nearest neighbors, using
the program features, to create a set of near optimal parameter values for all
nearest neighbors. Î Apply PCA to the set of near optimal parameter values.
The resulting mean and eigenvectors are used to perform the search.

To reduce the parameter space, all ‘near optimal’ parameter
values are collected. We define ‘near optimal’ as parameter
values with performance within 5% of the maximum per-
formance. Maximum performance refers to the best found
performance by either conducting an exhaustive search or
sampling of a subspace. Applying PCA to this set of ‘near
optimal’ parameter values provides a new set of orthogonal
basis vectors (see Fig. 3). This basis spans the original space,
so we can describe any parameter value in this new basis. An
example of this is shown in the left hand plot of Fig. 4.

PCA also returns a measure of the variance of the data in the
direction of each eigenvector, called the eigenvalues. We can
use these to scale the eigenvectors so that they only cover
regions of the space where near optimal parameter values
are present. These scaled eigenvectors are shown as dotted
arrows in the left hand plot of Fig. 4. In our search, we start
at the mean and search along 1.5× in the direction of the
eigenvectors, which corresponds to covering 3σ (99.7%) of the
variance. The eigenvectors returned by PCA are also ordered
by their associated eigenvalue. This allows further space size
reduction: we can remove the dimensions (eigenvectors) which
only capture a small variance in the data.

D(x,y) =
√∑

d(xi, yi)2

d(x, y) =

{
0 if x = � or y = �
y − x otherwise

Fig. 6: The modified Euclidean distance metric used to compute the k-nearest
neighbors. D(x,y) computes the distance between feature vectors x and y.
d(x, y) takes account of statically unknowable values (�).

B. Searching the Reduced Space

On top of the technique used to reduce the size of the search
space, MaSiF searches the space in a way that further reduces
the number of parameter values that need to be measured.

The previous step that uses PCA to reduce the search space
results in a new set of new basis vectors for the space, called
eigenvectors. These form a set of orthogonal bases ordered by
the amount of variation in the data that they each capture. This
means that most of the variation in the near optimal parameters
is in the direction of the first eigenvector, the next most is in
the direction of the second eigenvector, and so on.

MaSiF searches along each of these eigenvectors in turn,
as shown in Fig. 4. Compared to an exhaustive search of
the reduced space, this reduces the number of parameters
that need to be searched significantly. Given m eigenvectors
with n parameter values along each, we only measure O(nm)
parameter values in a space whose size is O(nm).

C. Guiding Search using Machine Learning

Our eigenvector search technique assumes that we know
where the near optimal parameters are. However, we do not
know this for a new program before executing it. MaSiF uses
machine learning to estimate where these regions lie. This is
shown in Fig. 5.

Given a set of existing training programs, we statically
extract a set of program features from each. The program
features for TBB and FastFlow are summarized in Table III. In
an offline training phase, we search a random subset of their
parameter space to find a set of near optimal parameters for
each training program. Given a new program, we perform the
same feature extraction, and use the feature vector to select
a set of similar programs from the training set. The search
space reduction and search techniques, described previously
in Section IV-A and Section IV-B, are then applied to the set
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Fig. 7: Schematic of how MaSiF is used. Ê In an offline training phase, the
framework developer specifies tunable parallelization parameters, high-level
static program features and collects performance data for a set of training
programs. Ë An application developer uses the MaSiF optimization tool to
find good parallelization parameters for a new program.

of near optimal parameter values from the similar programs.
The set of similar programs is determined using the k-nearest
neighbors algorithm [14]. This selects the k programs from the
training set with the smallest distance between their feature
vector and the new programs feature vector. The distance
between feature vectors is determined by a distance metric.
We use a modified Euclidean distance metric defined in Fig. 6.

Some of the features we have chosen may not be deter-
minable statically, and can therefore have an ‘unknown’ (�)
value. The modification to the Euclidean distance takes this
into account, by assigning a distance of 0 to between any value
and an ‘unknown’ (�). Note that this design choice artifically
pushes programs with ‘unknown’ feature values closer to-
gether. However, a different value could push programs further
apart. By definition, there is no good choice for the value that
is used as substitution.

D. Using MaSiF

MaSiF is a program optimization tool for parallel skeleton
frameworks. A schematic summarizing its use is shown in
Fig. 7.

Application developers use MaSiF to automatically tune a
new program. After implementing their application using the
parallel framework, they run MaSiF’s optimization script on
the target architecture. The script executes their program to
search for the best parameters, using the database to drastically
reduce the number of parameters that are evaluated.

E. Extending MaSiF

To extended MaSiF for use on further skeleton frameworks,
it is only necessary to specify the following:

• The set of tunable parallelization parameters present in
the framework, and a range of valid values for each.

• Provide a compatible interface for MaSiF to set the
parameters.

• The set of static program features, and the range of valid
values for each.

• A set of training programs (implemented using the par-
allel framework) with the values of their static program
features.

MaSiF then needs to be trained by running its training script,
which collects performance data and stores it in a database.
This offline process needs to be performed once for every
target architecture. It is important to note that these changes
do not need to be made by an application developer, only by
the system developer.

V. EXPERIMENTAL SETUP

This section describes our experiments to evaluate MaSiF.
The experimental hardware, parallel frameworks and bench-
mark programs are described in Section V-A. Section V-B
explains our ‘oracle’ approach, which is used to provide
an estimate of the maximum performance of each program.
Section V-C describes alternative approaches against which
we compare MaSiF. Section V-D describes the evaluation
methodology. Section V-E describes the collection of training
data for MaSiF.

A. Experimental Platform and Benchmarks

We use a 32-core shared memory machine to run the ex-
periments. It has 4× Intel Xeon L7555 8-core processors and
64GB of main memory, running Linux 2.6.37.6 (64-bit). This
processor includes several features to adjust CPU parameters
according to the workload of the system, including frequency
scaling. These introduce significant noise into performance
measurements; therefore we disable them for our experiments.

To show that MaSiF works across a range of parallel
frameworks, we evaluate it for both Threading Building Blocks
and FastFlow. These frameworks have different static program
features, different tunable parallelization parameters and dif-
ferent sets of benchmark programs.

We use 10 existing TBB programs and 10 existing FastFlow
programs for the experiments. They are listed in Table IV. Of
the TBB programs, 4 are from the PARSEC 3.0 benchmark
suite [9] and 6 are from the TBB 4.1 source distribution. The
FastFlow programs are from the FastFlow source distribution.
The benchmarks are implemented in C++ and compiled using
GCC 4.5.1. The TBB programs use a combination of TBB’s
parallel_for and parallel_reduce skeletons. The
FastFlow programs use two of the skeletons provided by
FastFlow: farm and farm-with-feedback.

B. The Oracle Approach

We compare MaSiF against an oracle, to determine whether
MaSiF achieves maximum program performance. Ideally the
oracle would measure program performance for every point
in the optimization space. However, the parameter space is
large; with approximately 104 parameter choices for TBB and
105 for FastFlow. Finding the best program performance by
exhaustively measuring the performance of each program, for
every parameter choice, with repeats to quantify measurement
noise would take several years.

To avoid this feasibility problem, our oracle measures the
performance of a random 10% subset of the optimization
space. Program execution time for this subspace was measured
for each program, taking approximately 3 months. The best



Program Description

bs blackscholes (from PARSEC)
bt bodytrack (from PARSEC)
ch Convex hull of a set of points
gol Game of life simulation
po Polygon overlay
pr Prime number sieve
sc streamcluster (from PARSEC)
sm Seismic wave simulation
swa swaptions (from PARSEC)
tc Tachyon ray-tracer

(a) TBB

Program Description

aq Adaptive Quadrature algorithm
bz2 Parallel bzip2 compression
cwc Simulation of CWC calculus for biological systems
dt Implementation of the C4.5 decision tree algorithm
fib Naı̈ve recursive algorithm compute Fibonacci numbers
mb Mandelbrot fractal generator
mm O(n3) nested-loops matrix multiplication
nq n-queens problem solver
qs Parallel quicksort
sw Smith-Waterman algorithm for gene sequence alignment

(b) FastFlow

TABLE IV: Programs used in the experiments.

bs bt ch gol po pr sc sm swa tc

ske 1 1,1,1,1 1,0,0 1 1 0 1,0,0 1,1 1 1
rs 1 1,1,1,1 0,2,2 1 2 0 1,1,1 1,1 1 1

ws 1 1,1,1,1 2,3,3 1 3 3 1,0,0 1,1 1 1
cost 0 0,1,1,1 0,0,0 0 � � 0,0,0 1,1 � �

(a) TBB

aq bz2 cwc dt fib mb mm nq qs sw

ske 0 0 1 1 1 0 0 1 1 0
col 0 1 1 0 0 1 0 0 0 0
bf 2 0 0 � 2 0 0 0 2 0
ts 8 � � � 8 � � 16 12 �

(b) FastFlow

TABLE V: Statically determined feature vectors for each TBB and FastFlow program. � indicates an unknown value, if the feature cannot be determined
statically. Some of the TBB benchmarks have multiple feature vectors, shown in the table as lists of values. These are averaged before applying the k-nearest
neighbor algorithm.

execution time found in this 10% subset provides the oracle’s
estimate of best performance.

C. Comparison Against Other Approaches

We compare MaSiF against a state of the art machine-
learning approach developed by Wang and O’Boyle [10]. This
approach uses a combination of Support Vector Machines
(SVM) and Artificial Neural Networks (ANN) to predict
the optimal number of threads and scheduling strategy for
OpenMP applications. Lacking a name and having a some-
what cumbersome abbreviation (SVM+ANN), we refer to this
approach by the easier abbreviation EZ. We adapt EZ to tune
the same parallelization parameters as MaSiF, for both TBB
and FastFlow. This allows us to directly compare the program
performance found by both MaSiF and EZ.

Both MaSiF and EZ use program features to classify
programs for training. The choice of these features affects
the results of this classification. MaSiF uses skeleton-based
features extracted from the source code. These are naturally
apparent from the skeleton programming model, and include
features such as the choice of parallel skeleton or the size of
each task. The intuition is that these features capture high-
level structure of the algorithm, and divide the programs into
algorithmic classes. In contrast EZ uses features extracted
from profiling runs of the compiled binary. These include the
number of branch instructions and load/store instructions.

We compare MaSiF against two variants of EZ. The
first uses the same binary features devised by Wang and
O’Boyle [10] (called EZ-BF). The second uses the same
skeleton-based features as MaSiF (called EZ-SF).

We also compare MaSiF against human expert chosen pa-
rameters. The TBB and FastFlow benchmark programs contain

manually tuned parameters, which have been set by each
application developer. These were tuned by the TBB devel-
opers, FastFlow developers and PARSEC [9] TBB benchmark
developers. We compare against the performance achieved by
these parameter choices to demonstrate that MaSiF outper-
forms human experts.

D. Evaluation Methodology

We use a leave-one-out cross-validation (a standard tech-
nique) to evaluate MaSiF and EZ. For our set of 10 benchmark
programs, we use 9 of them for the training. The remaining
benchmark is then optimized by the auto-tuner. We repeat this
for each of the programs. This means that we always test the
auto-tuner using an unseen program.

The following methodology is used to measure program
execution time:

• Repeated measurements are made so that error in the
sample mean can be quantified using confidence intervals.
Where appropriate, 99% confidence intervals for the
mean are reported alongside the results.

• Outlier removal is performed using interquartile range
removal [15].

E. Training Data Collection

The performance measurements used to provide the oracle
are also used as training data. For each program, all parameter
values that are within 5% of the oracle performance are
collected together. These constitute the ‘best points’ on which
MaSiF performs its training.

VI. RESULTS

This section presents our evaluation of MaSiF. Section VI-A
shows the results of MaSiF’s classification of the training pro-
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Prog. Nearest neighbors

bs swa bt tc
bt swa bs tc
ch po swa bt
gol swa bt tc
po swa bt tc
pr ch po swa
sc swa bt tc
sm swa bt tc
swa bt tc gol
tc swa bt gol

(a) TBB

Prog. Nearest neighbors

aq sw mm fib
bz2 mb sw mm
cwc nq mb bz2
dt nq qs fib
fib dt qs aq
mb bz2 sw mm
mm sw nq mb
nq dt sw mm
qs dt fib nq
sw mm nq mb

(b) FastFlow

TABLE VI: The 3 nearest neighbors for each TBB and FastFlow program
ordered by increasing distance from left to right, using the modified Euclidean
distance metric.

grams. Section VI-B compares MaSiF to the oracle approach
and manual tuning performed by human experts. Section VI-C
compares against an alternative state of the art machine learn-
ing approach. Section VI-D explores the effect that the number
of eigenvectors has on MaSiF and Section VI-E examines its
convergence time. For our analysis, we use the geometric mean
to compute average speedup.

A. Training Program Classification

Table V shows the values of the feature vectors for each of
the TBB and FastFlow programs. In some cases, the value of
a feature cannot be determined statically. These are marked as
unknown, denoted ‘�’. For example, for some of the FastFlow
programs the branching factor is dependent on input data.
Some of the TBB benchmarks have multiple feature vectors,
shown in the table as lists of values. These are averaged before
applying the k-nearest neighbor algorithm.

Table VI shows the results of MaSiF’s classification of
training programs. For each program, a set of three nearest
neighbors are identified. The distance metric used is defined
in Section IV-C. When auto-tuning one of the programs, these
sets of nearest neighbor programs are used to provide training
data for the search.

B. Comparison Against the Oracle and Human Experts

Fig. 8 shows the percentage of the oracle performance
achieved by several approaches, including MaSiF and param-
eters chosen by human experts. For 13 of the 20 programs,
MaSiF achieves over 90% of the oracle performance. On aver-
age, MaSiF achieves 91% of the oracle performance for TBB
and 86% for FastFlow. In contrast, the parameters chosen by
human experts only achieve 62% of the oracle performance for
TBB and 69% for FastFlow. Human expert chosen parameters
outperform MaSiF on just 3 of the programs (sm and tc for
TBB, and aq for FastFlow).

Fig. 9 shows the speedup over human expert parameters
achieved by the different approaches, including MaSiF. On
average, MaSiF achieves a speedup of 1.47× over human
expert chosen parameters for TBB and 1.17× for FastFlow.

It is important to note that MaSiF only measures the
performance of 45 parameter values, on average, in order to
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Fig. 11: The effect of varying the number of eigenvectors used by the search on
the percentage of the oracle performance achieved, averaged across programs
for TBB and FastFlow. With zero eigenvectors, the search only considers the
mean parameter values return by the PCA. Each line is annotated with the
average number of parameter values that are searched along each eigenvector.

obtain this performance. This is far fewer than the size of the
space, which consists of approximately 104 parameter values
for TBB and 105 for FastFlow.

MaSiF fails to optimize the Adaptive Quadrature (aq) Fast-
Flow program. We found that none of the nearest neighbors
identified by the machine learning behaves similarly enough
that their optimization space is useful when training the search.
This could be fixed by increasing the number and variety of
training programs.

The results of our experiments demonstrate that MaSiF is
portable within the domain of parallel skeleton frameworks.
On average, MaSiF beats both human experts and a state of
the art predictive approach for both TBB and FastFlow.

C. Comparison Against Other Approaches

Fig. 8 also shows the percentage of the oracle performance
achieved by a state of the art machine learning approach
developed by Wang and O’Boyle [10]. EZ-BF uses features
extracted from the program binaries using profiling, and EZ-
SF uses the same skeleton-based features as MaSiF.

On average, EZ-SF performs better than EZ-BF. EZ-SF
achieves 62% and 57% of the oracle for TBB and FastFlow
respectively, and EZ-BF achieves 55% and 47%. This suggests
that using skeleton features works better.

For TBB, EZ provides a speedup over the human experts
of between 0.88× and 1.00×, compared to MaSiF at 1.47×.
For FastFlow, EZ achieves a slowdown compared to the human
experts of between 0.63× and 0.83×, compared to the speedup
achieved by MaSiF at 1.17×.

Both EZ-BF and MaSiF failed to optimize the FastFlow
Adaptive Quadrature (aq) benchmark, compared to the oracle
and human expert chosen parameters.

In summary, MaSiF achieves better performance than both
variants of EZ, for both TBB and FastFlow.

D. Varying the Number of Eigenvectors

MaSiF includes a parameter whose value needs to be
manually chosen: the number of eigenvectors to search. Given
an n-dimensional parameter space, MaSiF can search along
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Fig. 12: The evolution of the best execution time found against number of parameter values explored, for TBB and FastFlow, averaged over all programs.

anywhere from 1 to n eigenvectors. The effect of varying this
parameter on the program performance achieved is shown in
Fig. 10.

This shows that for many of the programs, the mean value
computed by PCA produces good results, with 91% of the
oracle performance for TBB and 86% for FastFlow. However
this is not the case for some programs, such as TBB’s ch
benchmark and FastFlow’s fib benchmark. At the start point
these only achieve 1% and 50% of the oracle performance
respectively. After searching along two eigenvectors, these
improve to 97% and 84%. It is therefore essential to search
at least one or two eigenvectors to obtain good performance
across all programs.

Fig. 11 shows how varying the number of eigenvectors
affects the number of parameter values that need to be mea-
sured by the search. This shows a diminishing return when
increasing the number of eigenvectors searched above two:
the number of parameter values evaluated increases linearly
whereas the performance achieved increases logarithmically.

E. Convergence Time

Fig. 12 shows the evolution of the average performance
found by MaSiF as the number of parameters is increased. This
plot highlights how few parameters values MaSiF requires
to reach 88% of the oracle’s performance. Our approach
converges on parameter values that provide very good perfor-
mance. The large step change is due to the search switching
eigenvectors. When investigating a new eigenvector, the initial
performance improvement is large.

VII. RELATED WORK

Related work roughly falls into two distinct categories: auto-
tuning skeleton programs and machine learning based search
space reduction for iterative compilation.

There are several works that investigate the auto-tuning
of skeletons [16], [17], [18]. Unlike our work, they only
investigate a single pattern and none investigate how the size
of the search space can be reduced. Christen et al. designed an
auto-tuned framework for stencil computation [17]. The frame-
work uses Powell and Nelder-Mead search strategies. There

is no information about the number of searches performed
nor how close the strategy came to an optimal configuration.
Wang and O’Boyle [16] use machine learning to predict the
best transformations to auto-tune pipeline computation. Their
method requires 3,000 iterations and achieves about 60% of
the best obtainable performance. Dastgeer et al. [18] use ma-
chine learning to auto-tune a skeleton for simple data parallel
operations. However, their work only evaluates auto-tuning
for one parameter and with one application. Petabricks [19]
implements different algorithms for a given problem. It then
automatically selects the most appropriate algorithm for a
given problem size. This includes the selection of different
algorithms once the problem has been broken down into
smaller chunks. In contrast, our work focuses on choosing
the optimal tuning parameters for one particular algorithm.

There is a substantial amount of existing work that uses
machine learning to predict the effectiveness of compiler
optimizations for a given program [20], [21], [22]. The work
of Agakov et al. [23] is close to our own. The authors use
machine learning to model the shape of the search space
of DSP kernels. They then focus the search towards areas
of the space that are most promising. Unlike our work,
their optimization space consists of compiler flags and they
use Markov Chains and IID as their predictive model. Jantz
and Kulkarni reduce the search space of optimization phase
ordering in compilers [24]. They reduce the search space by
eliminating false register dependencies, rather than using a
more focused search strategy.

VIII. CONCLUSIONS AND FUTURE WORK

We have demonstrated that MaSiF achieves 91% and 86%
of the oracle performance for TBB and FastFlow respectively;
by searching a small set of 45 parameters (on average). This
is a speedup of 1.47× and 1.17× over human expert chosen
parameters, for TBB and FastFlow respectively. MaSiF also
outperforms a state of the art machine learning approach which
achieves 55% and 47% of the oracle for TBB and FastFlow
respectively.

These results show that MaSiF does not significantly impact
the maximum possible performance achievable—in fact it



does better than a human expert and predictive machine
learning approach—whilst markedly reducing the number of
parameters that need to be searched. The PCA space reduction
reduces the size of the search space by 275× on average, and
searching along just two eigenvectors reduces the space by
1,925×.

Our technique is fully automatic and not constrained to a
single parallel skeleton framework. We have demonstrated its
efficacy for both Threading Building Blocks and FastFlow.
These are two very different parallel skeleton frameworks –
FastFlow is a streaming parallel framework whereas TBB is a
sophisticated task-stealing scheduler.

In the future, we will investigate searching the reduced
parameter space at runtime. By splitting program execution
into fixed time epochs, we can perform the machine learning
guided search at runtime. We will also investigate more sophis-
ticated techniques to improve over the exhaustive search along
each eigenvector. This will reduce the number of parameters
that need to be searched, speeding up the optimization phase,
without impacting performance.
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