14,359 research outputs found

    Shape Animation with Combined Captured and Simulated Dynamics

    Get PDF
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions

    Synthesis of variable dancing styles based on a compact spatiotemporal representation of dance

    Get PDF
    Dance as a complex expressive form of motion is able to convey emotion, meaning and social idiosyncrasies that opens channels for non-verbal communication, and promotes rich cross-modal interactions with music and the environment. As such, realistic dancing characters may incorporate crossmodal information and variability of the dance forms through compact representations that may describe the movement structure in terms of its spatial and temporal organization. In this paper, we propose a novel method for synthesizing beatsynchronous dancing motions based on a compact topological model of dance styles, previously captured with a motion capture system. The model was based on the Topological Gesture Analysis (TGA) which conveys a discrete three-dimensional point-cloud representation of the dance, by describing the spatiotemporal variability of its gestural trajectories into uniform spherical distributions, according to classes of the musical meter. The methodology for synthesizing the modeled dance traces back the topological representations, constrained with definable metrical and spatial parameters, into complete dance instances whose variability is controlled by stochastic processes that considers both TGA distributions and the kinematic constraints of the body morphology. In order to assess the relevance and flexibility of each parameter into feasibly reproducing the style of the captured dance, we correlated both captured and synthesized trajectories of samba dancing sequences in relation to the level of compression of the used model, and report on a subjective evaluation over a set of six tests. The achieved results validated our approach, suggesting that a periodic dancing style, and its musical synchrony, can be feasibly reproduced from a suitably parametrized discrete spatiotemporal representation of the gestural motion trajectories, with a notable degree of compression

    Management and display of four-dimensional environmental data sets using McIDAS

    Get PDF
    Over the past four years, great strides have been made in the areas of data management and display of 4-D meteorological data sets. A survey was conducted of available and planned 4-D meteorological data sources. The data types were evaluated for their impact on the data management and display system. The requirements were analyzed for data base management generated by the 4-D data display system. The suitability of the existing data base management procedures and file structure were evaluated in light of the new requirements. Where needed, new data base management tools and file procedures were designed and implemented. The quality of the basic 4-D data sets was assured. The interpolation and extrapolation techniques of the 4-D data were investigated. The 4-D data from various sources were combined to make a uniform and consistent data set for display purposes. Data display software was designed to create abstract line graphic 3-D displays. Realistic shaded 3-D displays were created. Animation routines for these displays were developed in order to produce a dynamic 4-D presentation. A prototype dynamic color stereo workstation was implemented. A computer functional design specification was produced based on interactive studies and user feedback

    Reverse Skew-T - A Cloudmaking Tool for CG

    Get PDF
    We present 'Reverse Skew-T', a tool that allows users to direct a physically inspired simulation of layered clouds. To achieve this, we extend existing models for cloud simulation and provide a graphical user interface for providing important simulation parameters to our system

    Annual Report, 2009-2010

    Get PDF
    • …
    corecore