29,627 research outputs found

    Automatic Deduction in Dynamic Geometry using Sage

    Full text link
    We present a symbolic tool that provides robust algebraic methods to handle automatic deduction tasks for a dynamic geometry construction. The main prototype has been developed as two different worksheets for the open source computer algebra system Sage, corresponding to two different ways of coding a geometric construction. In one worksheet, diagrams constructed with the open source dynamic geometry system GeoGebra are accepted. In this worksheet, Groebner bases are used to either compute the equation of a geometric locus in the case of a locus construction or to determine the truth of a general geometric statement included in the GeoGebra construction as a boolean variable. In the second worksheet, locus constructions coded using the common file format for dynamic geometry developed by the Intergeo project are accepted for computation. The prototype and several examples are provided for testing. Moreover, a third Sage worksheet is presented in which a novel algorithm to eliminate extraneous parts in symbolically computed loci has been implemented. The algorithm, based on a recent work on the Groebner cover of parametric systems, identifies degenerate components and extraneous adherence points in loci, both natural byproducts of general polynomial algebraic methods. Detailed examples are discussed.Comment: In Proceedings THedu'11, arXiv:1202.453

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Converting DAE models to ODE models: application to reactive Rayleigh distillation

    Get PDF
    This paper illustrates the application of an index reduction method to some differential algebraic equations (DAE) modelling the reactive Rayleigh distillation. After two deflation steps, this DAE is converted to an equivalent first-order explicit ordinary differential equation (ODE). This ODE involves a reduced number of dependent variables, and some evaluations of implicit functions defined, either from the original algebraic constraints, or from the hidden ones. Consistent initial conditions are no longer to be computed; at the opposite of some other index reduction methods, which generate a drift-off effect, the algebraic constraints remain satisfied at any time; and, finally, the computational effort to solve the ODE may be less than the one associated to the original DAE

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Map Calculus in GIS: a proposal and demonstration

    Get PDF
    This paper provides a new representation for fields (continuous surfaces) in Geographical Information Systems (GIS), based on the notion of spatial functions and their combinations. Following Tomlin's (1990) Map Algebra, the term 'Map Calculus' is used for this new representation. In Map Calculus, GIS layers are stored as functions, and new layers can be created by combinations of other functions. This paper explains the principles of Map Calculus and demonstrates the creation of function-based layers and their supporting management mechanism. The proposal is based on Church's (1941) Lambda Calculus and elements of functional computer languages (such as Lisp or Scheme)

    Common Representation of Information Flows for Dynamic Coalitions

    Full text link
    We propose a formal foundation for reasoning about access control policies within a Dynamic Coalition, defining an abstraction over existing access control models and providing mechanisms for translation of those models into information-flow domain. The abstracted information-flow domain model, called a Common Representation, can then be used for defining a way to control the evolution of Dynamic Coalitions with respect to information flow

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion
    • ā€¦
    corecore