34,239 research outputs found

    Rapid Prototyping In Orthopeadics: Principles And Applications.

    Get PDF
    Rapid prototyping (RP) is primarily concerned with automated fabrication of tangible model or prototype from computerised data or any computer aided design (CAD) system for visualisation, testing and verification

    Real-Time Scheduling for Software Prototyping

    Get PDF
    This paper presents several real-time scheduling algorithms developed to support rapid prototyping of embedded systems using the Computer Aided Prototyping System (CAPS). The CAPS tools are based on the Prototyping System Description Language (PSDL), which is a high-level language designed specifically to support the conceptual modeling of real-time embedded systems. This paper describes the scheduling algorithms used in CAPS along with the associated timing constraint and hardware models, which include single and multi-processor configurations

    Data transfer between Cad system and RP system: a report

    Get PDF
    Rapid Prototyping (RP) is a technology that transform a design generated in Computer Aided Design (CAD) to a 3D model parts. CAD models are usually done on a CAD system and then transported into the RP system. A good interface between the CAD and the RP system is one of the key factors of producing a good quality prototype. This paper reports on the results of an experimentation carried out to identify the problems in transferring data between a CAD system (UNIGRAPHICS) and an RP system (QUICKSLICE). Based on the experimentation’s results and analysis, a basic guideline is proposed for a safer data transfer between the CAD system (UNIGRAPHICS) and an RP system (QUICKSLICE)

    A conceptual level design of a Design Database for the Computer-Aided Prototyping System

    Get PDF
    Vast amounts of evolving data are created in the design of hard real-time software systems. This data must be managed so that it can be stored and retrieved according to the needs of design engineers. In the Computer-Aided Prototyping System (CAPS), a Design Database (DDB) must manage the storage and retrieval of the entire Prototype System Description Language (PSDL) program. This thesis presents a conceptual design and initial implementation of a Design Database (DDB) for the Computer-Aided Prototyping System (CAPS).http://archive.org/details/aconceptuallevel1094524279Lieutenant, United States NavyApproved for public release; distribution is unlimited

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    Virtual assembly rapid prototyping of near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel non-layered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    Virtual bloXing - assembly rapid prototyping for near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel nonlayered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    3D-printing techniques in a medical setting : a systematic literature review

    Get PDF
    Background: Three-dimensional (3D) printing has numerous applications and has gained much interest in the medical world. The constantly improving quality of 3D-printing applications has contributed to their increased use on patients. This paper summarizes the literature on surgical 3D-printing applications used on patients, with a focus on reported clinical and economic outcomes. Methods: Three major literature databases were screened for case series (more than three cases described in the same study) and trials of surgical applications of 3D printing in humans. Results: 227 surgical papers were analyzed and summarized using an evidence table. The papers described the use of 3D printing for surgical guides, anatomical models, and custom implants. 3D printing is used in multiple surgical domains, such as orthopedics, maxillofacial surgery, cranial surgery, and spinal surgery. In general, the advantages of 3D-printed parts are said to include reduced surgical time, improved medical outcome, and decreased radiation exposure. The costs of printing and additional scans generally increase the overall cost of the procedure. Conclusion: 3D printing is well integrated in surgical practice and research. Applications vary from anatomical models mainly intended for surgical planning to surgical guides and implants. Our research suggests that there are several advantages to 3D- printed applications, but that further research is needed to determine whether the increased intervention costs can be balanced with the observable advantages of this new technology. There is a need for a formal cost-effectiveness analysis
    corecore