18 research outputs found

    Visualizing convolutional neural networks to improve decision support for skin lesion classification

    Get PDF
    Because of their state-of-the-art performance in computer vision, CNNs are becoming increasingly popular in a variety of fields, including medicine. However, as neural networks are black box function approximators, it is difficult, if not impossible, for a medical expert to reason about their output. This could potentially result in the expert distrusting the network when he or she does not agree with its output. In such a case, explaining why the CNN makes a certain decision becomes valuable information. In this paper, we try to open the black box of the CNN by inspecting and visualizing the learned feature maps, in the field of dermatology. We show that, to some extent, CNNs focus on features similar to those used by dermatologists to make a diagnosis. However, more research is required for fully explaining their output.Comment: 8 pages, 6 figures, Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 201

    Performance analysis of machine learning and deep learning architectures for malaria detection on cell images

    Get PDF
    Plasmodium malaria is a parasitic protozoan that causes malaria in humans. Computer aided detection of Plasmodium is a research area attracting great interest. In this paper, we study the performance of various machine learning and deep learning approaches for the detection of Plasmodium on cell images from digital microscopy. We make use of a publicly available dataset composed of 27,558 cell images with equal instances of parasitized (contains Plasmodium) and uninfected (no Plasmodium) cells. We randomly split the dataset into groups of 80% and 20% for training and testing purposes, respectively. We apply color constancy and spatially resample all images to a particular size depending on the classification architecture implemented. We propose a fast Convolutional Neural Network (CNN) architecture for the classification of cell images. We also study and compare the performance of transfer learning algorithms developed based on well-established network architectures such as AlexNet, ResNet, VGG-16 and DenseNet. In addition, we study the performance of the bag-of-features model with Support Vector Machine for classification. The overall probability of a cell image comprising Plasmodium is determined based on the average of probabilities provided by all the CNN architectures implemented in this paper. Our proposed algorithm provided an overall accuracy of 96.7% on the testing dataset and area under the Receiver Operating Characteristic (ROC) curve value of 0.994 for 2756 parasitized cell images. This type of automated classification of cell images would enhance the workflow of microscopists and provide a valuable second opinion

    Using Multi-level Convolutional Neural Network for Classification of Lung Nodules on CT images

    Full text link
    © 2018 IEEE. Lung cancer is one of the four major cancers in the world. Accurate diagnosing of lung cancer in the early stage plays an important role to increase the survival rate. Computed Tomography (CT)is an effective method to help the doctor to detect the lung cancer. In this paper, we developed a multi-level convolutional neural network (ML-CNN)to investigate the problem of lung nodule malignancy classification. ML-CNN consists of three CNNs for extracting multi-scale features in lung nodule CT images. Furthermore, we flatten the output of the last pooling layer into a one-dimensional vector for every level and then concatenate them. This strategy can help to improve the performance of our model. The ML-CNN is applied to ternary classification of lung nodules (benign, indeterminate and malignant lung nodules). The experimental results show that our ML-CNN achieves 84.81\% accuracy without any additional hand-craft preprocessing algorithm. It is also indicated that our model achieves the best result in ternary classification

    Automating Leukemia Diagnosis with Autoencoders: A Comparative Study

    Full text link
    Leukemia is one of the most common and death-threatening types of cancer that threaten human life. Medical data from some of the patient's critical parameters contain valuable information hidden among these data. On this subject, deep learning can be used to extract this information. In this paper, AutoEncoders have been used to develop valuable features to help the precision of leukemia diagnosis. It has been attempted to get the best activation function and optimizer to use in AutoEncoder and designed the best architecture for this neural network. The proposed architecture is compared with this area's classical machine learning models. Our proposed method performs better than other machine learning in precision and f1-score metrics by more than 11%

    Lung cancer medical images classification using hybrid CNN-SVM

    Get PDF
    Lung cancer is one of the leading causes of death worldwide. Early detection of this disease increases the chances of survival. Computer-Aided Detection (CAD) has been used to process CT images of the lung to determine whether an image has traces of cancer. This paper presents an image classification method based on the hybrid Convolutional Neural Network (CNN) algorithm and Support Vector Machine (SVM). This algorithm is capable of automatically classifying and analyzing each lung image to check if there is any presence of cancer cells or not. CNN is easier to train and has fewer parameters compared to a fully connected network with the same number of hidden units. Moreover, SVM has been utilized to eliminate useless information that affects accuracy negatively. In recent years, Convolutional Neural Networks (CNNs) have achieved excellent performance in many computer visions tasks. In this study, the performance of this algorithm is evaluated, and the results indicated that our proposed CNN-SVM algorithm has been succeed in classifying lung images with 97.91% accuracy. This has shown the method's merit and its ability to classify lung cancer in CT images accurately
    corecore