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1. Introduction 
Lung cancer is one of the leading causes of death in Malaysia and around the world [1]. In 2018, 

lung cancer had the highest percentage of new cases and deaths worldwide, by 11.6% [2]. According to 

the statistics by World Health Organization, lung cancer has the second-highest rate of cases in Malaysia 

in 2018 after breast cancer. About 16.6% of the patients are male, while 5.4% are female. Based on The 

Malaysia National Cancer Registry Report 2012-2016, lung cancer stands as third-highest cancer 

detected among Malaysians, affecting males more than females [3]. It begins in the lungs, where cancer 

cells then may spread to lymph nodes or other organs in the body, such as the brain [4]. This disease is 

categorized into two main types called small cell lung cancer (SCLC) and non-small cell lung cancer 

(NSCLC). These two types of cancer are treated differently. The common type which affects about 80%-

85% of lung cancer patients is non-small cell cancer [5]. 

A small round or oval-shaped growth in lung sections is known as a pulmonary nodule. It is also 

called a 'coin lesion', which is usually larger than three centimeters in diameter [6]. Any nodule smaller 

than three centimeters is known as micro-nodules. Non-nodules such as blood vessels and bronchi walls 

have the same appearances as nodules and can cause false positives during the detection process [7]. 
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 Lung cancer is one of the leading causes of death worldwide. Early 

detection of this disease increases the chances of survival. Computer-Aided 

Detection (CAD) has been used to process CT images of the lung to 

determine whether an image has traces of cancer. This paper presents an 

image classification method based on the hybrid Convolutional Neural 

Network (CNN) algorithm and Support Vector Machine (SVM). This 

algorithm is capable of automatically classifying and analyzing each lung 

image to check if there is any presence of cancer cells or not. CNN is easier 

to train and has fewer parameters compared to a fully connected network 

with the same number of hidden units. Moreover, SVM has been utilized 

to eliminate useless information that affects accuracy negatively. In recent 

years, Convolutional Neural Networks (CNNs) have achieved excellent 

performance in many computer visions tasks. In this study, the performance 

of this algorithm is evaluated, and the results indicated that our proposed 

CNN-SVM algorithm has been succeed in classifying lung images with 

97.91% accuracy. This has shown the method's merit and its ability to 

classify lung cancer in CT images accurately.  
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Pulmonary nodules can be detected on CT scan images or X-ray films. By identifying and classifying 

malignant from benign nodules, the malignant nodules can be removed at an early stage to prevent 

further spreading of tumor cells which leads to fatality. Lung cancer classification is significant because 

most people diagnosed with this disease are within the age range of 55-65. Early diagnosis and treatment 

are crucial for their survival. An early diagnosis for lung cancer detection is by lung radiology test (lung 

image), called Chest X-Ray test. Lung image will show different results between normal lung and 

abnormal lung. The existence of nodules in the lung image indicates that the lung is not normal [8]. 

Fig.1 displays a standard lung image and a denoised lung image from level 1 to 10 using Haar Wavelet. 
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Fig. 1. (a) Normal Lung Image, (b) Denoised Lung Image with Haar Wavelet Levell, (c) Denoised Lung Image 

with Haar Level 2, (d) Denoised Lung Image with Haar Level 3, (e) Denoised Lung Image with Haar 

Level 4, (f) Denoised Lung Image with Haar Level 5, (g) Denoised Lung Image with Haar Level 6, (h) 

Denoised Lung Image with Haar Level 7, (i) Denoised Lung Image with Haar Level 8, (j) Denoised Lung 

Image with Haar Level 9, (k) Denoised Lung Image with Haar Level 10 [8]. 

Detection of lung cancer in its early stages could reduce the fatality rate [9][10]. Early detection of 

cancerous cells is crucial to prevent them from growing and remove them early before they start to grow 

rapidly. Also, accurate location and size detection of benign cells is another crucial point to be taken as 

in CT scans. It is difficult to differentiate cancerous nodules from other pulmonary nodules that are not 

cancerous by only depending on visual estimation, which is a traditional way for healthcare workers to 

examine CT scans. Computer-Aided Detection (CAD) systems have been utilized to process medical 

images such as CT scan images to assist the medical personnel in the early detection of lung cancer [11]–

[14]. It has been reported that CAD systems have an enormous positive impact on the job of radiologists 

in detecting cancer, and the systems could be used as a second reader [15]. CAD systems are based on 

computer algorithms that process images such as CT scan images of the lung to determine whether a 

given image has any sign of cancer; this process is called image classification. Several machine learning 

algorithms have been proposed to classify medical images and determine the existence of lung cancer, 

such as those of [16]–[18]. Singh & Gupta [19] have researched various machine learning approaches 

for the classification and detection of lung cancers using CT scan images. Different classifiers are put to 

the test to determine the best machine learning algorithm from the classification process. The results 
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show that multilayer perceptron or neural networks can be applied to classify lung cancer CT scan images 

because it obtained a high percentage of accuracy precision value. Over the years, deep learning has been 

used increasingly in various fields, and research on deep learning are growing rapidly. Various techniques 

are proven to give accurate and precise results, which help humans detect errors and mistakes at early 

stages and help to predict the outcomes. 

Machine and deep learning methods are used widely in the medical and healthcare field for 

monitoring, detecting, classifying, and predicting diseases [20]–[24]. For instance, an established 

Artificial Intelligent system for detecting and classifying hemoglobin to monitor blood loss, the Triton™ 

system by Gauss Surgical™, a medical technology company, has been used in a few hospitals such as at 

Mount Sinai Hospital to monitor blood loss and prevent hemorrhage by early detection [25]. Various 

studies proved that computational methods applied in Triton™ have high prediction accuracy towards 

early detection of hemorrhage [26]. The results produced by deep learning are convincing and deep 

learning should have focused more on helping in the medical sector. Convolutional Neural Networks 

(CNNs) have recently become a popular diagnostic tool due to the high performance in segmentation, 

pattern detection, recognition, and classification [27].  Moreover, CNN is known to have the best 

performance when using large amounts of data lacking in medical imaging due to several factors such as 

ethics and lack of well-labeled data. Many researchers have tried to overcome this problem by proposing 

advanced off-the-shelf CNNs, advanced implementation techniques, and many more to propose an 

algorithm that leverage performance even with small dataset [7]. 

Deep learning is utilized in this study for lung cancer classification due to its merit as a popular and 

powerful method of pattern recognition and classification [28][29].  Deep learning, specifically CNN, is 

known to have a high success rate if only a huge amount of data is implied. A large number of well-

labeled training data such as ImageNet is required for CNN to have a good performance which medical 

images lack. Large datasets are not always available due to several factors such as the costly expert 

explanatory notes, ethical issues, and shortage of disease images [30]. The model with a large number of 

parameters will fail to learn the patterns if supplied with small datasets and can easily cause overfitting 

[31]. Most traditional CNN architectures' performance depends heavily on the size of data. They initially 

have numerous parameters and state of art CNN models trained with large datasets such as ImageNet is 

unsuitable for datasets with hundreds or thousands of instances [32]. This poses a problem that 

researchers must address in order to improve model output despite having a large amount of labelled 

data. As a result, conventional CNN is unsuitable for medical imaging processes involving small datasets 

(hundreds to thousands number of data). It is important to investigate a new algorithm in order to 

obtain a more accurate result [17][33][34]. 

Although many deep learning-based algorithms for lung cancer have been proposed [35]–[40], there 

is much room for their accuracy to be improved. Therefore, a CNN-SVM architecture has been proposed 

in this paper, which removes and eliminates useless information that negatively impacts accuracy. This 

is accomplished in the CNN architecture's pooling step, which is used to classify lung cancer in the fully 

connected layer using a modified SVM architecture. 

2. Method 
Deep learning is no longer a stranger to the medical imaging analysis field. It is a growing trend, and 

the demand for deep learning in achieving accurate and precise results is growing [41]. Deep learning 

involves imitating how the human brain works in dealing with data and recognizing patterns for decision-

making [42]–[45]. With the emerging of technology and better algorithms, more machinery gives high 

accuracy and reliability for medical analysis. Detection of cancerous or malignant cells is crucial for the 

treatment of lung cancer. Application of image analysis deep learning on computed tomography (CT) 

scan images helps to detect malignant cells early before they develop and become lethal [5]. Deep 

learning has been proven to have significant performance in image processing, especially in object 

detection and localization [19]. Deep learning uses multiple layers to represent the abstractions of data 

to build computational models [46]. A deep learning algorithm with Convolutional Neural Networks 
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(CNNs) is applied to a dataset to perform a classification task. Fig. 2 shows an illustration of a 

Convolutional Neural Network in conjunction with a support vector machine. 

 

Fig. 2. Illustration of a Convolutional Neural Network in conjunction with a support vector machine (Adopted 

from [47]).  

In Fig. 2, Yu et al. [47] proposed a system for predicting epidermal growth factor receptor (EGFR) 

mutations that have been known to be associated with lung cancer. In the system, six layers of CNN are 

constructed to learn deep image features, and then the Support Vector Machine (SVM) classifier is used 

for prediction. This system was tested on two datasets, and it achieved accuracy levels of 76.16 % and 

67.55% on Dataset1 and Dataset2, respectively. By learning from the deep-layered and hierarchical data 

models, the deep learning algorithms can outperform the traditional machine learning models [33]. 

With deep learning, the data are processed easily. According to [48], deep learning has been found to 

identify the underlying structure of data using auto-encoders and other techniques. A CNN is the most 

popular choice when it comes to image classification. This is because CNN architecture implicitly 

combines the benefits of the standard neural network training with the convolution operation to classify 

images efficiently. da Silva et al. [33] tested the functionality of the deep learning algorithms for lung 

cancer diagnosis with cases from Lung Image Database Consortium (LIDC) database. The results 

showed the promising performance of deep learning algorithms, and the accuracy achieved was an 

impressive rate of 79.40%. The researchers intended to test the deeper structured schemes for lung 

cancer diagnosis and seek more efficient ways to minimize the downsample effect. They compared their 

method with Deep Belief Networks (DBNs) and Stacked Denoising Autoencoder (SDAE) using the 

same dataset. They achieved accuracies of 81.19% and 79.29% on DBN and SDAE, respectively. The 

comparison results demonstrated the great potential of deep structured algorithms and computer learned 

features in the domain of medical imaging. In the article by Ali et al. [49], the authors reported 

developing a reinforcement learning model based on deep artificial neural networks for the early 

detection of lung cancer. The authors used the LUNA dataset, a subset of the LIDC/IDRI and achieved 

an accuracy of 99.1% on the training set and 64.4% on the testing set. Another system was proposed by 

[50], where the authors developed a CAD system for lung nodule classification based on multi-view 

multi-scale CNN. The system was tested on both the LIDC/IDRI and ELCAP datasets and achieved 

92.3% and 90.3% accuracy on both datasets, respectively. The aforementioned studies show that CNN 

performance in many instances could be improved to achieve higher accuracy and assist in the early 

detection of lung cancer with minimum errors. 

2.1. Dataset 
This study utilized the CT images from the Chest CT-Scan Images Dataset [16]. This dataset consists 

of CT images of normal lung images and lung cancer images. Since the data was cleaned and of high 

resolution, the database was perfect for deep learning. We created a subset of the dataset with 1000 

images comprising cancer images (adenocarcinoma, large cell carcinoma, squamous cell carcinoma) and 

normal images. Examples of the images are shown in Fig. 3 and Fig. 4. Each training, testing, and 

validation set has four classes of images (adenocarcinoma, large cell carcinoma, normal and squamous 
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cell carcinoma). The data was separated into training, testing, and validation sets to evaluate the 

classification model. 

  

Fig. 3. Lung image with no cancer. Fig. 4. Lung image with cancer (large cell 

carcinoma)  – yellow circle. 

2.2. Data Augmentation 
Data augmentation methods were added to the workflow of these experiments to enlarge the data 

set and avoid overfitting issues [51]–[53]. This technique aims to increase the number of deep neural 

model training datasets, balance the size of the datasets, and boost their efficiency, but it is still the 

subject of research [54]. The dataset used in this paper has been increased from 1000 images to 5103 

images via the color transformation technique by intensity adjustment. There was no specific 

requirement for deep learning, but the training data set needs to be high-quality in medical imaging 

[55]. Based on [56], at least 500 to more than 1000 images per class is good enough for classification 

task in Deep Neural Network (DNN).  In this experiment, 20% of the total dataset was utilized as a 

testing set, and the remaining data was divided into the train-validation split of 80-20.  

2.3. Convolution Neural Network (CNN) 
The deep learning algorithm used in this study is Convolutional Neural Network. A convolutional 

neural network (CNN) is a type of multilayer feedforward biologically influenced neural network [57]–

[60]. A CNN has several layers, which can be classified into three types: convolutional (compute the 

output of the connected local input region neurons), max-pooling (sub-sampling the inputs), and fully 

connected layers (used in computing each class' activation). The input to a CNN is an n x n x m image, 

where n is the height and width and m is the number of channels, and there will be k convolutional 

filters of size a x a in the convolutional layer, where a < n. The CNN is built and then fitted into the 

dataset. In CT scan images, a slice has a width and height of 512x512 which are multiplied by the number 

of images, in our case 5103 images. In this study, the CNN model consists of 4 steps: 1) the convolution 

layer; 2) the pooling layer; 3) the flattening layer; and 4) the full connection layer. Fig. 5 shows the 

architecture of the model. 

In the Convolution Layer, feature maps are created by multiplying the input images with feature 

detectors. Many feature maps are created, and the size of the image becomes smaller for easier processing. 

Due to the use of several feature detectors, different feature maps are created. Within this step, the 

ReLU activation function is used to increase the non-linearity in the CNN (since images are generally 

non-linear). In the Pooling layer, the feature maps' resolution is reduced; in this step, the max-pooling 

is applied where a window function is applied to the input feature map and computes the maximum in 

the neighborhood. In this step, a large amount of useless information is eliminated, and this has a great 

impact on producing better results since unrelated/useless information will not be fed into the fully 

connected layer. In the flattening step, the pooled feature map is flattened into a column. This is done 

to further process it in the Support Vector Machine (SVM). Lastly, all features are processed in a fully 

connected layer that consists of SVM, which produces one of four options: adenocarcinoma, large cell 
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carcinoma, normal or squamous cell carcinoma. In this study, the above architecture was implemented 

with Python 3.7 using Jupyter Notebook, which was installed in Intel Core i5 10

th

 Gen processor with 

16 GB of memory and NVIDIA GeForce RTX 2060 GPU support with 6 GB of memory.  

 

 

Fig. 5. A flow chart of the architecture of the CNN-SVM model. 

2.4. Model Training   
In the model training, Adam was used as a neural work optimizer and categorical cross entropy was 

used as a loss function. The important parameters such as batch size, epoch values, and learning rate 

were the same as those utilized in the training of the proposed CNN-SVM model. These values were 64 

for batch size, 60 epoch values with 2000 steps per epoch, and a learning rate of 0.0001. 

3. Result and Discussion 
The last part is evaluating whether the proposed method has succeeded in enhancing the accuracy of 

prediction. Accuracy refers to the closeness of a measured value to a standard or known value. The 

accuracy of the result is very important in determining the best algorithm to use in the future. The 

higher the accuracy, the more excellent the results of the research are. The accuracy can be calculated 

based on (1). 

Accuracy =  TP+TN
TP+TN+FP+FN

  (1) 

where TP refers to True Positives, TN refers to True Negative, FP refers to the False Positive, and FN 

refers to False Negative. The experiment runs 60 times using the datasets for training and validation. At 

the beginning of the training, the accuracy was low because the training was executed only a few times. 

After the number of epochs increased, the accuracy improved. Table 1 shows the final accuracy obtained 

in the Chest CT-Scan images dataset.  

Table 1.  Results of the dataset at the beginning and at the end of the training and testing. 

Epoch No Loss Accuracy Validation loss Validation accuracy 
1 1.2785 0.3582 1.5085 0.3635 

……… 

60 0.0992 0.9671 0.0732 0.9791 

 

As shown in Table 1, the performance of the CNN-SVM method reached a high rate of 96.71% on 

the training set and 97.91% on the validation set. In the reported result, there are 4 components: 

accuracy, validation accuracy, loss, and validation loss. Fig. 6 and Fig. 7 show training loss versus 

validation loss and training accuracy versus validation accuracy, respectively. As shown in Fig. 7, the 

Convolutional Neural Network Support Vector Machine 
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training accuracy increases as the number of epochs increases. This means that the higher the number 

of epochs, the more the CNN-SVM algorithm adapts to the dataset in classifying the images. 

 

 

Fig. 6. The training loss and validation loss. 

 

Fig. 7.  The training accuracy and validation 

accuracy.  

Consequently, using the confusion matrix (shown in Fig. 8), the sensitivity, specificity and precision 

were computed. These performance measures are determined using (2) to (4). 

Sensitivity =  TP
TP+FN

. 100%  (2) 

Specificity =  TN
TN+FP

. 100%  (3) 

Precision =  TP
TP+FP

. 100%  (4) 

Fig. 8 and Fig. 9 show the confusion matrix and Receiver Operating Characteristics (ROC) curve 

performance, respectively. Table 2 illustrates the performance measure in this experiment. 

 

Fig. 8. Confusion Matrix Performance.  
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Fig. 9. ROC Curve Performance. 

Table 2.  The performance measure in this experiment. 

Type of Lung Cancer Sensitivity  Specificity Precision 
Adenocarcinoma 95.42% 99.74% 99.13% 

Large Cell Carcinoma 98.65% 99.72% 99.32% 

Normal 100.00% 97.93% 93.82% 

Squamous Cell Carcinoma 97.52% 99.87% 99.58% 

Average 97.90% 99.32% 97.96% 

Table 3 compares the implementation of the CNN and other recent works that are also based on 

deep learning. As shown in Table 3, our work achieves better accuracy if compared with most of the 

other recent works (which have been reported in this paper) except that of [49], which achieved 99.1% 

using the training set. However, the accuracy of the testing set is 64.4%, which is low compared to the 

test accuracy of 97.91% obtained from our work. In addition, the proposed work also shows promising 

performance in terms of sensitivity, specificity, precision, and AUC when compared with existing works. 

On top of that, the number of epochs used in [49] was 120 compared with 60 epochs in our training. 

Table 3.  Comparison with other published works. 

Published work Dataset Accuracy Sensitivity Specificity Precision AUC 
CNN+SVM [16] Private 76.16% 73.80% 78.24% - 0.828 

CNN [14] LIDC 79.40%. - - - - 

DBNs [14] LIDC 81.19% - - - - 

SDAE [14] LIDC 79.29% - - - - 

Reinforcement learning deep 

ANN [17] 

LUNA 

Training: 99.1% 
Testing: 64.4%  

58.90% 55.30% 54.26% - 

Multi-view multi-scale CNN 

[18] 

LIDC/IDRI 92.3% - - - - 

ELCAP 90.3% - - - - 

Proposed CNN-SVM 

Chest CT-Scan 

images Dataset 

Training: 

96.71%  

Testing: 97.91% 

97.90% 99.32% 97.96% 1.000 
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4. Conclusion 
This study introduces a hybrid CNN-SVM method to classify lung CT images into adenocarcinoma, 

large cell carcinoma, normal or squamous cell carcinoma. The aim was to achieve a higher level of 

accuracy, which is the goal of any computer-aided detection system. The method was applied to the 

Chest CT-Scan images dataset, a standard and publicly available cluster of CT images. A total of 5103 

images were used to test the method, and a classification accuracy rate of 97.91% was achieved. It shows 

the superiority of the proposed hybrid CNN-SVM and its capabilities in the applications. Furthermore, 

the proposed CNN-SVM method also provides the sensitivity, specificity, precision, and AUC of 

97.90%, 99.32%, 97.96%, and 1.000, respectively. For future work, the researchers aim to test the 

method with different datasets. The level of accuracy can be further improved by increasing the number 

of images utilized for the procedure. Additionally, X-ray, X-beam, and PET images can be interpreted 

by utilizing this method. An examination should be possible for all these images.  By studying and 

analyzing the prediction results of different types of images, the medical personnel will be able to use 

the most suitable images to discover lung malignancy. 
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