449 research outputs found

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Haptic Glove and Platform with Gestural Control For Neuromorphic Tactile Sensory Feedback In Medical Telepresence

    Get PDF
    Advancements in the study of the human sense of touch are fueling the field of haptics. This is paving the way for augmenting sensory perception during object palpation in tele-surgery and reproducing the sensed information through tactile feedback. Here, we present a novel tele-palpation apparatus that enables the user to detect nodules with various distinct stiffness buried in an ad-hoc polymeric phantom. The contact force measured by the platform was encoded using a neuromorphic model and reproduced on the index fingertip of a remote user through a haptic glove embedding a piezoelectric disk. We assessed the effectiveness of this feedback in allowing nodule identification under two experimental conditions of real-time telepresence: In Line of Sight (ILS), where the platform was placed in the visible range of a user; and the more demanding Not In Line of Sight (NILS), with the platform and the user being 50 km apart. We found that the entailed percentage of identification was higher for stiffer inclusions with respect to the softer ones (average of 74% within the duration of the task), in both telepresence conditions evaluated. These promising results call for further exploration of tactile augmentation technology for telepresence in medical interventions

    A Wearable Mechatronic Device for Hand Tremor Monitoring and Suppression: Development and Evaluation

    Get PDF
    Tremor, one of the most disabling symptoms of Parkinson\u27s disease (PD), significantly affects the quality of life of the individuals who suffer from it. These people live with difficulties with fine motor tasks, such as eating and writing, and suffer from social embarrassment. Traditional medicines are often ineffective, and surgery is highly invasive and risky. The emergence of wearable technology facilitates an externally worn mechatronic tremor suppression device as a potential alternative approach for tremor management. However, no device has been developed for the suppression of finger tremor that has been validated on a human. It has been reported in the literature that tremor can be selectively suppressed by mechanical loading. Therefore, the objectives of this thesis were to develop a wearable tremor suppression device that can suppress tremor at the wrist and the fingers, and to evaluate it on individuals with PD in a pre-clinical trial. To address these objectives, several experiments were performed to quantify hand tremor; an enhanced high-order tremor estimator was developed and evaluated for tremor estimation; and a wearable tremor suppression glove (WTSG) was developed to suppress tremor in the index finger metacarpophalangeal (MCP) joint, the thumb MCP joint, and the wrist. A total of 18 individuals with PD were recruited for characterizing tremor. The frequencies and magnitudes of the linear acceleration, angular velocity, and angular displacement of tremor in the index finger MCP joint, the thumb MCP joint, and the wrist were quantified. The results showed that parkinsonian tremor consists of multiple harmonics, and that the second and third harmonics cannot be ignored. With the knowledge of the tremor characteristics, an enhanced high-order tremor estimator was developed to acquire better tremor estimation accuracy than its lower-order counterpart. In addition, the evaluation of the WTSG was conducted on both a physical tremor simulator and on one individual with PD. The results of the simulation study proved the feasibility of using the WTSG to suppress tremor; and the results of the evaluation on a human subject showed that the WTSG can suppress tremor motion while allowing the user to perform voluntary motions. The WTSG developed as a result of this work has demonstrated the feasibility of managing hand tremor with a mechatronic device, and its validation on a human subject has provided useful insights from the user\u27s perspectives, which facilitate the transition of the WTSG from the lab to the clinic, and eventually to commercial use. Lastly, an evaluation studying the impact of suppressed tremor on unrestricted joints was conducted on 14 individuals with PD. The results showed a significant increase in tremor magnitude in the unrestricted distal joints when the motions of the proximal joints were restricted. The average increase of the tremor magnitude of the index finger MCP joint, the thumb MCP joint, the wrist and the elbow are 54%, 96%, 124%, and 98% for resting tremor, and 50%, 102%, 49%, and 107% for postural tremor, respectively. Such a result provided additional clinical justification for the significance of the development of a wearable mechatronic device for hand tremor management. Although the focus of this thesis is on hand tremor management, the development and evaluation of a full upper-limb tremor suppression device is required as a future step, in order to advance the use of wearable mechatronic devices as one of the valid tremor treatment approaches

    Final report key contents: main results accomplished by the EU-Funded project IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots

    Get PDF
    This document has the goal of presenting the main scientific and technological achievements of the project IM-CLeVeR. The document is organised as follows: 1. Project executive summary: a brief overview of the project vision, objectives and keywords. 2. Beneficiaries of the project and contacts: list of Teams (partners) of the project, Team Leaders and contacts. 3. Project context and objectives: the vision of the project and its overall objectives 4. Overview of work performed and main results achieved: a one page overview of the main results of the project 5. Overview of main results per partner: a bullet-point list of main results per partners 6. Main achievements in detail, per partner: a throughout explanation of the main results per partner (but including collaboration work), with also reference to the main publications supporting them

    The Next-Generation Surgical Robots

    Get PDF
    The chronicle of surgical robots is short but remarkable. Within 20 years since the regulatory approval of the first surgical robot, more than 3,000 units were installed worldwide, and more than half a million robotic surgical procedures were carried out in the past year alone. The exceptionally high speeds of market penetration and expansion to new surgical areas had raised technical, clinical, and ethical concerns. However, from a technological perspective, surgical robots today are far from perfect, with a list of improvements expected for the next-generation systems. On the other hand, robotic technologies are flourishing at ever-faster paces. Without the inherent conservation and safety requirements in medicine, general robotic research could be substantially more agile and explorative. As a result, various technical innovations in robotics developed in recent years could potentially be grafted into surgical applications and ignite the next major advancement in robotic surgery. In this article, the current generation of surgical robots is reviewed from a technological point of view, including three of possibly the most debated technical topics in surgical robotics: vision, haptics, and accessibility. Further to that, several emerging robotic technologies are highlighted for their potential applications in next-generation robotic surgery

    Signals to Spikes for Neuromorphic Regulated Reservoir Computing and EMG Hand Gesture Recognition

    Full text link
    Surface electromyogram (sEMG) signals result from muscle movement and hence they are an ideal candidate for benchmarking event-driven sensing and computing. We propose a simple yet novel approach for optimizing the spike encoding algorithm's hyper-parameters inspired by the readout layer concept in reservoir computing. Using a simple machine learning algorithm after spike encoding, we report performance higher than the state-of-the-art spiking neural networks on two open-source datasets for hand gesture recognition. The spike encoded data is processed through a spiking reservoir with a biologically inspired topology and neuron model. When trained with the unsupervised activity regulation CRITICAL algorithm to operate at the edge of chaos, the reservoir yields better performance than state-of-the-art convolutional neural networks. The reservoir performance with regulated activity was found to be 89.72% for the Roshambo EMG dataset and 70.6% for the EMG subset of sensor fusion dataset. Therefore, the biologically-inspired computing paradigm, which is known for being power efficient, also proves to have a great potential when compared with conventional AI algorithms.Comment: Accepted to International Conference on Neuromorphic Systems (ICONS 2021

    From Concept to Market: Surgical Robot Development

    Get PDF
    Surgical robotics and supporting technologies have really become a prime example of modern applied information technology infiltrating our everyday lives. The development of these systems spans across four decades, and only the last few years brought the market value and saw the rising customer base imagined already by the early developers. This chapter guides through the historical development of the most important systems, and provide references and lessons learnt for current engineers facing similar challenges. A special emphasis is put on system validation, assessment and clearance, as the most commonly cited barrier hindering the wider deployment of a system

    Haptic ankle platform for interactive walking in virtual reality.

    Get PDF
    This paper presents an impedance type ankle haptic interface for providing users with an immersive navigation experience in virtual reality (VR). The ankle platform actuated by an electric motor with feedback control enables the use of foot-tapping gestures to create a walking experience similar to a real one and to haptically render different types of walking terrains. Experimental studies demonstrated that the interface can be easily used to generate virtual walking and it is capable to render terrains such as hard and soft surfaces, and multi-layer complex dynamic terrains. The designed system is a seated-type VR locomotion interface, therefore allowing its user to maintain a stable seated posture to comfortably navigate a virtual scene
    corecore