49 research outputs found

    Publication list of Zoltán Ésik

    Get PDF

    Non-Uniform Complexity via Non-Wellfounded Proofs

    Get PDF

    Sherali-Adams and the binary encoding of combinatorial principles.

    Get PDF
    We consider the Sherali-Adams ( SA ) refutation system together with the unusual binary encoding of certain combinatorial principles. For the unary encoding of the Pigeonhole Principle and the Least Number Principle, it is known that linear rank is required for refutations in SA , although both admit refutations of polynomial size. We prove that the binary encoding of the Pigeonhole Principle requires exponentially-sized SA refutations, whereas the binary encoding of the Least Number Principle admits logarithmic rank, polynomially-sized SA refutations. We continue by considering a refutation system between SA and Lasserre (Sum-of-Squares). In this system, the unary encoding of the Least Number Principle requires linear rank while the unary encoding of the Pigeonhole Principle becomes constant rank

    Resolution and the binary encoding of combinatorial principles.

    Get PDF
    Res(s) is an extension of Resolution working on s-DNFs. We prove tight n (k) lower bounds for the size of refutations of the binary version of the k-Clique Principle in Res(o(log log n)). Our result improves that of Lauria, Pudlák et al. [27] who proved the lower bound for Res(1), i.e. Resolution. The exact complexity of the (unary) k-Clique Principle in Resolution is unknown. To prove the lower bound we do not use any form of the Switching Lemma [35], instead we apply a recursive argument specific for binary encodings. Since for the k-Clique and other principles lower bounds in Resolution for the unary version follow from lower bounds in Res(log n) for their binary version we start a systematic study of the complexity of proofs in Resolution-based systems for families of contradictions given in the binary encoding. We go on to consider the binary version of the weak Pigeonhole Principle Bin-PHPmn for m > n. Using the the same recursive approach we prove the new result that for any > 0, Bin-PHPmn requires proofs of size 2n1− in Res(s) for s = o(log1/2 n). Our lower bound is almost optimal since for m 2 p n log n there are quasipolynomial size proofs of Bin-PHPmn in Res(log n). Finally we propose a general theory in which to compare the complexity of refuting the binary and unary versions of large classes of combinatorial principles, namely those expressible as first order formulae in 2-form and with no finite model

    Fifth Biennial Report : June 1999 - August 2001

    No full text
    corecore