7 research outputs found

    AudioPairBank: Towards A Large-Scale Tag-Pair-Based Audio Content Analysis

    Full text link
    Recently, sound recognition has been used to identify sounds, such as car and river. However, sounds have nuances that may be better described by adjective-noun pairs such as slow car, and verb-noun pairs such as flying insects, which are under explored. Therefore, in this work we investigate the relation between audio content and both adjective-noun pairs and verb-noun pairs. Due to the lack of datasets with these kinds of annotations, we collected and processed the AudioPairBank corpus consisting of a combined total of 1,123 pairs and over 33,000 audio files. One contribution is the previously unavailable documentation of the challenges and implications of collecting audio recordings with these type of labels. A second contribution is to show the degree of correlation between the audio content and the labels through sound recognition experiments, which yielded results of 70% accuracy, hence also providing a performance benchmark. The results and study in this paper encourage further exploration of the nuances in audio and are meant to complement similar research performed on images and text in multimedia analysis.Comment: This paper is a revised version of "AudioSentibank: Large-scale Semantic Ontology of Acoustic Concepts for Audio Content Analysis

    Assessing interpersonal trust in an ambient intelligence negotiation system

    Get PDF
    This paper describes an approach to assess and measure trust based on a specific Ambient Intelligence environment. The primary aim of this work is to address and expand on this line of research by investigating the possibility of measuring trust based on quantifiable behavior. To do so, we present a brief review of the existing definitions of trust and define trust in the context of an Ambient Intelligence (AmI) scenario. Further, we propose a formal definition so that the analysis of trust in this kind of scenarios can be developed. Thus, it is suggested the use of Ambient Intelligence techniques that use a trust data model to collect and evaluate relevant information based on the assumption that observable trust between two entities (parties) results in certain typical behaviors. This will establish the foundation for the prediction of such aspects based on the analysis of people’s interaction with technological environments, providing new potentially interesting trust assessment tools.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the Project Scope UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Enhanced P2P Services Providing Multimedia Content

    Get PDF
    The retrieval facilities of most Peer-to-Peer (P2P) systems are limited to queries based on unique identifiers or small sets of keywords. Unfortunately, this approach is very inadequate and inefficient when a huge amount of multimedia resources is shared. To address this major limitation, we propose an original image and video sharing system, in which a user is able to interactively search interesting resources by means of content-based image and video retrieval techniques. In order to limit the network traffic load, maximizing the usefulness of each peer contacted in the query process, we also propose the adoption of an adaptive overlay routing algorithm, exploiting compact representations of the multimedia resources shared by each peer. Experimental results confirm the validity of the proposed approach, that is capable of dynamically adapting the network topology to peer interests, on the basis of query interactions among users

    Similarity searching in sequence databases under time warping.

    Get PDF
    Wong, Siu Fung.Thesis submitted in: December 2003.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 77-84).Abstracts in English and Chinese.Abstract --- p.iiAcknowledgement --- p.viChapter 1 --- Introduction --- p.1Chapter 2 --- Preliminary --- p.6Chapter 2.1 --- Dynamic Time Warping (DTW) --- p.6Chapter 2.2 --- Spatial Indexing --- p.10Chapter 2.3 --- Relevance Feedback --- p.11Chapter 3 --- Literature Review --- p.13Chapter 3.1 --- Searching Sequences under Euclidean Metric --- p.13Chapter 3.2 --- Searching Sequences under Dynamic Time Warping Metric --- p.17Chapter 4 --- Subsequence Matching under Time Warping --- p.21Chapter 4.1 --- Subsequence Matching --- p.22Chapter 4.1.1 --- Sequential Search --- p.22Chapter 4.1.2 --- Indexing Scheme --- p.23Chapter 4.2 --- Lower Bound Technique --- p.25Chapter 4.2.1 --- Properties of Lower Bound Technique --- p.26Chapter 4.2.2 --- Existing Lower Bound Functions --- p.27Chapter 4.3 --- Point-Based indexing --- p.28Chapter 4.3.1 --- Lower Bound for subsequences matching --- p.28Chapter 4.3.2 --- Algorithm --- p.35Chapter 4.4 --- Rectangle-Based indexing --- p.37Chapter 4.4.1 --- Lower Bound for subsequences matching --- p.37Chapter 4.4.2 --- Algorithm --- p.41Chapter 4.5 --- Experimental Results --- p.43Chapter 4.5.1 --- Candidate ratio vs Width of warping window --- p.44Chapter 4.5.2 --- CPU time vs Number of subsequences --- p.45Chapter 4.5.3 --- CPU time vs Width of warping window --- p.46Chapter 4.5.4 --- CPU time vs Threshold --- p.46Chapter 4.6 --- Summary --- p.47Chapter 5 --- Relevance Feedback under Time Warping --- p.49Chapter 5.1 --- Integrating Relevance Feedback with DTW --- p.49Chapter 5.2 --- Query Reformulation --- p.53Chapter 5.2.1 --- Constraint Updating --- p.53Chapter 5.2.2 --- Weight Updating --- p.55Chapter 5.2.3 --- Overall Strategy --- p.58Chapter 5.3 --- Experiments and Evaluation --- p.59Chapter 5.3.1 --- Effectiveness of the strategy --- p.61Chapter 5.3.2 --- Efficiency of the strategy --- p.63Chapter 5.3.3 --- Usability --- p.64Chapter 5.4 --- Summary --- p.71Chapter 6 --- Conclusion --- p.72Chapter A --- Deduction of Data Bounding Hyper-rectangle --- p.74Chapter B --- Proof of Theorem2 --- p.76Bibliography --- p.77Publications --- p.8

    Computer learning of subjectivity

    No full text

    Computer Learning of Subjectivity

    No full text
    tic control knobs." For example, the Wold model for retrieving perceptually similar visual patterns has knobs corresponding to periodicity, directionality, and randomness [2]. However, rarely can models with semantic control knobs be found. Even when they exist, it is an effort to know how to optimally set them. Moreover, usually a person does not make a single query, but a succession of queries, with slight variations each time. Therefore, she not only needs to know how to set the knobs when initiating a query session, but also how to adjust them with each new query. What I have described is the current trend in content-based retrieval and annotation systems, and it needs to change. The system must recognize that the user's goals evolve while they browse; subjectivity, mood-dependence, and fickleness are to be expected. Furthermore, a system that tracks the evolving goals of a subjective human will also be helpful for the difficult but common query sessions best described as "I'll kn
    corecore