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Abstract 

Finding similar patterns among time series data is very important, as many 

data are in the form of time series. Most of the research work uses Euclidean 

distance as their similarity metric. However, Dynamic Time Warping (DTW) 

distance is more robust than Euclidean distance in many situations, where 

sequences may be of different lengths or their patterns are out of phase in the 

time axis. Unfortunately, DTW does not satisfy the triangle inequality, so 

that spatial indexing techniques cannot be applied directly. We generalized 

an lower-bound technique for DTW to handle subsequence matching by two 

different indexing strategies. These methods takes full advantage of "sliding 

window" approach and R-tree. The first method uses a sliding window to 

extract multidimensional points for indexing. The second method, however, is 

to store multidimensional rectangles instead of points in the indexing structure. 

Although it has been realized that Dynamic Time Warping (DTW) dis-

tance is more robust than Euclidean distance in the time series domain, DTW 

still cannot reflect users' subjective preferences, as it is a "fixed" distance met-

ric. The perception of similarity may vary from user to user and from scope 
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to scope. Relevance Feedback, a technique proposed to "learn" user's require-

ment, is used to deal with this issue. We introduce a relevance feedback strat-

egy, which is based on the DTW metric, to capture users' preferences. Instead 

of using a fixed warping path constraint, we suggest to use a reformable path 

constraint together with weighting factors embedded in the distance calcula-

tion. By refining the constraint and weights according to the user's feedback, 

his or her subjective perception can be captured during the retrieval process. 
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基於時間伸縮的序列數據的相似性查詢 

作者 汪紹鋒 

香港中文大學 二零零三年十二月 

摘要 

由於有很多數據都是以時間序列的形式表達’在時間序列數據中搜尋相似形 

狀是很重要的 °大部份的研究工作都是以歐幾里德距離作為它們的相似公 

制。然而，在很多情况下動態時間伸縮距離比歐幾里德距離更健全，例如當 

序列的長度不一，或是大家的形狀在時間軸上出現相位差。遺憾地，動態時 

間伸縮距離並不符合三角不等式°因此’任何空間索引技術均不能被應用° 

我們由動態時間伸縮距離的下界技術歸納出兩種不同的索引策略，用以處理 

子序列匹配。這兩個策略利用了滑動窗方法和R-樹。第一個策略使用滑動窗 

取出多維點，再以多維點建立索引。然而’第二個策略是存放多維矩形於索 

引之中，以之代替多維點° 

雖然，大家意識到在時間序列的範•之中，動態時間伸縮距離比歐幾里德距 

離更健全，但是動態時間伸縮距離還是不反映使用者的喜好，因為它是一種 

「固定」的距離公制。不同的使用者和不同的領域對相似的觀念都有不同。 

相關回馈是一種「學習」使用者要求的技巧’透過這種技巧可以應付上述的 

問題。我們根據動態時間伸縮公制，提出一種相關回饋的策略’從而獲得使 

用者的喜好。我們不使用固定的伸縮途徑限制，反而提出一種可更改的伸縮 

途徑限制’同時把加權因素嵌進距離計算之中。在檢素的過程中’我們透過 

使用者的回饋去改進伸縮途徑限制和加權°那麼，便能獲得使用者的主觀看 

法 ° 
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and HIi, 52 

5.5 An example of path constraint update at the initial stage. . . . 55 

5.6 An illusion of Algorithm 4 55 

5.7 An example of warping path constraint together with the im-

portance of qî  56 
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Chapter 1 

Introduction 

A time series X = 3；2,... is a sequence of real numbers, where each 

number Xi represents a value at a point of time. In the real world, data always 

appear in the form of time series, e.g. temperature, atmosphere, stock prices, 

experimental results . . . etc. Therefore, studying patterns of time series is very-

important in many areas. For example, in a financial application, we may 

need to find out some specific patterns in a daily stock price sequence, in order 

to predict the future trend. Extensive research has been done on similarity 

searching of time series [2’ 15, 29’ 11, 18，9, 54, 21, 30’ 19’ 28, 49, 36, 22, 25’ 

48, 58，37: 

Most of the research work adopts Euclidean distance as the metric for 

sequence similarity [2, 15，29, 11, 9, 54, 21]. Given two sequences X —< 

Xi,X2,. . . ,Xn > and Y =< • • - ,yn >, the Euclidean distance is defined 

as follows: 

D2(X,Y) = 2 亡 ( 工 广 ⑷ 2 (1.1) 
\ i=l 
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Chapter 1 Introduction 2 

Dozens of papers proposed different modifications based on Euclidean dis-

tance [11，3, 42), dimensional reduction [48, 55，54] or transformation tech-

niques [4, 40, 3j. 

In particular, a technique called Dynamic Time Warping (DTW), which 

is actually a well known technique being used in speech recognition [41], is 

proposed in [8]. DTW enables matching similar sequences which are out of 

phase, or even the sequences are of different lengths. Under dynamic time 

warping, two sequences can be stretched along the time axis. For example, 

given two sequences S =< 4，5，6, 8,9 > and Q =< 3，4, 7 , 8 , 9 , 7 �o f different 

lengths, we can stretch the sequences to S' = < 4 ,5 ,6 ,6 ,8 ,9 ,9 > and Q'=< 

3,3,4 ,7 ,8 ,9 ,7 >, and measure the distance between S' and Q', In such case, 

we say that the sequences S and Q "align" with each other. Apparently, there 

exists more than one way to "align" S and Q. The minimum distance among 

all possible alignments between sequences S and Q is defined as time warping 

distance, Dtw Figure 1.1 delineates the difference between Euclidean distance 

and time warping distance. 

r > r r r T T r r T > - , . ^ r r r i 

Si i Y i i JC/ / / /i i 

Figure 1.1: The first example is the alignment under Euclidean distance, and 
the second one is the alignment under DTW. 

Searching the sequences sequentially can be slow. Obviously, the query 

process can be speeded up, if an indexing technique is used. When Euclidean 
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distance is used as the similarity measure, a sequence of length n can be 

transformed into a k-dimensional point, and the point can be indexed with any 

multi-dimensional indexing structure, such as the R-tree [17] or the R*-tree [6]. 

Similarly, a query sequence can also be transformed into a k-dimensional point, 

and then a range query search can be performed on the indexing structure. 

Unfortunately, DTW does not satisfy the triangle inequality, the above method 

cannot be applied directly. 

Nevertheless, a great deal of work is proposed to perform efficient search-

ing and indexing on DTW [57, 33，27, 34’ 26, 23, 35]. In [57], the authors 

introduce two techniques to speed up the searching process, the first one is 

Fast Map, which results in false dismissals; the second one is lower bound tech-

nique. A lower bound function, which satisfies the triangle inequality, is defined 

by means of lower bound technique. This technique is further used in [27] and 

23], in which, DTW can be indexed by any spatial indexing structure [17’ 6], 

but the above approaches can only accommodate to whole sequence matching. 

However, subsequence matching is different from whole sequence matching. 

Note that, when Euclidean metric is used, the distance between any two se-

quences must be greater than or equal to that between their prefixes with the 

same length. Therefore, given a sequence S, a sliding window approach [15] 

can be used to extract the prefixes of all the subsequences of 5, and then each 

prefix can be inserted into a multi-dimensional indexing structure. Given a 

query Q, we can simply extract the prefix of Q and perform a range query on 

the indexing structure to retrieve the prefixes of all the potential subsequences. 

Subsequence matching under time warping distance is more complicated, as 

the DTW distance between any two sequences may not have a simple relation 

between their prefixes with the same length. Therefore, the above sliding 

window technique cannot be applied directly. 

For subsequence matching, authors in [35] suggest a segment-based ap-

proach, but this approach again may cause false dismissals. Another indexing 



Chapter 1 Introduction 4 

method based on suffix tree is proposed in [33], which guarantees no false 

dismissals. Unfortunately, the index size of suffix tree is extremely large even 

for a small data set. As an extension of [27], the authors of [34] proposed 

to use the prefix querying technique together with the lower bound function 

suggested in [27] to handle subsequence matching. However, as pointed out 

in [23], this "lower bound is very loose, and many false alarms are generated". 

In this dissertation, we are to utilize a better lower bound technique for 

subsequence matching under time warping distance. Based on the proposed 

approachs, an R-tree can be used to index the subsequences. Hence, the space 

overhead will be much smaller than that of the suffix tree approach. 

There is less awareness on the difficulty to formulate a well designed query 

without detailed knowledge of the collection of the database in the time se-

ries domain. Moreover, the similarity between two sequences is subjective for 

different users and problems [39, 24]. For example, different users may have 

different preferences when choosing the sequences as delineated in Figure 1.2. 

One user may desire "shifting" the peak, while the others may desire the 

"stretch" one. Therefore, those "fixed" distance measures are not adaptive. 

A 厂 乂 — � \ 
/ \ ,—..\ f ,•...�.........�X \ 

/ \f \ f \ \ 

/ X. \ IJ \\ 
( z乂 """"""v.� ".��.、.,.... 广 /.”.Z  

Figure 1.2: Some users may prefer the left result, while some may prefer the 
right one. 

Unlike the time series domain, much effort has been done on this issue in the 

text and multimedia domains [5]. Relevance feedback [59, 12’ 52’ 31，16，1, 10] 

is a technique proposed to overcome these difficulties in the text and image 

domains [43’ 44’ 46]. The aim of relevance feedback is to capture users' need 
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during the retrieval process. 

The authors in [24] introduce a method, which uses relevance feedback 

along with an approximation of Euclidean distance, to handle the subjective re-

quirement of a user. However, Euclidean distance is a very brittle measure [23]， 

and it has been realized that Dynamic Time Warping(DTW) distance is more 

robust and flexible [33, 56, 23, 35, 27, 8，26] than it. For example, DTW allows 

matching similar patterns that are out of phase or of different lengths. 

Nevertheless, DTW is still a "fixed" distance measure and is unable to re-

flect a user's requirement. Therefore, we introduce a relevance feedback strat-

egy, which is based on the DTW metric, to capture users' preferences. Instead 

of using a fixed warping path constraint, we suggest to use a reformable path 

constraint together with weighting factors embedded in the distance calcula-

tion. By refining the constraint and weights according to the user's feedback, 

his or her subjective perception can be captured during the retrieval process. 

The rest of this dissertation is organized as follows. In Chapter 2, we will 

briefly explain some basic techniques used in time series similarity searching, 

e.g. DTW, indexing. A literature review on different approaches for time series 

searching under Euclidean metric and DTW metric will be given in Chapter 3. 

We introduce our methods for subsequence matching under time warping in 

Chapter 4. In Chapter 5, we show how to integrate relevance feedback with 

DTW to handle subjective measure of time series searching. A conclusion will 

be given in Chapter 6. 



Chapter 2 

Preliminary 

In this chapter, several techniques that used in time series searching are re-

viewed briefly. Firstly, we will explain the idea of dynamic time warping. 

Secondly, some spatial indexing techniques are studied. Finally, a skill called 

relevance feedback, which is used to learn users' preferences, is introduced. 

2.1 Dynamic Time Warping (DTW) 

次 . l - . — — — m 

i F T L ] � T y ~ ~] n  

: f 
“'‘知 

ZZZZVIEQZZ 
H 】 二 

n _ _ I I I i ^ H 

Figure 2.1: A warping path in an m-by-n grid 

The idea of dynamic time warping is as follows. Given two sequences S 

and Q of lengths n and m respectively, where: 

S = < S2, . . . , S„_i, Sn > 

6 
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Q =< qi,Q2,... ,qm-~L,qm > 

We can develop an m-by-n grid, as illustrated in Figure 2.1. Each grid element, 

represents an alignment between points Si and qj. A warping path W is 

a sequence of grid elements that define an alignment between S and Q. 

VK = (n, j i ) , j2), • • •, («p,ip) max{n, m ) < p < m + n - l (2.1) 

,where (ikjk) corresponds to the /c*" grid element in the warping path. For 

example, (zs, js) in Figure 2.1 represents the grid element (2,3)，which implies 

that S2 is aligned with q .̂ For practical reasons, several types of constraints, 

which concern the warping path, are introduced in prevalent research work [41, 

8, 50]. 

End point constraints The warping path should start at (1,1) and end at 

(n，m). 

Monotonicity and Continuity Given two grid elements in a warping path, 

{ikjk) and (4+i，jfc+i)，then 1 > ik+i - 4 > 0 and 1 > jk+i - jk > 0. 

This restricts the allowable transitions of a node to adjacent elements, 

which are located at either east, south, or south-east with respect to 

Figure 2.1. 

Global Path Constraint The global path constraint defines the region of 

grid elements that are searched for the optimal warping path. The warp-

ing path is limited within the warping window [8], which is known as 

Sakoe-Chiba Band. For example, the grey area in Figure 2.2 refers to 

such a band. The constraint can be defined as follows: 

jfc) G M/, i k - r < 3 k < i k + r, (2.2) 

where r is the width of the warping window. For example, in Figure 2.2, 
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r = 2. 
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气 二  
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Figure 2.2: The warping path is restricted in the grey area (the warping win-
dow) 

After aligning the sequences S and Q, their similarity can be measured by 

the cumulative distance of the warping path between them. Each element in 

the warping path is associated with a distance, e.g. d(ik,jk) = — qj^ \. The 

cumulative distance of a warping path, e.g. W = (ii, j i ) , (h, j2)，• •. ’ {ip,jp), is 

defined as follows: 

Dc{W) = j y i i k , j k ) (2.3) 
fc=i 

There are possibly many warping paths. Among all the potential warping 

paths, we can always choose an optimal warping path such that its cumulative 

distance, Dc, is minimum. The corresponding distance is defined as the time 

warping distance, Dtw 

D U S , Q ) = m m { D , { W ) } (2.4) 
V vv 
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As there are many warping paths, searching through all of them is com-

putational expensive. Therefore, dynamic programming approach [57, 41] is 

proposed to find the optimal warping path. The approach is based on the 

following recurrence formula that defines the cumulative distance, 7(i, j.)’ for 

each grid element. 

7(i，j) = d{i,j)+mm{j{i - l ) ,7 ( i - 1, j - 1)} (2.5) 

^ 0 3 6 0 6 0 

2 
5 T T g T ^ ^ 

2 H 工 • 巧 互 

2 
Figure 2.3: A cumulative distance matrix for sequences Q and S 

By applying the dynamic programming algorithm, we can construct a cu-

mulative distance matrix as shown in Figure 2.3，which demonstrates such an 

algorithm by sequences Q = < 0,3,6,0,6,0 > and S =< 2，5,2,5，2 >. Each 

value in the cell represents the cumulative distance of that cell. The cumu-

lative distance of a cell is the sum of the distance associated with it and the 

minimum of the cumulative distances of its neighboring cells. For example: 

7(3，4) = d(3’ 4) + min{7(2,4)，7(3’ 3), 7(2’ 3)} = 6 

After filling up the table, the optimal warping path can be found by tracing 

backward from the lower right corner, e.g. (5, 6), towards the upper left corner, 
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e.g. (1，1). At each cell, we can choose the previous neighboring cell with 

minimum cumulative distance. 

2.2 Spatial Indexing 

Spatial indexing technique is widely used to speed up the searching process in 

sequence databases. In general, spatial indexing methods are used to store fea-

ture vectors of an object in a multi-dimensional space. R-tree [17], which is the 

foundation of spatial indexing technique, has been used in extensive research 

work. An R-tree is a height-balanced tree that use tuples to represent spatial 

objects. A leaf node in R-tree contains entries of the form (I,tuple-identifier), 

where tuple-identifier refers to a tuple representing an object and I is an n-

dimensional rectangle which is a minimum bounding box of an indexed spatial 

object. I = ( / � ’ / i , . . . ’ /n- i ) where n is the number of dimensions of the object 

and Ii is an interval [a，b], which expresses the magnitude of the object along 

dimension i. Non-leaf node contains entries of the form (/，PTRi) where PTRi 

is a pointer pointing to the ith child node and I is the minimum bounding box 

that covers all the rectangles in the lower node's entries. Figure 2.4 shows the 

structure of a simple example of an R-tree and it's indexing mechanism. 

Besides the R-tree, there are several spatial indexing methods, such as the 

R-tree variants [6, 47], X-tree [7] and SR-tree [20]. While the R*tree [6] uses the 

same structure of the R-tree [17], it outperforms the traditional one by reducing 

area, margin, and overlap of the data rectangles. The authors also proposed 

to use reinsertion to decrease the overlapping and splitting of the rectangles. 

Another variation of R-tree is the i?+-tree [47], in which, the authors suggests 

to obtain "zero overlap" among non-leaf node by decomposing the space into 

subregions when a node overflows. Both the X-tree [7] and SR-tree [20] use new 

indexing structures, which are based on that of the R-tree. The X-tree uses 

extendable directory nodes(supernodes) to avoid underfill during the process of 
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Figure 2.4: An Example of R-tree in a multi-dimensional space 

node splitting. The SR-tree defines a region by the intersection of a bounding 

sphere and a bounding rectangle in order to enhance the disjointness between 

different regions. 

2.3 Relevance Feedback 

Relevance feedback is a powerful framework, which is initially designed for text 

retrieval systems and used in CBIR(Content-based image retrieval) afterward. 

It has been widely applied in various image retrieval systems [53’ 51, 44, 32’ 45 . 

A typical relevance feedback algorithm used in content-based image re-

trieval contains the following steps and characteristics as stated in [59]. In 

general, the feedback steps are as follows: 

1. The user provides the initial query by sketch or example of keywords. 

Then the computer or system displays(output) the preliminary retrieval 

results. 

2. The user decides the degree of relevance or irrelevance of the displayed 
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results according to his/her requirement. 

3. The system gets the decision from the user and "learn" the requirements. 

Try to display the results again. Go to step 2. 

We can also consider relevance feedback as an online learning process with 

the following characteristics: 

Characteristics Explanations 
Small sample issue The number of training samples is small. 
Asymmetry in training The displayed output is ranked according 
sample to the distance between the query and 

the result, instead of binary decision 
(i.e. relevant or irrelevant), and only 
the top-n results are displayed. 

Real time requirement The algorithm should be efficient and 
prevent massive computation, as the 
user is interacting with system in realtime. 

Table 2.1: Characteristics of relevance feedback 



Chapter 3 

Literature Review 

In this chapter, we discuss two main streams of research work of sequences 

searching. We first discuss different approaches of sequences searching un-

der Euclidean metric. Secondly, sequences searching approaches under time 

warping metric are discussed. 

3.1 Searching Sequences under Euclidean 

Metric 

Various approaches, which are based on Euclidean distance, have been pro-

posed for time series searching. In [2], the authors propose an efficient method, 

F-index method, for processing similarity queries. The time series are firstly 

transformed from time domain to frequency domain using Discrete Fourier 

Transform (DFT), and only the first few coefficients will be used. By us-

ing the first k coefficients, a time series is mapped to a /c-dimensional space 

that has lower dimensions. The /c-dimensional points are then indexed by the 

R*-tree. For a similarity query, the query sequence is also mapped to a k-

dimensional space. Then the R*-tree indexing is being used to extract the 

feature points for which the Euclidean distance between the query and it is 

within the given threshold. The F-index method is enhanced in [15] to handle 

subsequence queies and another approach, ST-index, is proposed. The method 

13 
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first defines a sliding window of size w and slides it over the time series. Then 

a set of trails are extracted. Each trail will be transformed by DFT to the 

frequency domain. Only the first few features (coefficients) are kept. Every 

trails are further divided into sub-trails and each of them is represented by its 

minimum bounding hyper-rectangle (MBR) in the R*-tree afterward. For the 

query process, if the query has the shortest allowable length (e.g. length = 

w), the sub-trails that intersect the query region are retrieved. If the query-

is longer than w, a searching algorithm called "MultiPiece" is proposed. The 

query is split into p pieces, and each piece is of length w. The final result is 

obtained by merging the results of the sub-queries. 

In [14], the authors propose to use Singular Value Decomposition (SVD) 

for dimension reduction, and only the most significant components are kept. 

The authors point out that performing SVD on the given data results in small 

average error and small overhead on disk usage. Furthermore, the authors 

formulate an enhancement of the SVD algorithm, called SVDD, which can 

handle some gross errors that SVD cannot handle. 

Besides DFT and SVD, [9] proposes to use Discrete Wavelet Transform 

(DWT) instead of DFT. The advantage of DWT over DFT is that DWT is 

niulti-resolution representation and has the time-frequency localization prop-

erty. The authors also give a new definition of similarity between two time 

series called "v-shift similar". The main idea of this similarity definition is to 

eliminate the effect of vertical offset on the Euclidean distance. 

Another definition of similarity that use scaling and shifting are proposed in 

[11]. The authors regard a time series as a multi-dimensional position vector 

in So that, any scaling and shifting operation on the time series can 

be regarded as vector multiplication and vector addition respectively. If a 

data sequence can be scaled and shifted such that the distance between that 

and the query sequence within a threshold, then the two sequences are said 

to be similar. The problem is then reduced to a geometrical calculation. The 
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similarity between two sequences can be easily found by computing the shortest 

Euclidean distance between a scaled vector (the query) and a shifted vector 

(the time sequence). The authors propose to use an R-tree to index the data 

sequence. To facilitate the indexing structure, the shifted vector needs to 

perform an SE-transformation, and then store the resulting vector (point) into 

the MBR of the R-tree for searching. 

Shifting transformation is also considered in [29], in which, the authors 

suggest a new definition on similar sequences. Two sequences are similar if the 

Euclidean distance between them is smaller than a given threshold e, and the 

distance between each data pair is within another tolerance 6. To facilitate 

the second criterion, the authors propose to obtain the minimum attainable 

distance by shifting the sequences vertically. Moreover, the data sequences are 

projected onto a hyper-plane, and signatures are built for searching. 

Furthermore, [13] proposes to use normalization, which is a widely adopted 

technique, to handle scaling and shifting on time series. Each element of a 

sequence X, say Xi, is transformed according to the following formula, 

Xi — mean{X) 
std(X) 

where mean� is the mean of 5, and std{X) is the standard deviation of S. 

After the transformation, the normalized sequences can be directly used in 

similarity searching. 

In addition to scaling and shifting, [42] considers other transformations, 

moving average and time warping. They first discuss a wide range of examples 

and show that their proposed transformations can handle such cases. They 

propose an index strategy based on the framework of [2] to speed up the 

searching process. Firstly, an index I is built. For each query, a transformation 

is given. During the query process, a new index I' is constructed depending 
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on the given transformation and the query searches against I'. 

[38] also considers various transformations other than scaling and shifting. 

The transformations are: Shifting, Uniform Amplitude Scaling, Uniform Time 

Scaling, Uniform Bi-scaling, Time Warping and Non-uniform Amplitude Scal-

ing. Besides, the authors present the Landmark Model, which represents a 

time series by a set of turning points. Their idea is based on the fact that 

"people recognize patterns in charts by identifying important points". They 

also introduce a smoothing method, Minimal Distance/Percentage Principle 

(MDPP), for removing noise from the raw data without eliminating the peaks 

and bottoms from the time series pattern. Finally, they show by experiments 

that their Landmark Indexing is considerably fast. 

The lattice structure proposed in [54] also make use of the concept of turn-

ing points. The authors propose to approximate the time series using all 

significant feature instead of involving all the data points. They measure the 

significance of a point, Xi, by the importance defined as below: 

N 
Importance{xi) = - Xi\ + \xi+j — a^il) 

j=i 

Each point in a time series is stored in appropriate layer of the lattice structure 

according to its importance. In other words, the control points in each layer 

form an approximation pattern of the time series, and different layers of the 

lattice structure have different levels of detail. To perform searching, a user 

needs to provide the query together with his requirements of level of detail. 

In [24], the authors propose a method, which is based on the feedback of the 

user, to retrieve time series data. The similarity metric used in this paper is 

an approximation of Euclidean distance together with weights associated with 

the sequences. During the query process, the user gives different ratings to 

the sequences, and according to the user's feedback, the preference of the user 
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can be captured. Hence, the query can be refined accordingly. The authors 

also suggest using a profile to represent user's subjective similarity perception, 

which is the sensitivity to the distortions, such as offset translation, amplitude 

scaling, linear drift and discontinuities. Then this profile can be used in the 

data retrieval process. 

3.2 Searching Sequences under Dynamic Time 

Warping Metric 

Computing the time warping distance is time consuming, as the dynamic pro-

gramming algorithm is quadratic on the length of the sequences. Various 

methods have been proposed to speed up the searching process. 

An earlier work [57] proposes two techniques to achieve this goal. The first 

one is Fast Map technique. Given sequences with length n, the authors suggest 

to map the sequences into k — d points at first. Therefore, the calculation 

will be much faster, as fc is much smaller than n. Another one is lower bound 

technique. The idea is to use another cheaply computed distance, which un-

derestimates the time warping distance. This technique is also used in [27j 

and [23], in which, an index can be used under the lower bound distance 

measure. Here, we give a brief explanation for each lower bound. 

The intuitive idea of the lower bound function introduced in [57] is shown 

in Figure 3.1. This lower bound distance is defined as the squared difference 

of the shaded regions. This boundary is based on the following observations: 

An element of a sequence X, say xi, can align with any element of another 

sequence Y, say but, 

d{xi, max{Y)) < d{xi, yj) Vx'i > max{Y) 

iThe role of X and Y can be switched 
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Figure 3.1: An illustration of lower bound proposed in [57] 

d{min(X),yi) < d(xi, yj) \fyj < min(X) 

Figure 3.2 depicts the intuitive idea of the lower bound function introduced 

in [27]. This lower bound distance does not accumulate the time warping 

distance between the elements of the sequences. It only considers the first, last, 

maximum, and minimum values of the two sequences. It takes the advantage 

of the fact that the time warping distance must be greater than the maximum 

of the corresponding distance of the four features. 

The lower bound function introduced in [23] can be illustrated in Fig-

ure 3.3. An envelope, which specifies how much a sequence can be shrunk and 

stretched, is defined to enclose one of the sequences. The lower bound distance 

is the squared difference of the shared regions, which are the parts of another 

sequence not falling into the envelope. 

In contrast with the above work, which concentrates on whole sequence 

matching, the authors in [35] suggest a method to handle subsequence match-

ing. The sequences are divided into piece-wise and the distance between any 
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two sequences are the sum of the time warping distance between each segment 

pair. A lower bound function together with a suffix tree indexing method have 

been proposed in the paper. The idea is to categorize each segment and denote 

them by symbols. Those symbols are stored in a GST (general suffix tree), 

which actually stores similar sequences in the same branch. 

The authors of [33] also suggest to use suffix tree as the indexing structure. 

Instead of categorizing segments, they propose to categorize each point of the 

sequences. Each category is a boundary (Max,Min) of a point. When calculate 

the cumulative distance matrix, the distance between a point, p, and a category 

is the minimum possible distance as delineated in Figure 3.4. 

.p 
Max 

• P 

Min 
• P 

min. distance mtn. distance mln. distance 
= 0 » p . Max »Mtn - p 

Figure 3.4: An illustration of lower bound proposed in [33] 

As the memory usage of suffix tree is huge, another approach using spatial 

index is presented in [34]. They introduce the concept of maximum warping 

ratio and minimum query length. The maxWarpRatio stands for how many-

times an element of a sequence can be repeated by time warping. Firstly, an 

R-tree index is built based on the sliding window approach. Secondly, a set 

of subsequences are determined based on the maxWarpRatio and minQLen. 

Then the lower bound function proposed in [27] are used to perform searching. 



Chapter 4 

Subsequence Matching under 
Time Warping 

In this chapter, we are to generalize a better lower bound technique for sub-

sequence matching under time warping distance. Based on the proposed ap-

proach, an R-tree can be used to index the subsequences. Hence, the space 

overhead will be much smaller than that of the suffix tree approach. In general, 

similarity queries can be divided into two main categories: 

(a) Whole sequence matching: Given a query sequence of length n, and a 

time series database, we want to find out all the time series from the 

database that are similar to the query sequence; i.e., given a set of time 

series S — ..., Sm} and a query sequence Q =〈仍’仍，...，gn〉，we 

want to ask if there is any time series Si, where 1 < i < m, such that Si 

and Q are similar. 

(b) Subsequence matching: Given a query sequence of length n, and a time 

series database, we want to retrieve all subsequences from the database 

that are similar to the query sequence; i.e., given a set of time series 

S = {Si,...’ Sm} and a query sequence Q = (gi, g2，... ’ we want to 

ask if there is any subsequences S' within any Si, where 1 < i < m, such 

that S' and Q are similar. 

21 
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4.1 Subsequence Matching 

In this section, we introduce the problem of subsequence matching. The main 

symbols used in this chapter and their definitions are summarized in Table 4.1. 

The problem is formally defined as follows: 

Symbol Definition 
Q A query sequences. 
Si The z-th data sequence 

S[i : j] Subsequence of S, begin at position i and end at j. 
Len{S) The length of a sequence S. 

I The width of the sliding window. 
r The width of the warping window. 

Dtw�S, Q) The time warping distance between sequences S and Q. 
Dtw-ib[S,Q) The lower bound distance between sequences S and Q. 

Table 4.1: Summary of Symbols and Definitions 

(1) Given a set of time series {^i , . . . , Sn} of arbitrary lengths. 

(2) A query sequence Q together with a threshold s are given. 

(3) Find all the subsequences Sk[i : j), for a given global path constraint, 

such that Dtw{Sk[i ： j],Q) < £，where Sk[i : j] and Q may be of different 

lengths. 

4.1.1 Sequential Search 

The most straightforward method is sequential search, by which, all the pos-

sible subsequences of every sequence will be examined. Consider the following 

example: 

Given a sequence S = < 1，2，5’ 2’ 5’ 3，10 > and a query Q = < 0，3,6,0,6 >, we 

want to find all the subsequences, Sli : j], of S such that Dtw{S[i : j],Q) < 8. 

In particular, let's consider the subsequence started at the offset of 5, i.e. 
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S"[2 : 7] = < 2，5，2，5，3，10 >. By using the dynamic programming approach, 

we can construct the matrix as shown in Table 4.2. 

S \ Q | 0 | 3 | 6 | 0 | " ^ 
2 ~ ~ V 7 9 13 

一 5 ~ 7 ~ ~ 4 4 ~ ~ 9 j o " 
2 ~ 9 ~ ~ ^ 8 6 10 

~ 5 1 4 7 ~ ~ 6 ~ ~ n Y ~ 
~3 If~~79~~9jo" 
一 10 I 27 I 14 I 11 I 19 I 13" 

Table 4.2: An example of subsequence matching 

Prom the last column of Table 4.2，we know that Dtw(S[2 : 2], Q) — 13, 

Bt^(Sl2 : 3],Q) = 10’ B U S [ 2 : 4],Q) = 10，Bt^(S[2 : 5],Q) = 7, A “ 邓 : 

6],Q) = 10，Dty,(S[2 : 7],Q) = 13. Therefore, the subsequence [2 : 5] satisfies 

our requirement and will be included in the answer set. The same procedure 

has to be used to examine each subsequence at every offset in order to find out 

all the qualifying answers. We call this method as "Sequential Search". 

However, there are two major problems concerning sequential search: 

• The I /O cost of examining all the possible subsequences is very high. In 

the above example, seven subsequences have to be examined. 

• The process of dynamic programming is computational costly(O (771 * n), 

where n and m are the lengths of the sequences). 

4.1.2 Indexing Scheme 

Before introducing the indexing scheme of subsequence matching under DTW, 

we need to review the scheme under the Euclidean distance metric first. 

Under the Euclidean metric, the sliding window approach [15] can be used 

to avoid examining each possible subsequence of a given sequence S. The 
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approach is described as follows. A sliding window of length I is placed and 

slid over each offset of S. Then a prefix of length I of each possible subsequence 

is extracted. Each extracted prefix can be regarded as an /-dimensional point 

and indexed in a multidimensional indexing structure, e.g. R-tree. Note that 

the following lemma holds under the Euclidean metric. 

Lemma 1 If two sequences S and Q of length n agree within a threshold e, 

then the subsequences S[i : j] and Q[i : j] agree within the same threshold 

too, i.e. 

D(S,Q) < e D(Sli : j],Q[i : j ] ) < e (4.1) 

From Lemma 1, the distance between the prefix of S and the corresponding 

prefix of Q is a lower bound of that between the whole sequences. Therefore, 

we can search for all prefixes, which match Q[1 : /] within e, from the index. 

The results are prefixes of the subsequences that will potentially match the 

query sequence Q within threshold e. Then, the candidate set will be filtered 

by postprocessing to obtain the final answers. 

Unfortunately, under the time warping metric, Lemma 1 does not hold. 

Let's consider the example in Section 4.1.1. If the length of the sliding window 

is 4，the prefix of length 4 of each possible subsequence of S will be extracted 

and indexed. Q[l : 4] will be used to perform searching. Consider the subse-

quence at the offset of S again. Prom Table 4.2, 

A .̂(5[2:5l,g[l:4l) 二 11 

A« . (^ [2 :6 ] ,Q [1 :5 ] ) = 10 

Therefore, DtUS[2 : 5]’Q[1 : 4]) > L^X^Sp : 6]，Q[1 : 5]), and Lemma 1 does 

not hold. It is clear that we extract a "wrong" prefix of Q to compare with 

5[2 : 5]. If we use Q[1 : 4] to perform index searching, it will cause false 
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dismissal. Instead, from Table 4.2, we have the following observations: 

A^(5 ' [2 :5 ] ,Q[1 :5 ] ) = 7 

n U S [ 2 : 6 ] , Q [ l : 5 ] ) = 10 

A z . ( 5 [ 2 : 5 ] , g [ l : 5 l ) < DUS12 : 6],Q[1 : 5]) 

Hence, Q[1 : 5] is the "correct" prefix to be used. The remaining problems are: 

• We need to find the "correct" prefix of Q to perform searching. 

• Time warping distance does not satisfy triangle inequality, so that we 

cannot perform searching in any spatial index. 

• The time complexity for the computation of dynamic programming is 

high. 

To overcome these problems, lower bound technique [27, 23, 57] is used. We 

first discuss some existing lower bound techniques for whole "sequence match-

ing" .Then we will extend the idea for subsequence searching in the rest of the 

chapter. 

4.2 Lower Bound Technique 

The computation process of dynamic programming has very high complexity. 

Performing such process on each data sequence in the database can be slow. 

Therefore, the lower bound technique is introduced [27，23，57]. A new dis-

tance measure, Dtw-ib^ is defined ,which is lower-bounding the actually DTW 

distance. 
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4.2.1 Properties of Lower Bound Technique 

Algorithm 1 lower-bound-search  

1: C { } 
2: for each possible subsequence S' in S do 
3： if Dtr,-ib[S',Q) < e then 
4: C — S' 
5： end if 
6： end for 
7： for each S' in C do 
8： if D t 认 S ' < e then 
9： return{S') 

10： end if 
11： end for 

Algorithm 1 describes how range query can be performed using Dtw-ib-

Note that Algorithm 1 does not reduce the number of subsequences to be 

scanned. Instead, the speed up is contributed by the distance calculation. 

Therefore, a lower-bound function should have the following properties: 

Property 1 (Correctness) It must return all the qualifying subsequences, 

but may cause false alarms, which can be discarded afterwards using post-

processing, i.e. 

•，Q ) < e ^ Duo-uJA Q) < 已 (4.2) 

Property 2 (Efficiency) The time complexity for the computation should be 

low, e.g. 0(n) . 

Property 3 (Tightness) With a relative tight lower bound, the number of 

candidate results for post-processing can be greatly reduced. 

Moreover, if the lower bound function satisfies triangle inequality, it can 

be further used as the filtering function in indexing search. 
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4.2.2 Existing Lower Bound Functions 

To our best knowledge, two lower bound functions, which guarantee no false 

dismissals and support indexing, have been proposed to handle "whole se-

quence" matching. 

In [27], the authors propose to extract a 4-tuple feature vector, ( First(S), 

Last(S), Greatest(S), Smallest(S) ), from each sequence S. The features are 

the first, last, greatest and smallest elements of a sequence S respectively. 

Given two sequences S and Q, their lower bound distance, Dib-kim, is defined 

as follows: 

’ \First(S) - First{Q)\ 

Dib-kim = max (4.3) 
\Greatest�-Greatest{Q)\ 

�\Smallest{S) - Smallest(Q)\ 

Another lower bound function is proposed in [23], in which the indexing 

method is called an "exact indexing" of DTW. For any two sequences S and Q 

of the same length n, for any global path constraints of the form i—r < j < i+r, 

the lower bound distance, Dib—keogh, is defined as follows: 

Ui = . . • Qi+r} 

Li = mm{qi_r .. • Qi+r} 

(si — Ui)' ifsi > Ui 
n 

Dib-keooh = E {si - Lif if Si < Li (4.4) 
i=l 

\ 0 otherwise 

Here, we want to utilize the lower bound function proposed in [23], which 

is designed for “whole sequence" matching, to handle subsequence matching. 

By the deductions and observations in Sections 4.3 and 4.4, we can utilize 
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the lower bound function in the sliding window approach via two indexing 

methods. 

4.3 Point-Based indexing 

In this section, we introduce our first method. The idea is to determine the pos-

sible subsequences of the query that we need to examine and form a bounding 

box (hyper-rectangle) based on those subsequences. Then the hyper-rectangle 

will be searched against a point-based index. 

4.3.1 Lower Bound for subsequences matching 

To understand how we can form a bounding box, let's consider the following 

example. 

An example: Given two sequences S =< 2 ,5,2,5,3,7,1,8,4,10 > and 

Q =< 7,0,3,6,0,6,5，8’ 4 >, we can construct two matrixes as shown in Fig-

ure 4.1. The first matrix is the same as the grid illustrated in Figure 2.1 

and each value in represents the distance between points Si and qj, 

e.g. d{l, 5) == |si — 551 = |2 - 0| = 2. The second matrix is the cumula-

tive distance matrix, which is constructed by dynamic programming. There 

is an optimal warping path {(1’ 1), (2,1), (3’ 2), (4’ 3)，（5，3), (6,4), (7’ 5), (8,6)， 

(8，7), (8,8), (9,9)} , such that the time warping distance is 18. 

In particular, 5(5 : 8) must align with one of the subsequences of Q within 

Q[3 : 9] and the warping window, i.e. Q[3 : 6], Q[3 : 7], Q[3 : 8], Q[3 : 9], 

Q[4 : 6]，g[4 : 7], g[4 : 8], Q[4 : 9], Q[5 : 6] . . .etc. 

According to the above observation, we have the following Lemma. 

Lemma 2 If the time warping distance, for any global path constraints, be-

tween two sequences S and Q is within a threshold e, then for any given 

subsequence S[i : j] of length I, there must exist at least one subsequence 
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Qlx : y], where i — r<x<i-\-r and j—r<y<j^r, whose time warping 

distance with S[i : j] agrees within the same threshold e. 

DtUS.Q) < e ： j],Qlx ： y]) < e) 

where i — r <x <i-\-r and j — r<y<j-\-r (4.5) 

In other words, if none of the potential subsequences of Q matches : j ] 

within threshold e, then S must not agree with Q within the threshold e. If 

there exists a subsequence of Q such that it matches 邵 : j ] within threshold 

e, then S may possibly agree with Q within the same threshold e. In this 

example, 5"[5 : 8] is aligned with Q[3 : 7]. The time warping distance between 

them is: 

D � 0 9 [ 5 : 8 ] ’ Q [ 3 : 7 ] ) = 3) + d{6,4) + d{7,5) + d{S, 6) + d(S, 7) 

If we remove the duplicated elements (i.e. z) . . . ) in every row, 

e.g. (8’ 6), we have: 

A45"[5:8]，Q[3:7]) > 6^(5,3) + ci(6,4) + d(7,5) + d(8,7) 

We define this operation as Frd�i.e. 

DUS[i : jlQ[x : y]) > FrdiDUSli ： jlQ[x ： 2/))) (4.6) 

Furthermore, from Eq. 2.2, we have the following relation for each element of 

the warping path. Each Su must align with one q们 where Qy G {qmax{u-r,x). •. qmin{u+r,y)}• 

For example, each element of 5(5 : 8] must align with at least one element of 
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Q[3 : 7] within the warping window, i.e. sy must align with gs, qq, or qj. There-

fore, the distance between Su and qy must satisfy the following inequality. 

d{u, v) > min{d(w, max{u _ r’ a:)) •.. di^u, min(u + r, ?/))} 

^ min{|Sy -仏臓(u-TVC)I … - qmin{u+r,y)\} 

一 r,a;) • . • Qmin{u+r,y)} | j 

f /Su�IIiax{5rnax(u—r,x) . . . 9mm(ti+r,j/)} 

— * 一 rnin{^max(u—r,x) . • • Qmin{u+r,y) } 15 

ifSu < r,x) • • . Qmin{u+r,y)} 

0 otherwise 
\ 

=dib{u, v) (4.7) 

We define the lower bound for each element as dih{u^ v). Prom Eq. 4.6 and 

Eq. 4.7, we derive the following inequality: 

DtUSli ： jiQ[x ： 2/j) > Frd�iyibM) (4-8) 
u=i 

Then, we construct a bounding rectangle for subsequences of Q based on 

the above observations. Given two subsequences 邵 : j ] and Q[x : ？/], where 

I = Len{S[i : j]) and i — r < x <i-{-r and j — r < y < j + r, we treat S[i : j] 

as an /-dimensional point. For any global path constraints, a query bounding 

hyper-rectangle (referred as QBR hereafter) of ^-dimension is defined by two 

endpoints, BL and BH, of its major diagonal, where BL =(况i,况2，• •., hli) 

and BH = (bhi,bh2,..., bhi) and bli < bhi for 1 < z < L An example of QBR 

is illustrated in Figure 4.2, where 

blu—i+l _ 爪 aa;(u—r’;r) . • • Qmin(u+r,y)} „ . , . 
for U = I...J (4.9) 

bhu-i+l = niax{qVnax(u_r’a;) • • . Qmin(u+r,y)} J 

Given a QBR, the e-enlargement of the QBR, denoted by e-QBR, is a 
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QBE defined by BL = (6“ - e.bk - e,..., bh - e) and BH = (bhi + e, 6/12 + 

e , . . . , bhi-\-e). To make use of the e-QBR on searching, the following theorem 

is needed. 

Theorem 1 Given two subsequences S[i : j] and Q[x : y], where I = Len(S[i : 

j]) and i — r<x<i-\-r and j — r < y < j + r, if Sli : j] is not contained in 

the e-QBR of a QBR, then Dtw(S[i: 3],Q[x,y\) > e. 

Proof: By contradiction, 

Assume S[i : j] is not contained in e-QBR. If DtwiS[i : j],Qlx,y]) < e, then 

from Eq. 4.8, we have, 

Frd( f2dib(u,v) )<e (4.10) 
u=i 

By assumption, there exists a s^ such that, 

> Su < . • . Qmin{u+r,y)} 一 ^ 

Su�—T’a；) . . • Qmin{u+r,y)} + ^ 

\Su — min{g^ax(u-r,a;) • • . Qmin{u+r,y)}\ > ^ 

ku - max{g爪a:c(u_r’a;) . . . ？mm(u+r,j/)} | > ^ 
dib{u,v) > e 

which contradicts with inequality 4.10, so that the proof is completed. 

By completing the above deduction, we can search for any subsequences 

that agree with the given query sequence within the threshold. However, 

according to Lemma 2，we should perform searching for all possible query 

subsequences. One straightforward method is to traverse the index for every 

possible e-QBR, but it is not efficient. To reduce the number of indexing 

search, we can merge all the QBRs into one single QBR. That is to define a 

minimum bounding box, which contains all the QBRs. Refer to Eq. 4.9, as 
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i — r<x<i-\-r and j—r<y<j-^r,we have: 

max{u — r, i — r} 

max{u - r,i 1 — r} 
u — r = min (4.11) 

max{w — r, i + r} 

min{u + r, j — r } 

min{n + r, j + 1 — r } 
u + r = max (4.12) 

min{ii + r, j + r } 

Therefore, the large QBR is defined as follows: 

blu-i+i = min{qu-r ... Qu+r} „ . 
for u = I.. .J (4.13) 

bhu-i+i = max{gu_r . •. Qu+r} 

Actually, it is the QBR of the longest possible subsequences. Figure 4.3 

i ‘ 

J T I 

(3,7,1.8) 

• 

Figure 4.3: An illustration of merging all the QBRs 

depicts this idea. By deducing this large QBR and Lemma 2, we generalize 

the "exact indexing" method [23], to handle subsequence queries of varying 
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lengths as described in the following section. 

4.3.2 Algorithm 

In this section, we describe a subsequence searching method that is fast, guar-

antees no false dismissal and can handle query sequences of arbitrary lengths. 

Index Construction 

Given a set of data sequences S = {5*1, S2,..., Sm} of different lengths, a slid-

ing window of length I is placed and slid over each offset of all data sequences, 

i.e. Si € S. Thus, a set of prefixes of length I will be extracted. The total 

number of subsequences is S(Len(5i) - ^ + 1). Every prefix with length I will 

be regarded as an /-dimensional point. To index a set of multi-dimensional 

points, we can use any spatial indexing technique, such as the R-tree [17j, and 

the R*-tree [6]. In the following, we sketch the idea of indexing by R-tree, 

which uses hyper-rectangles as its minimum bounding volume. We choose 

R-tree because it is widely used and its behavior is well understood in the 

database community. A non-leaf node of R-tree contains entries of the form 

< MBRi, PTRi > , where MBRi is the minimum bounding rectangle of the 

ith child node and PTRi is the pointer pointing to the ith child node. Each 

MBR is represented by two end points, L and H, of its major diagonal, where 

L = (J1J2,.., ’ In) and H = {hi, /i2’ • •.，K) and < /li for 1 < 2 < n. A leaf 

node contains entries of the form < SID[, S[〉，where S[ is one of the prefixes 

of sequence Si and the corresponding identity is SID[. Figure 4.4 illustrates 

an example of the indexing structure. 

Searching subsequences of arbitrary lengths 

Here we show how to search for subsequences that match the query sequence Q 

within threshold e. We call this method TB-SSM'. If the length of the sliding 
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A 
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*马 

• 

Figure 4.4: An illustration of the indexing structure, 

window is I, the minimum query length is / - r. The proof is as follows: 

Proof: Assume that we have a query Q, such that Len(Q) < I — r. If there 

exist a subsequence that matches Q within threshold e. By Lemma 2, we have: 

Dtu,(S,Q)<e (DtUS[l-.liQ[l-y])<e) 

where I — r < y <l + r 

which contradicts the assumption that y < I — r. 

Algorithm 2 RangeQuery(T,e-QBi?) 

1: C := { } 
2： if T is not a leaf node then 
3： for each child node of T do 
4： if IsOverlap{MBRi, e-QBR) then 
5： :RangeQueiy(Pri?i，e-(^Bi?) 
6： end if 
7： end for 
8： else 
9： if IsContain{S'i,e-QBR) then 

10： C — SID'i 
11： end if 
12: end if  
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If the input query is longer than I — r, according to Lemma 2, we can 

derive a set of subsequences of Q, which are used to perform searching. A 

large e-QBR can be constructed from these subsequences of Q. The e-QBR 

are then used to carry out range query as stated in Algorithm 2. IsOverlap is 

used to determine if MBRi overlaps with the e-QBR. If it is true, the searching 

process will be continued on that MBRi. IsContain is used to determine if 

the e-QBR contains the point S[. If it is true, the corresponding SID[ will be 

included in the candidate set. 

To acquire the final result, the candidate set will be filtered by post-

processing. For each SID[ in the candidate set, we retrieve the correspond-

ing subsequence (which has prefix S[) from the database, e.g. Si[j : /c]. If 

Dtw(Si[j ： k],Q) < e, then Si[j : /c] is a qualified answer. 

4.4 Rectangle-Based indexing 

In contrast with point-based indexing, we propose another indexing structure, 

which stores hyper-rectangle in the index, in this section. Therefore, the query 

will become a point instead of a bounding box. Hence, the query volume is 

independent of the warping window. 

4.4.1 Lower Bound for subsequences matching 

To understand this method, we use the same scenario stated in Section 4.3.1, 

but we consider the subsequence Q[3 : 6] this time. From Figure 4.1, Q[3 : 6] 

must align with one of the subsequences of S within the warping window, i.e. 

S[1 : 4],叩:5], S[1 : 6], 5[1 : 7], 5[1 : 8], 5[2 : 4], 5[2 : 5], 5(2 : 6]，邓:7], 

5[2 : 8], 5[3 : 4] . . .etc . According to the above observation, we have the 

following Lemma, which is similar to Lemma 2. 
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Lemma 3 If the time warping distance, for any global path constraints, be-

tween two sequences S and Q is within a threshold e, then for any given 

subsequence Q[i : j] of length I, there must exist at least one subsequence 

Six : y], where i — r<x<i-\-r and j — r<y<j-\-r^ whose time warping 

distance with Q[i: j\ agrees within the same threshold e. 

DtUS, Q)<e^ : y], Q[i ： j)) < e) (4.14) 
where i — r<x<i-{-r and j — r<y<j+r 

In other words, if none of the potential subsequences of S matches Q[i : j 

within threshold e, then Q must not agree with S within the threshold e. If 

there exists a subsequence of S such that it matches Q[i : j ] within threshold 

e, then Q may possibly agree with S within the same threshold e. 

Given two subsequences S[x : y] and Q[i : j], where I = Len{Qli : j]) and 

i — r<x<i-\-r and j — r<y<j-\-r,we construct a bounding rectangle 

for subsequences of S using the deduction stated in Appendix A. For any 

global path constraints, a data bounding hyper-rectangle (referred as DBR 

hereafter) of /-dimension is defined by two endpoints of its major diagonal, 

where BL = (b“, 6/2,.. .,bli) and BH = {bhi, 6/12, • • • ,bhi) and bk < bhi for 

1 < i < I, as stated in Eq. 4.15. Figure 4.5 illustrates the DBR. 

� 

bly—i+l — lTlin{ŝ ax(u—7\x) • • ‘ ̂ min(v+r,y)} „ . . / , ^ 
for V = 1. ..J (4.15) 

The e-enlargement of a query Q, denoted by e-Q, is a minimum bounding 

box defined by QL = (gi—e，q2—e’... ’ ql—e) and QH = (gi+e’ g2+e ’ . . . ’ Q'i+e). 

The relation between the DBR and e-enlargement is described below. 

Theorem 2 Given two subsequences S[x : y] and Q[i : j] , where I = Len{Q[i : 

j]) and i — r<x<i-\-r and j — r < ^ < j + r, if e-Q does not overlapped 
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Figure 4.5: An example of the DBR. 



Chapter 4 Subsequence Matching under Time Warping 40 

with the DBR, then DtUS[x : ylQ[i,j]) > e. 

Proof: See Appendix B. 

Based on Theorem 2’ we can search for all subsequences that agree with the 

given query subsequence within the threshold. However, we should perform 

comparison on all possible data subsequences, according to Lemma 3. The 

simplest method is to index all possible data subsequences and traverse the 

index directly, but it is not efficient, both in terms of space as well as searching 

speed. To reduce the number of data entries stored in the index and number 

of nodes needed to be searched, we can merge all the DBRs into a single one. 

That is to define a minimum bounding box, which contains all the DBRs. 

Consider Eq. 4.15, as « — r < a: < z + r and j — r < y < j + r, we have: 

max*[？; — r, i — r} 

V — r = mm < (4.16) 

max{iJ — r, z + r} 

min{'U + r, j — r} 
mm{v + r j + l - r } 

V + r = max (4.17) 

min{7； + r, j + r} 

Therefore, the large DBR is defined as follows: 
blu-i+i = ... s^+J . … � � 

> for u = I.. .J (4.18) 
bhu-i+l = max{<5u-r . . . <Su+r} 

An example of DBR is depicted in Figure 4.6. Based on this large DBR, 

we propose another indexing structure to handle subsequence queries of various 

lengths. This method stores multidimensional rectangles (DBRs) in the index 
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Figure 4.6: An illustration of merging all the DBRs 

instead of points. The following section describes the index construction and 

searching algorithm based on the above strategy. 

4.4.2 Algorithm 

In this section, we present another subsequence searching method which can 

also handle query sequences of arbitrary lengths. 

Index Construction 

Given a set of data sequences S = {^i , 52 , . . . , of different lengths, a 

sliding window of length Z + r is placed and slide over each offset of each 

data sequence Si G S. If the length of a subsequence is shorter than I + r, 

then adjust the length of the sliding window to / + r — 1, / + r — 2 and so 

on. The minimum length of the sliding window is I - r. Every prefix will 

be transformed to an /-dimensional DBR according to Eq. 4.18. Instead of 

indexing multidimensional points, we index the DBRs here. In the following, 

we also sketch our idea using R-tree, as we have mentioned that it is widely 
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used and its behavior is well understood in the database community. A non-

leaf node of R-tree contains entries of the form < MBRi, PTRi >，which is 

same as that described in Section 4.3.2. However, the leaf node is different from 

the normal one. Although it still contains entries of the form < SID'^, S'^ >, S\ 

is now the DBR of sequence Si in the form of {BL, BH} as stated in Eq. 4.18. 

Searching subsequences of arbitrary lengths 

Here, we describe our second method, which is used to search for subsequences 

from the above indexing structure. We call this method 'RB-SSM'. If the 

length of the query is we can use Algorithm 3 directly. 

Algorithm 3 RangeQuery(T,e-) 
1： C ：二 { } 
2： if T is not a leaf node then 
3： for each child node of T do 
4： if IsOverlap(MBRi,e-Q) then 
5: RangeQuery(Pri^,e-g) 
6： end if 
7： end for 
8： else 
9： if IsOverlap(S'i,e-Q) then 

10： C — SID'i 
11： end if 
12: end if 

For non-leaf node, check for each child node, if MBRi overlaps with the 

e-Q. If it is true, we continue to search that subtree. For leaf node, check if 

the DBR overlaps with the e-Q. If it is true, SID[ will be included in the 

candidate set. 

It is more complicated to deal with longer queries, as the DBRs compre-

hend only the subsequences with length between I — r to I r. If the input 

query is longer than I, then by Lemma 2, we can select a subsequence with 

length I from Q(i.e. the prefix with length I), and use the DBR index to 

search for DBRs that match the prefix of Q within the threshold e. Then, 
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the unqualified answers are removed by post-processing. For each SID[ in the 

candidate set, we get the corresponding subsequence from the database, e.g. 

Silj : k]. If Dtu){Si[j : k],Q) < e, then Si[j : k] will be included in the final 

answers. 

4.5 Experimental Results 

In this section, we present the experimental results of our proposed meth-

ods. The data in our experiments are from the historical data of S&P 500 

stocks, which were extracted from http://kumo.swcp.com/stocks/. We used 

the close price of 500 stock sequences with average length of 231. Each stock 

will generate about 215 subsequences by the sliding window approach. The 

system is written in 'C' and an R-tree is used as the index. We performed the 

experiments on Sun Ultra 5/360 with 256MB of main memory. 

We carried out experiments to measure the performance of TB-SSM' and 

'RB-SSM'. For each experiment, the query sequences were generated by se-

lecting random subsequences from the database. For each query sequence, a 

threshold e was given and searching was performed against that threshold. 

In each experiment, 10 queries were performed and the average results are 

collected. We evaluated our methods in different aspects: 

1. The filtering power of both methods. 

2. The performance of our proposed methods ('PB-SSM' and 'RB-SSM') 

and sequential search. 

3. The effect of the width of the warping window on both methods. 

4. The effect of the threshold value on both methods. 

http://kumo.swcp.com/stocks/
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4.5.1 Candidate ratio vs Width of warping window 

We measured the filtering power of both indexing methods by candidate ratio. 

Candidate ratio is the fraction of sequences, which requires post-processing to 

get the final answer. It is defined as follows [27]: 

, ^ “ Number of candidate sequences that need to compute DTW 
candidate ratio = 

Number of sequences in database 

In this experiment, the number of stocks was fixed at 500. We tested our meth-

ods against various widths of warping window. The aim of this experiment 

is to analyzes the effect of the width of the warping window on the filtering 

power. The results are presented in Figure 4.7. The candidate ratio varies 

from 7% to 14%. Both TB-SSM' and (RB-SSM’ have similar filtering power 

using different widths of warping window. Although their filtering power is 

6 - • RB-SSM t ^ a A：. 

I B — — T r w 圖 圓 I t 圍 
I 6 - j ~ m — •>:?!’ • • 愈 • 漏 m r \ 
^ 4 - 1 4 _ _ _ m 

2 - _ _ , 
0 I I • I I m ^ . f A m ^ ' T n • ！ ^ 划 • � . I m 

2 4 6 8 10 12 
width of warping window 

Figure 4.7: Comparison of the candidate ratio between TB-SSM' and 'RB-
SSM' 

similar, their performance may be different. Since they use different indexing 

strategies, the number of nodes needed to be traversed or the time spent on 
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filtering may be different during the query process. Therefore, we evaluated 

the average CPU time of both methods by the following experiments. 

4.5.2 CPU time vs Number of subsequences 

We evaluated the average CPU time by increasing the number of stocks from 

100 to 500. The query length is 16 and e is 16. In each experiment, the width 

of the warping window is 6. Figure 4.8 depicts the results. It can be observed 

that the 'RB-SSM' outperforms both TB-SSM，and sequential search. For 

sequential search, the query sequence needs to compare with all data sequences, 

so the CPU time increases as the number of data sequences increases. For 

our proposed method, the CPU time also increases as the number of data 

sequences increases. This is because more branches of the R-tree are needed 

to be traversed as the number of data points increases. However, the average 

CPU of ‘RB-SSM’ still outperforms that of TB-SSM'. 

100.01 \ I 1 1 1 1 1 3 
:I 分 R B - S ^ I 
普 Sequentia丨 search PB-SSM 

0 — 
w 10.0 - —-‘ 

1 

I 1.�- • 

0.01 ‘ ‘ 1 1 1 ‘ ‘ 
100 150 200 250 300 350 400 450 500 

No. of data files 

Figure 4.8: CPU time vs Number of stocks 
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4.5.3 CPU time vs Width of warping window 

We examined our methods with different widths of warping window. The query 

length is 16 and we used 500 stocks to perform our experiments. Figure 4.9 

shows the CPU time of both methods by varying the width of the warping 

window. The wider the warping window, the longer the CPU time is required. 

According to the results, ‘RB-SSM，outperforms TB-SSM' when the width of 

the warping window is over 5. This is because the query of TB-SSM' is a hyper-

rectangle with its volume depending on the width of the warping window. 

However, the query of 'RB-SSM', which is a point, is independent of the width 

of the warping window. Nevertheless, the width of the warping window still 

affects the 'RB-SSM' method, this may probably due to the increasing of 

overlapping region in the index. 

1 1 1 1 1 1 I  
r b - s s m " | 

- e - PB-SSM 

0.5 - -

\ 
I • ^ 
I 
i 
o 

0.011 ‘ ‘ 1 1 1 ‘ 
2 4 6 8 10 12 14 16 

Width of the Warping window 

Figure 4.9: CPU time vs Width of warping window (e = 16) 

4.5.4 CPU time vs Threshold 

As for both ‘PB-SSM，and ‘RB-SSM，，the query regions depend on the thresh-

old, we performed experiments to compare the effect of the threshold on them. 
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We again used 500 stocks to perform our experiments and used warping win-

dow of width 6. As shown in Figure 4.10, the tendency of the performance is 

different from that in Figure 4.9. The effect of threshold on both methods are 

quite similar. The is because the query volume of both methods depend on 

the threshold, but that of 'PB-SSM' also depends on the width of the warping 

window. 

1 1 , r 1 
RB-SSM 

令 PB-SSM 

0.5 - -

o 

—~-~— 1 I I  
5 10 15 20 25 

Threshold 

Figure 4.10: CPU time vs Distance threshold (width of warping window = 6) 

4.6 Summary 

Dynamic time warping distance is more robust than Euclidean distance, but 

it does not satisfy the triangular inequality, so that it cannot be speed up by-

indexing. Dozens of research work proposes to use a lower bound function 

to facilitate the indexing structure. However, most of them focus on whole 

sequence matching or use a loose lower bound function. We propose two ap-

proaches which can handle subsequence matching of arbitrary lengths under 

DTW. Our approaches guarantee no false dismissal and use small space over-

head. Both of our methods are based on the sliding window approach and the 
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warping window constraint. 

The first method indexes each prefix of all possible subsequences. For the 

query process, a query bounding rectangle, which is based on the potential 

subsequences of the query, is formed to perform range query. The second 

approach maps each prefix of all possible subsequences to a hyper-rectangle 

and indexed. For the query process, the corresponding prefix is extracted from 

the query and the prefix together with the threshold are used to perform range 

query. In each case, the sequences in the candidate set will be examined by 

DTW to get the final answers. We show by experiments that our proposed 

methods outperform the traditional sequential search. 



Chapter 5 

Relevance Feedback under Time 
Warping 

In this chapter, we present a strategy to capture user's subjective requirement 

over the query process. The process is an interactive procedure between the 

user and computer. First, the user needs to provide an initial query. During 

the retrieval process, the system can automatically refine the existing query 

or the weights according to the user's feedback. To hide the low-level details 

of the calculation, the user only needs to indicate which answers are relevant 

in his or her point of view. Based on the information given by the user, the 

weights embedded in the query, that means the query, will be refined. As a 

result, the preference of the user can be captured by the updated query. Then 

the retrieval process will be continued with the "new" query. 

5.1 Integrating Relevance Feedback with DTW 

To capture the user's requirement, we refine the DTW by embedding the 

dynamic path constraint and weights in the distance calculation to facilitate 

our proposed feedback strategy in this section. 

As defined before, the global path constraint controls the warping path in 

49 
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a global scale. However, a static path constraint may not satisfy the require-

ments for all users. The examples below, which represent the preferences of 

different users, describe such case. The left hand side of Figure 5.1 shows two 

sequences and the corresponding warping path is depicted on the right hand 

side. There is a global path constraint, which is the grey area in the grid, to 

restrict the warping path. However, we can see that the path constraint mis-

judges the user's preference. Another example using the same path constraint 

is illustrated in Figure 5.2. In this example, the path constraint is fit for the 

warping path. 

ĈHy HI3 2! 3IH lil 
I ，簡帮 

I 31 jfi gnfefey 
卜 “ �p ？HnHESE 
i » 令，nte r?rrnn:nfqgp 

一 " “ p f e H i l l 

• ： 謂 
lypfe^' ^ ：“ 

� ! i ‘1�ii 
Figure 5.1: The path constraint misjudges the user's preference 

Obviously, we need different path constraints for different users. We pro-

pose to update the path constraint (warping window) during the query process 

based on the feedback of the user. As a result, the constraints will be refined 

and look like that in Figures 5.3 and 5.4. The detail of the update mechanism 

will be described in Section 5.2.1. 

Unlike the traditional path constraint, we do not restrict the warping path 

inside the warping window as we need to 'learn' the user's preference dynam-

ically. Instead, we use different weighting factors for the elements inside and 
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p i m 
Figure 5.4: We define the boundary of the warping window of qî  as Lli^ and 
Hhtr 

outside the warping window. By updating the weights, the warping path can 

still pass through the region outside the warping window, but with different 

weighting factors. Thus the system can display some ambiguous results, which 

have various warping paths, for the user to choose. Based on the feedback of 

the user, the path constraint can be updated continuously. To embed the 

weighting factors in DTW, let's consider the typical cumulative distance for-

mula of D T W (Eq. 2.3) first: 

Do{W) = f ^ d i h J k ) (5.1) 
k=l 

,where n is the length of the query sequence. The weights can be embedded 

in the distance calculation by generalizing Eq. 5.1 as 

D^c{W) = j y { i k j k ) r a [ i k ) (5.2) 
k=l 

，where m{ik) is a non-negative weighting function associated with qî . There 
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are many possible weighting functions, for example: 

, . � 1 ifLIi, < jk < HI,, 
m{ik) = (5.3) 

1 + -n-Trr ,1 otherwise 

， w h e r e Lli^ and Hli^ are the boundary of the warping window of qî  as 

depicted in Figure 5.4, i.e. 

^ i k j k ) e ly, LU, < j , < Hh , (5.4) 

The meaning of Eq. 5.3 is that the wider the warping window is, the less 

important of qî ^ is. Without loss the generality of Eq. 2.4，the DTW distance 

becomes 

= (5.5) 
VVv 

We call this a "weighted DTW" distance. Accordingly, the dynamic program-

ming recurrence formula (Eq. 2.5) becomes 

7(i，j) = d(ij)m{ik) + mm{'y(i - 1，j)，7(i，i - l)，7(i - 1，j - 1)} (5.6) 

In next section, we will present our query reformulating strategy in detail. 

5.2 Query Reformulation 

In this section, we describe the constraint update scheme and the weighting 

function that we use. The main symbols used in this chapter and their defini-

tions are summarized in Table 5.1. 

5.2.1 Constraint Updating 

To update the path constraint during the query process, we define an operation 

named "reform.constraint". The constraint is refined according to the warping 
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Symbol Definition 
Q A query sequence. . 
S A data sequence. 

Hlik The upper bound of the warping window of qî . 
Llif̂  The lower bound of the warping window of qî . 

R A set of relevant results that are marked by the 
user, i.e. . . . Rn]. 

77ip(ifc) The weighting function of qî  in the p认 iteration of feedback. 
c(p) Number of relevant results that are marked by the user in the p仇 

iteration of feedback. 
An optimal warping path between S and Q. 

Dtw{Q, S) The time warping distance between sequences S and Q  

Table 5.1: Summary of Symbols and Definitions 

path between the query Q and a data sequence 5, which is relevant to Q. The 

basic idea is that the new path constraint should enclose the warping path, 

for which the sequence is relevant to Q. Given a set of sequences, which are 

relevant to Q, we repeat "reform.constraint" by those sequences to update the 

path constraint continuously. 

The algorithm stated in Algorithm 4 describes our constraint refinement 

operation. Initially, there is no path constraint, and all Hlî ŝ are initialized to 

—oo and LIi� ’s to +oo. After the first feedback, the path constraint becomes a 

line. If the path constraint is a line, the constraint will be updated like merging 

two warping paths as depicted in Figure 5.5. After the first two iterations of 

feedback, a path constraint is defined. Figure 5.6 shows an example of the 

refinement of path constraint according to another warping path afterward. 

Algorithm 4 reform.constraint(S,Q) 
1: for (ikjk) in WS,Q do 
2: if jk > Hlik then 
3： HIi, = jk 
4: else if jk < Llik then 
5: Llik = jk 
6： end if 
7： end for 
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P P U P • • 
_ _ + _ _ 言 = 

d i g ^ g M 
Figure 5.5: An example of path constraint update at the initial stage. 

• • p 
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r ^ E ^ ^ i i l i ^ ^ s M f f i S W 

Figure 5.6: An illusion of Algorithm 4 

5.2.2 Weight Updating 
After updating the path constraint, we can refine the weights accordingly. As 

mentioned in Section 5.1, the weight m(ik) is associated with qî . To define the 

weight of Qî  and the refinement methodology, we first introduce two factors, 

the importance of qi,̂  and the importance of current iteration. 

Intuitively, if the width of the warping window of gî  is small, it means 

that Qik is more significant, as Qî  has similar alignments against all relevant 

sequences. On the other hand, if the alignments of qî  with the relevant se-

quences are very different, then is less important. According to this analysis, 

we propose to use the inverse of the width of the warping window as the im-

portance of qik. In other words, the wider the warping window is, the smaller 

the importance is. 

Definition 1 (Importance of qi^) Given a query sequence and its path con-

straint, which is constructed based on the relevant sequences, the importance, 
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Q(zfc), of each qi^, is defined as: 

_ = m 二 n (5.7) 

Here, we assume that there is at least one sequence which can match the user's 

preference. 

Figure 5.7 delineates the intuitive idea of Q.{ik)- The bar chat on the left 

hand side illustrates the importance of each which is contributed by the 

warping path on the right hand side. 

S 
.:.•“ •： i I I I I I I I I I I I j 丨 I I 丨 i 丨丨 

E旧三E三
三 三

三
三 三 三 三
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t=3 T T _ — 
[=i : 二二工二二二一二 二工工二二 

Q ^ ：二至4：二二三土三三 
I, „"'；, v;> ； 1 (. > i I 二二 = : 二 ： _ [ _ 二 二 
‘ • • ‘ I — 一 — 

‘ - ' ‘ ：：二 I 二 二 二 二 二 二 二 二 ： = : = _ 
|''；""：",：1 i i I I I I I I """"l"~T~i~t~1l~l 

Figure 5.7: An example of warping path constraint together with the impor-
tance of qik 

Using the importance of qî  as the only one quantitative measure of the 

weighting function is not enough since the implication of some relevant se-

quences may be hidden. Such case is shown in Figure 5.8. The path constraint 

constructed by paths A, B, and C is the same as that constructed by paths A 

and B only. As a result, the sequence, which has path C against the query, is 

"ignored". Therefore, we propose to use the importance of the current iteration 

as another weighting factor. 

The importance of the current iteration is actually the changing rate of the 

number of relevant sequences in each iteration, p. If the number of relevant 
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……………;;;⑴;;⑴⑴;；⑴;… 

Figure 5.8: Three different warping paths. 

answers, c(p), increases dramatically, then the contribution of that iteration 

should be large and vice versa. 

Definition 2 (Importance of current iteration) For a particular iteration, 

p, the importance of that iteration, A(p), is defined as: 

= (5.8) 

After introducing the above two kinds of importance, we now define the 

weight, mp{ik), of qî . We first initialize mo(ifc) = 1- At each iteration, the 

weights are refined by "inheriting" from the previous weight and "plus" the 

current influence as stated in Eq. 5.9. The current influence is composed of 

the two factors (importance)introduced before. After the refinement, if mp(红) 

is smaller than 1, then set it to 1. 

“ � ’ 1 < jk < Hh, 

mp-i{ik)fp{ik) otherwise 
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where, 

fp(ik) = X A(p) (5.10) 

5.2.3 Overall Strategy 

The overall query reformulation strategy and feedback procedure are stated 

in Algorithm 5. An initial query Q is given by the user and the weights 

are all initialized to one. Then the system will rank the sequences in the 

database according to the "weighted DTW" distance between the query and 

the sequences. The best n sequences will be displayed for the user to choose. 

The user only needs to mark those sequences relevant to the query according 

to his or her view point. After that, the path constraint and weights associated 

with the query will be updated by the procedures stated in Section 5.2.1 and 

Section 5.2.2 respectively. The query process will be iterated until the user 

finish querying. 

Algorithm 5 Overall  
1： User given the initial query Q 
2: Initialize all HI = - o o 
3： Initialize all LI = +oo 
4: Initialize all m ��= 1 
5： repeat 
6： Find the best n results 
7： Show the sequences to the user 
8： User states which sequences are relevant, e.g R 
9： for each sequence Ri in R do 

10： refrom_constr aint (Ri,Q) 
11： end for 
12: for 2 = 1 to n do 
13： update m(i) used Eq. 5.9 
14： end for 
15： until User finish query 
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5.3 Experiments and Evaluation 

To evaluate the performance of our proposed method, we conducted exper-

iments on four similar groups of sequences. Each group contains 500 data 

sequences. We generated the sequences using sin(a:) and Gaussian noise de-

scribed as follows: 

Group A are sin waves shift to left, with Gaussian noise of cr = 0.2. 

Group B are sin waves shift to right, with Gaussian noise of cr — 0.2. 

Group C are sin waves in the middle, with Gaussian noise of a = 0.2. 

Group D are shrunken sin waves, with Gaussian noise of cr = 0.2. 

All sequences are of length 40. Figure 5.9 shows an example from each group. 

The initial query was constructed by averaging all the 2,000 sequences. 

I \u 产 V / \ ,、 
V w 

Group A Group B 

l \ M 

y V ' 人 j \ 广 

Group C Group D 

Figure 5.9: An example of each group of sequences. 
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It is assumed in all the experiments that the user will not change his or her 

goal during the retrieval process, so the feedback process can be simulated by 

a computer. For every experiments, the feedback procedure was simulated by 

the computer using the following steps: 

1. One of the groiips(A,B,C, or D) was chosen to be the objective. 

2. The initial query was given. 

3. The best n results were returned by the computer. 

4. Among the best n results, the sequences, which are the same group of 

the objective, were marked as relevant. 

5. The path constraint and weights were updated as stated in Sections 5.2.1 

and 5.2.2. 

6. The feedback procedure was repeated m times, which is the testing pa-

rameter of our experiment. 

We used precision and recall to evaluate the retrieval performance of our 

approach. Recall is the proportion of the relevant sequences which have been 

returned, i.e. 

_ ,, The number of relevant sequences in the answer set 
Recall = — ：——： 

The number or relevant sequences in the databases 

Precision is the proportion of the retrieved sequences which are relevant, i.e. 

p . . The number of relevant sequences in the answer set 
The number of the sequences in the answer set 

The performance of an approach can be measured by the precision at a 

particular recall level. For example, we want to measure the precision at 

50% recall level. We can choose the answer set, which contains 50% of the 

relevant sequences in the databases. Note that we should choose the answer 
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set according to the ranking of the sequences. Among the answer set, the 

proportion of the relevant sequences is the precision. 

5.3.1 Effectiveness of the strategy 

The aim of relevance feedback is to return what the users want. Therefore, 

it is important to measure how good the results are. We first ran our experi-

ments using different numbers of top n results as feedback and measured the 

precisions of the first two iterations. The experimental results are illustrated 

by using precision recall graphs. We tested our proposed strategy by giving 

the top 10，the top 20 and the top 30 results as feedback and the statistics are 

shown in Figures 5.10, 5.11 and 5.12 respectively. For each case, we measured 

the precisions of our approach varying from 0% recall to 100% recall, and the 

precisions of first two iterations were recorded in the figures. From the figures, 

it can be observed that the precisions of the results greatly increased after the 

first two iterations. Obviously, the refined query can match users' perceptions 

of similarity. 

100 ——~— I 1 1~ n 
• ' • • " — Initial Query 

1st Iteration 
90 • • ' " " • •• 2ndIteration 

80 . ‘..•‘•• 

70 . \ -

S 60 ••-
I \ 

50 

40 i  

20 - -

10 - -

o' ‘ ‘ ‘ 
0 25 50 75 100 

Recall(persentage] 

Figure 5.10: Precision recall graph with the top 10 results as feedback. 
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Figure 5.11: Precision recall graph with the top 20 results as feedback. 
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Figure 5.12: Precision recall graph with the top 30 results as feedback. 
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5.3.2 Efficiency of the strategy 

Besides the accuracy, the efficiency of the strategy is also important. That is 

how fast the algorithm can retrieve the desirable results. There are two factors 

affecting the efficiency. One of them is the amount of feedback and another is 

the number of feedback iterations that the retrieval process needs. 

For practical reason, the amount of feedback (top n results) should be 

small. It is time consuming for a user to read through and choose among all 

the results, if too many sequences (e.g. top 100) are shown. In this experi-

ment, we studied the behavior of the number of returns. We gave different 

numbers of returns and measured the precisions at various recall levels. In 

each experiment, we recorded the precision after the 3�"iteration. The results 

are delineated in Figure 5.13. According to the results, the greatest increase 

of precision occurs at top 15 returns and the increasing rate approaches zero 

at about top 40 returns. It is a desirable outcome, as it is only 2% of the 

whole data set. Therefore, the user can use less effort to accomplish his or her 

mission. 

1 1 1 1 1 1 1 I 
- « - 25% Recall 

50% Recall 
- • - 75% Recall 

100 - _ 画 疆 ^ ^ „ n i ( 

_ _ 曾 • _ ‘ 

75 - -

§ I 
50 - -

25 _ -

QI I I I I I I 1 « 
10 15 20 25 30 35 40 45 50 55 

Topn 

Figure 5.13: Precision Vs Number of results for feedback 
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On the other hand, the user cannot give feedback forever. Hence, the 

number of iterations is also very critical. We performed experiments to study 

the effect of the number of iterations. In the experiment, we measured the 

precisions of each iteration at different recall levels. Figure 5.14 illustrates 

the results. According to the experiments, the greatest increase of precision 

appears at the first iteration and the later iterations cause minor increase 

of precision. This property is very preferable, as reasonable results can be 

achieved within a short time. 

I 1 1 1 1 1 1 I 一 

I 寺 25% Recall | 
50% Recall 

I 75% Recall | 

100 - ^ ^ ^ ^ g 職 • I , 

25/ -

qI I 1 1 I I I 1 1  
0 1 2 3 4 5 6 7 8 9 

Iteration 

Figure 5.14: Precision Vs Number of feedback iterations 

5.3.3 Usability 

To demonstrate the usability of our feedback strategy on real data, we ran 

the following experiments. We first built a database from the Auslan (Aus-

tralian Sign Language) data, which can be found at the UCI KDD Archive 

(http://kdd.ics.uci.edu/). For each experiment, a time series was randomly se-

lected from the database as the initial query. The top 20 results were returned 

and judged by a user. The user marked the relevant results and repeated the 

http://kdd.ics.uci.edu/
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search. The results are summarized in Table 5.2 - 5.6. In each table, the user 

feedback, new answers based on the preference of the user, and the unqualified 

answers after feedback are presented respectively. 

The tables are divided into three parts. The sequences in each part are 

presented in pair, where the red one is query and the black one is result from 

database, for visual comparison. Part one are the sequences marked by the 

user as relevant. Part two are the new retrieved sequences according to the 

user's preference. Part three are those removed sequences after user feedback. 
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User Feedback 
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Table 5.2: Example 1 of relevance feedback on time series. 
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User Feedback 
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Table 5.3: Example II of relevance feedback on time series. 
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Table 5.4: Example III of relevance feedback on time series. 
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User Feedback 
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Table 5.5: Example IV of relevance feedback on time series. 
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\ — —!y\ ：〜— /f\ 
‘ ———八L�— 一 … … 一 — . — . . . � , 广 … -

\ 1 V\ 4 i\ 
\：：二 丄—,.\:— 〜 二 . .—. .Z j l— 

— ( — — � / / � V 

V V I. —ĉy “ 一 
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Table 5.6： Example V of relevance feedback on time series. 
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5.4 Summary 

In this chapter, we suggest an interactive feedback strategy for time series 

retrieval based on DTW. The user only needs to submit the initial query and 

the system can refine the weights and constraint of the query continuously 

by gathering the information from the user. Our approach hides the low-

level representation of the distance calculation, and the user simply decides 

which sequences are relevant to express the information that he or she wants. 

Finally, we also verify the effectiveness and efficiency of our approach by various 

experiments. 

There are some further directions that we can extend this work. We have 

only studied the case that the query and data sequences are of the same length 

in this chapter. We deem that our strategy still works, if their lengths are 

different. This is because all the weights and constraint are associated with 

the query, but not the data sequences. However, we may need to consider 

some new weighting factors. Furthermore, some indexing techniques may be 

able to speed up the retrieval process. 



Chapter 6 

Conclusion 

In this thesis, we study the problem of subsequences matching under Dynamic 

Time Warping (DTW). DTW has been widely studied recently in the time 

series domain, as it is more robust than Euclidean distance. Different lower 

bound techniques are suggested for similarity searching under DTW. How-

ever, most of them focus on whole sequence matching, or suggest a very loose 

lower bound. Two approaches are proposed in this dissertation to handle 

subsequences matching. We first generalize a better lower bound technique 

to handle subsequences matching of arbitrary lengths under DTW. We sug-

gest an efficient approach, which guarantees no false dismissal and uses small 

space overhead. Our approach is based on the sliding window and the warp-

ing window constraint. Based on the sliding window approach, each prefix of 

all possible subsequences is indexed. For the query process, a query bound-

ing rectangle {QBR) is formed to perform range query. Each answer in the 

candidate set is examined by DTW to get the final answer. 

On the other hand, we notice that the QBR is very similar to the MBR. 

Thus we propose another indexing strategy, which is to form the MBRs based 

on the warping window constraint for each possible subsequences. Then, the 

leaf nodes of the R-tree will contain data bounding rectangles(_D_Bi?) instead of 

points. Hence, the query sequence can be used directly as a multi-dimensional 
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point instead of forming a bounding rectangle. Experiments are done on his-

torical stock data. Prom the experiments, we show that our proposed methods 

outperform the traditional sequential search and the rectangle-based index has 

better performance than the point-based one when the width of the warping 

window is large. 

While Dynamic Time Warping is more robust than Euclidean distance, it 

still cannot capture users' perceptions of similarity and preferences. Relevance 

feedback is a technique used to "learn" user's preference and perform retrieval. 

Most of the research effort about relevance feedback focuses on the image and 

text domain, but less attempt has been done on the the time series domain. 

Therefore, we suggest to utilize relevance feedback with DTW to enhance the 

precision of the retrieved answers. 

During the query process, the user can simply choose the relevant sequences 

as feedback. The warping window constraint and the weighting factors em-

bedded in the DTW are refined accordingly to accomplish the user's goal. 

We have run experiments on both synthesis and real data and the proposed 

method shows improvement on the precision of the retrieved answers. 



Appendix A 

Deduction of Data Bounding 

Hyper-rectangle 

Here, we show how we can deduce the Data Bounding Hyper-rectangle. Con-

sider the scenario stated in Section 4.3.1. Q[3 : 6] is aligned with S'[4 : 8]. The 

time warping distance between them is: 

Az . (5 [4 :8 ) ,g [3 :6 ] ) = 3) + 3) + 4) + 5) + d{8,6) 

If we remove the duplicated elements (i.e. . . . ) in every 

columns, e.g. (5,3), we have: 

We define this operation as Frd, i.e. 

DtUS[x ： yiQli ： j]) > Frd{DtUS[x : yiQ[i ： j])) (A.l) 

According to Eq. 2.2, each Qy must align with one Su, where Su G {smax(i;-r,x)... Smm(t;+r,y)}-

For example, each element of Q[3 : 6] must align with at least one element of 

5[4 : 8] within the warping window, i.e. q4 must align with S4, S5, or Sq. 
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Therefore, we have the following inequality. 

d{u,v) > imB.{d{max{v - r,x),v)... d{min(v + r, y), v)} 

^ mini I Smax{v—r,x) ~ Qv \ • • • |Smin(u+r’y) — 

I . . . Sfnin(^v+r,y)} _ Qv\ 

' ^ J Q v �r , a ; ) • . . ^min{u+r,y)} 

— < I r,x) . • • ^min{v+r,y)} _ Qv\ 

订Qv < i n i n - [ s 7 7 x a 3 ; ( t ; — r , x ) . . • 3min{u+r,y)} 

0 otherwise 

= d i b ( u , v ) (A.2) 

We define the lower bound of each element as dib(u,v). From Eq. A.l and 

Eq. A.2, we have the following inequality: 

Dtu.iS[i : jlQ[x : y]) > FrdCEMu^v)) (A.3) 
v=i 



Appendix B 

Proof of Theorem 2 

Theorem 3 Given two subsequences S[x : y] and Q[i: j], where I = Len{Q[i : 

j]) and i - r <x <i-{-r and j - r < y < j + r,if e-Q is not overlapped with 

the DBR, then : y],Q[iJ]) > e. 

Proof: By contradiction, 

Assume e-Q is not overlapped with DBR. If Dtw{S[x : y],Q[i,j]) < e, then 

from equation Eq. A.3, we have, 

Frci(Edib{u,v))<e (B.l) 
v=i 

By assumption, there exists a q” such that, 

=4> < 
I Q/v — e � r , x ) . • . 5 m m ( i ; + r , i / ) } 

I 如-rnill{s爪一T’:c) . . • ^min{v-\-T,xj) } | �̂ 

\(lv 一 max{S7nax(v-r,x) • • • Srniu(v+r，y)}|�̂ 

=> dib(u,v) > € 

which contradicts with inequality Eq. B.l, so that the proof is completed. 
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