249,687 research outputs found

    Exploring the Referral and Usage of Science Fiction in HCI Literature

    Full text link
    Research on science fiction (sci-fi) in scientific publications has indicated the usage of sci-fi stories, movies or shows to inspire novel Human-Computer Interaction (HCI) research. Yet no studies have analysed sci-fi in a top-ranked computer science conference at present. For that reason, we examine the CHI main track for the presence and nature of sci-fi referrals in relationship to HCI research. We search for six sci-fi terms in a dataset of 5812 CHI main proceedings and code the context of 175 sci-fi referrals in 83 papers indexed in the CHI main track. In our results, we categorize these papers into five contemporary HCI research themes wherein sci-fi and HCI interconnect: 1) Theoretical Design Research; 2) New Interactions; 3) Human-Body Modification or Extension; 4) Human-Robot Interaction and Artificial Intelligence; and 5) Visions of Computing and HCI. In conclusion, we discuss results and implications located in the promising arena of sci-fi and HCI research.Comment: v1: 20 pages, 4 figures, 3 tables, HCI International 2018 accepted submission v2: 20 pages, 4 figures, 3 tables, added link/doi for Springer proceedin

    Framework for Electroencephalography-based Evaluation of User Experience

    Get PDF
    Measuring brain activity with electroencephalography (EEG) is mature enough to assess mental states. Combined with existing methods, such tool can be used to strengthen the understanding of user experience. We contribute a set of methods to estimate continuously the user's mental workload, attention and recognition of interaction errors during different interaction tasks. We validate these measures on a controlled virtual environment and show how they can be used to compare different interaction techniques or devices, by comparing here a keyboard and a touch-based interface. Thanks to such a framework, EEG becomes a promising method to improve the overall usability of complex computer systems.Comment: in ACM. CHI '16 - SIGCHI Conference on Human Factors in Computing System, May 2016, San Jose, United State

    A Newcomer's Guide to EICS, the Engineering Interactive Computing Systems Community

    Full text link
    [EN] Welcome to EICS, the Engineering Interactive Computing Systems community, PACMHCI/EICS journal, and annual conference! In this short article, we introduce newcomers to the field and to our community with an overview of what EICS is and how it positions with respect to other venues in Human-Computer Interaction, such as CHI, UIST, and IUI, highlighting its legacy and paying homage to past scientific events from which EICS emerged. We also take this opportunity to enumerate and exemplify scientific contributions to the field of Engineering Interactive Computing Systems, which we hope to guide researchers and practitioners towards making their future PACMHCI/EICS submissions successful and impactful in the EICS community.We acknowledge the support of MetaDev2 as the main sponsor of EICS 2019. We would like to thank the Chairs of all the tracks of the EICS 2019 conference, the members of the local organization team, and the web master of the EICS 2019 web site. EICS 2019 could not have been possible without the commitment of the Programme Committee members and external reviewers. This work was partially supported by the Spanish Ministry of Economy, Industry and Competitiveness, State Research Agency / European Regional Development Fund under Vi-SMARt (TIN2016-79100-R), the Junta de Comunidades de Castilla-La Mancha European Regional Development Fund under NeUX (SBPLY/17/180501/000192) projects, the Generalitat Valenciana through project GISPRO (PROMETEO/2018/176), and the Spanish Ministry of Science and Innovation through project DataME (TIN2016-80811-P).López-Jaquero, VM.; Vatavu, R.; Panach, JI.; Pastor López, O.; Vanderdonckt, J. (2019). A Newcomer's Guide to EICS, the Engineering Interactive Computing Systems Community. Proceedings of the ACM on Human-Computer Interaction. 3:1-9. https://doi.org/10.1145/3300960S193Bastide, R., Palanque, P., & Roth, J. (Eds.). (2005). Engineering Human Computer Interaction and Interactive Systems. Lecture Notes in Computer Science. doi:10.1007/b136790Beaudouin-Lafon, M. (2004). Designing interaction, not interfaces. Proceedings of the working conference on Advanced visual interfaces - AVI ’04. doi:10.1145/989863.989865Bodart, F., & Vanderdonckt, J. (Eds.). (1996). Design, Specification and Verification of Interactive Systems ’96. Eurographics. doi:10.1007/978-3-7091-7491-3Gallud, J. A., Tesoriero, R., Vanderdonckt, J., Lozano, M., Penichet, V., & Botella, F. (2011). Distributed user interfaces. Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems - CHI EA ’11. doi:10.1145/1979742.1979576Graham, T. C. N., & Palanque, P. (Eds.). (2008). Interactive Systems. Design, Specification, and Verification. Lecture Notes in Computer Science. doi:10.1007/978-3-540-70569-7Proceedings of the 1st ACM SIGCHI symposium on Engineering interactive computing systems - EICS ’09. (2009). doi:10.1145/1570433Lawson, J.-Y. L., Vanderdonckt, J., & Vatavu, R.-D. (2018). Mass-Computer Interaction for Thousands of Users and Beyond. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. doi:10.1145/3170427.3188465Lozano, M. D., Galllud, J. A., Tesoriero, R., Penichet, V. M. R., Vanderdonckt, J., & Fardoun, H. (2013). 3rd workshop on distributed user interfaces. Proceedings of the 5th ACM SIGCHI symposium on Engineering interactive computing systems - EICS ’13. doi:10.1145/2494603.2483222Proceedings of the 2014 Workshop on Distributed User Interfaces and Multimodal Interaction - DUI ’14. (2014). doi:10.1145/2677356Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems. (2019). doi:10.1145/3319499Tesoriero, R., Lozano, M., Vanderdonckt, J., Gallud, J. A., & Penichet, V. M. R. (2012). distributed user interfaces. CHI ’12 Extended Abstracts on Human Factors in Computing Systems. doi:10.1145/2212776.2212704Vanderdonckt, J. (2005). A MDA-Compliant Environment for Developing User Interfaces of Information Systems. Active Flow and Combustion Control 2018, 16-31. doi:10.1007/11431855_2Vatavu, R.-D. (2012). User-defined gestures for free-hand TV control. Proceedings of the 10th European conference on Interactive tv and video - EuroiTV ’12. doi:10.1145/2325616.2325626Vatavu, R.-D. (2017). Beyond Features for Recognition: Human-Readable Measures to Understand Users’ Whole-Body Gesture Performance. International Journal of Human–Computer Interaction, 33(9), 713-730. doi:10.1080/10447318.2017.1278897Wobbrock, J. O., & Kientz, J. A. (2016). Research contributions in human-computer interaction. Interactions, 23(3), 38-44. doi:10.1145/290706

    Crowdsourcing and Human Computation: Systems, Studies and Platforms

    Get PDF
    Crowdsourcing and human computation are transforming human-computer interaction, and CHI has led the way. The seminal publication in human computation was initially published in CHI in 2004 [1], and the first paper investigating Mechanical Turk as a user study platform has amassed over one hundred citations in two years [5]. However, we are just beginning to stake out a coherent research agenda for the field. This workshop will bring together researchers in the young field of crowdsourcing and human computation and produce three artifacts: a research agenda for the field, a vision for ideal crowdsourcing platforms, and a group-edited bibliography. These resources will be publically disseminated on the web and evolved and maintained by the community

    Science vs. science: the complexities of interdisciplinary research

    No full text
    Human-Computer Interaction and Web Science are radically interdisciplinary fields, but what does this mean in practical terms? Undertaking research (and writing papers) that encompass multiple disciplinary perspectives and methods is a serious challenge and it is difficult to maintain conferences that fairly review and host contributions from multiple disciplines. The colocation of the ACM WebSci conference with CHI in Paris, offers an unusual opportunity to bring these two communities together. Previous discussions have considered how to conduct interdisciplinary work that bridges HCI/WebSci with specific areas. Our objective is to provide a space for interested researchers from both communities to share their views and approaches to tackling the tensions and complexities associated with interdisciplinary work, whatever fields are being bridged

    Envisioning Future Playful Interactive Environments for Animals

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-981-287-546-4_6Play stands as one of the most natural and inherent behavior among the majority of living species, specifically humans and animals. Human play has evolved significantly over the years, and so have done the artifacts which allow us to play: from children playing tag games without any tools other than their bodies, to modern video games using haptic and wearable devices to augment the playful experience. However, this ludic revolution has not been the same for the humans’ closest companions, our pets. Recently, a new discipline inside the human–computer interaction (HCI) community, called animal–computer interaction (ACI), has focused its attention on improving animals’ welfare using technology. Several works in the ACI field rely on playful interfaces to mediate this digital communication between animals and humans. Until now, the development of these interfaces only comprises a single goal or activity, and its adaptation to the animals’ needs requires the developers’ intervention. This work analyzes the existing approaches, proposing a more generic and autonomous system aimed at addressing several aspects of animal welfare at a time: Intelligent Playful Environments for Animals. The great potential of these systems is discussed, explaining how incorporating intelligent capabilities within playful environments could allow learning from the animals’ behavior and automatically adapt the game to the animals’ needs and preferences. The engaging playful activities created with these systems could serve different purposes and eventually improve animals’ quality of life.This work was partially funded by the Spanish Ministry of Science andInnovation under the National R&D&I Program within the projects Create Worlds (TIN2010-20488) and SUPEREMOS (TIN2014-60077-R), and from Universitat Politècnica de València under Project UPV-FE-2014-24. It also received support from a postdoctoral fellowship within theVALi+d Program of the Conselleria d’Educació, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catalá (APOSTD/2013/013). The work of Patricia Pons has been supported by the Universitat Politècnica de València under the “Beca de Excelencia” program and currently by an FPU fellowship from the Spanish Ministry of Education, Culture, and Sports (FPU13/03831).Pons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2015). Envisioning Future Playful Interactive Environments for Animals. En More Playful User Interfaces: Interfaces that Invite Social and Physical Interaction. Springer. 121-150. https://doi.org/10.1007/978-981-287-546-4_6S121150Alfrink, K., van Peer, I., Lagerweij H, et al.: Pig Chase. Playing with Pigs project. (2012) www.playingwithpigs.nlAmat, M., Camps, T., Le, Brech S., Manteca, X.: Separation anxiety in dogs: the implications of predictability and contextual fear for behavioural treatment. Anim. Welf. 23(3), 263–266 (2014). doi: 10.7120/09627286.23.3.263Barker, S.B., Dawson, K.S.: The effects of animal-assisted therapy on anxiety ratings of hospitalized psychiatric patients. Psychiatr. Serv. 49(6), 797–801 (1998)Bateson, P., Martin, P.: Play, Playfulness, Creativity and Innovation. Cambridge University Press, New York (2013)Bekoff, M., Allen, C.: Intentional communication and social play: how and why animals negotiate and agree to play. In: Bekoff, M., Byers, J.A. (eds.) Animal Play Evolutionary. Comparative and Ecological Perspectives, pp. 97–114. Cambridge University Press, New York (1997)Burghardt, G.M.: The Genesis of Animal Play. Testing the Limits. MIT Press, Cambridge (2006)Catalá, A., Pons, P., Jaén, J., et al.: A meta-model for dataflow-based rules in smart environments: evaluating user comprehension and performance. Sci. Comput. Prog. 78(10), 1930–1950 (2013). doi: 10.1016/j.scico.2012.06.010Cheok, A.D., Tan, R.T.K.C., Peiris, R.L., et al.: Metazoa ludens: mixed-reality interaction and play for small pets and humans. IEEE Trans. Syst. Man. Cybern.—Part A Syst. Hum. 41(5), 876–891 (2011). doi: 10.1109/TSMCA.2011.2108998Costello, B., Edmonds, E.: A study in play, pleasure and interaction design. In: Proceedings of the 2007 Conference on Designing Pleasurable Products and Interfaces, pp. 76–91 (2007)Csikszentmihalyi, M.: Beyond Boredom and Anxiety. The Experience of Play in Work and Games. Jossey-Bass Publishers, Hoboken (1975)Filan, S.L., Llewellyn-Jones, R.H.: Animal-assisted therapy for dementia: a review of the literature. Int. Psychogeriatr. 18(4), 597–611 (2006). doi: 10.1017/S1041610206003322García-Herranz, M., Haya, P.A., Alamán, X.: Towards a ubiquitous end-user programming system for smart spaces. J. Univ. Comput. Sci. 16(12), 1633–1649 (2010). doi: 10.3217/jucs-016-12-1633Hirskyj-Douglas, I., Read, J.C.: Who is really in the centre of dog computer interaction? In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Hu, F., Silver, D., Trude, A.: LonelyDog@Home. In: International Conference Web Intelligence Intelligent Agent Technology—Workshops, 2007 IEEE/WIC/ACM IEEE, pp. 333–337, (2007)Huizinga, J.: Homo Ludens. Wolters-Noordhoff, Groningen (1985)Kamioka, H., Okada, S., Tsutani, K., et al.: Effectiveness of animal-assisted therapy: a systematic review of randomized controlled trials. Complement. Ther. Med. 22(2), 371–390 (2014). doi: 10.1016/j.ctim.2013.12.016Lee, S.P., Cheok, A.D., James, T.K.S., et al.: A mobile pet wearable computer and mixed reality system for human–poultry interaction through the internet. Pers. Ubiquit. Comput. 10(5), 301–317 (2006). doi: 10.1007/s00779-005-0051-6Leo, K., Tan, B.: User-tracking mobile floor projection virtual reality game system for paediatric gait and dynamic balance training. In: Proceedings of the 4th International Convention on Rehabilitation Engineering and Assistive Technology pp. 25:1–25:4 (2010)Mancini, C.: Animal-computer interaction: a manifesto. Mag. Interact. 18(4), 69–73 (2011). doi: 10.1145/1978822.1978836Mancini, C.: Animal-computer interaction (ACI): changing perspective on HCI, participation and sustainability. CHI ’13 Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, pp. 2227–2236 (2013)Mancini, C., van der Linden, J.: UbiComp for animal welfare: envisioning smart environments for kenneled dogs. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 117–128 (2014)Mancini, C., Harris, R., Aengenheister, B., Guest, C.: Re-centering multispecies practices: a canine interface for cancer detection dogs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing System, pp. 2673–2682 (2015)Mancini, C., van der Linden, J., Bryan, J., Stuart, A.: Exploring interspecies sensemaking: dog tracking semiotics and multispecies ethnography. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing—UbiComp ’12. ACM Press, New York, pp. 143–152 (2012)Mankoff, D., Dey, A.K., Mankoff, J., Mankoff, K.: Supporting interspecies social awareness: using peripheral displays for distributed pack awareness. In: Proceedings of the 18th Annual ACM Symposium on User interface Software and Technology, pp. 253–258 (2005)Maternaghan, C., Turner, K.J.: A configurable telecare system. In: Proceedings of the 4th International Conference on Pervasive Technologies Related to Assistive Environments—PETRA ’11. ACM Press, New York, pp. 14:1–14:8 (2011)Matsuzawa, T.: The Ai project: historical and ecological contexts. Anim. Cogn. 6(4), 199–211 (2003). doi: 10.1007/s10071-003-0199-2McGrath, R.E.: Species-appropriate computer mediated interaction. CHI ‘09 Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, pp. 2529–2534 (2009)Mocholí, J.A., Jaén, J., Catalá, A.: A model of affective entities for effective learning environments. In: Innovations in Hybrid Intelligent Systems, pp. 337–344 (2007)Nijholt, A. (ed.): Playful User Interfaces. Springer, Singapore (2014)Norman, D.A.: The invisible computer. MIT Press, Cambridge (1998)Noz, F., An, J.: Cat cat revolution: an interspecies gaming experience. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2661–2664 (2011)Paldanius, M., Kärkkäinen, T., Väänänen-Vainio-Mattila, K., et al.: Communication technology for human-dog interaction: exploration of dog owners’ experiences and expectations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, New York, pp. 2641–2650 (2011)Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Pons, P., Jaén, J., Catalá, A.: Animal ludens: building intelligent playful environments for animals. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Resner, B.: Rover@Home: Computer Mediated Remote Interaction Between Humans and Dogs. M.Sc. thesis, Massachusetts Institute of Technology, Cambridge (2001)Ritvo, S.E., Allison, R.S.: Challenges related to nonhuman animal-computer interaction: usability and “liking”. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Robinson, C., Mncini, C., Van Der Linden, J., et al.: Canine-centered interface design: supporting the work of diabetes alert dogs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3757–3766 (2014)Rumbaugh, D.M.: Language Learning by a Chimpanzee: The LANA Project. Academic Press, New York (1977)Rumbaugh, D.M.: Apes and their future in comparative psychology. Eye Psi Chi 18(1), 16–19 (2013)Rumbaugh, D.M., Gill, T.V., Brown, J.V., et al.: A computer-controlled language training system for investigating the language skills of young apes. Behav. Res. Methods Instrum. 5(5), 385–392 (1973)Schwartz, S.: Separation anxiety syndrome in cats: 136 cases (1991–2000). J. Am. Vet. Med. Assoc. 220(7), 1028–1033 (2002). doi: 10.2460/javma.2002.220.1028Schwartz, S.: Separation anxiety syndrome in dogs and cats. J. Am. Vet. Med. Assoc. 222(11), 1526–1532 (2003)Solomon, O.: What a dog can do: children with autism and therapy dogs in social interaction. Ethos J. Soc. Psychol. Anthropol. 38(1), 143–166 (2010). doi: 10.1111/j.1548-1352.2010.01085.xTeh, K.S., Lee, S.P., Cheok, A.D.: Poultry. Internet: a remote human-pet interaction system. In: CHI ’06 Extended Abstracts on Human Factors in Computing Systems, pp. 251–254 (2006)Väätäjä, H., Pesonen, E.: Ethical issues and guidelines when conducting HCI studies with animals. In: CHI ’13 Extended Abstracts on Human Factors in Computing Systems, pp. 2159–2168 (2013)Väätäjä, H.: Animal welfare as a design goal in technology mediated human-animal interaction—opportunities with haptics. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Weilenmann, A., Juhlin, O.: Understanding people and animals. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI ’11. ACM Press, New York, pp. 2631–2640 (2011)Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)Westerlaken, M., Gualeni, S., Geurtsen, A.: Grounded zoomorphism: an evaluation methodology for ACI design. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Westerlaken, M., Gualeni, S.: Felino: the philosophical practice of making an interspecies videogame. Philosophy of Computer Games Conference, pp. 1–12 (2014)Wingrave, C.A., Rose, J., Langston, T., LaViola, J.J.J.: Early explorations of CAT: canine amusement and training. In: CHI ’10 Extended Abstracts on Human Factors in Computing Systems, pp. 2661–2669 (2010

    Tactics for HCI Design Interventions with Nonprofit Organizations

    Get PDF
    Thirty HCI practitioners participated in a CHI 2011 workshop [7], intending to directly engage with the processes, goals, and challenges of six Vancouver area nonprofit organizations. Analysis of the workshop documentation allowed us to track instances of reciprocal interaction between stakeholders. Findings revealed that various design tactics were productive in enabling collaborators to improve their focus on addressing key challenges they face. This case study contributes new knowledge – tactics to conduct and evaluate HCI Design Interventions with nonprofits, as well as, helping to expand the emerging intersection of political computing and human-computer interaction

    Towards Understanding the Importance of Co-Located Gameplay

    Get PDF
    © Lennart Nacke, 2015. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in CHI PLAY '15 Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play, https://doi.org/10.1145/2793107.2810312Analyzing the social con¬text present in a gameplay environment and its effect on player experience can provide insights informing the design and social value of games. We investigate the influence of social condition (cooperative or competitive play with a human player versus computer-controlled character) on player experience. The study controlled for co-presence by ensuring that another individual attending to the same stimulus was present in all conditions. Although physiological measures were not significant, subjective measures of arousal and pleasure were significantly different under varying conditions.SIGCHI ACM Special Interest Group on Computer-Human InteractionPeer-reviewe

    Design and Preliminary Validation of The Player Experience Inventory

    Get PDF
    © Lennart Nacke, 2016. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in CHI PLAY Companion '16 Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts, https://doi.org/10.1145/2968120.2971805We present the design and preliminary results of the validation of the Player Experience Inventory (PXI). Based on the input of 64 experts in the field of player-computer interaction, we designed and refined this new scale. Our scale is based on the MDA framework (and on Means-End theory, underlying MDA). The PXI incorporates two subscales, one with dimensions at the functional level (i.e., dynamics) and one at the psycho-social level (i.e., aesthetics). The initial results, via principal factor analysis, suggest the scale can be used accurately to evaluate player experience. This work is our first step towards presenting a new, validated survey instrument for player experience evaluation.SIGCHI ACM Special Interest Group on Computer-Human InteractionPeer-reviewe
    corecore