12,954 research outputs found

    Spin quantum computation in silicon nanostructures

    Full text link
    Proposed silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals because of their long spin coherence times due to their limited interactions with their environments. For these spin qubits, shallow donor exchange gates are frequently invoked to perform two-qubit operations. We discuss in this review a particularly important spin decoherence channel, and bandstructure effects on the exchange gate control. Specifically, we review our work on donor electron spin spectral diffusion due to background nuclear spin flip-flops, and how isotopic purification of silicon can significantly enhance the electron spin dephasing time. We then review our calculation of donor electron exchange coupling in the presence of degenerate silicon conduction band valleys. We show that valley interference leads to orders of magnitude variations in electron exchange coupling when donor configurations are changed on an atomic scale. These studies illustrate the substantial potential that donor electron/nuclear spins in silicon have as candidates for qubits and simultaneously the considerable challenges they pose. In particular, our work on spin decoherence through spectral diffusion points to the possible importance of isotopic purification in the fabrication of scalable solid state quantum computer architectures. We also provide a critical comparison between the two main proposed spin-based solid state quantum computer architectures, namely, shallow donor bound states in Si and localized quantum dot states in GaAs.Comment: 14 pages. Review article submitted to Solid State Communication

    Silicon-based spin and charge quantum computation

    Full text link
    Silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals due to the relatively long spin coherence times. For these spin qubits, donor electron charge manipulation by external gates is a key ingredient for control and read-out of single-qubit operations, while shallow donor exchange gates are frequently invoked to perform two-qubit operations. More recently, charge qubits based on tunnel coupling in P2+_2^+ substitutional molecular ions in Si have also been proposed. We discuss the feasibility of the building blocks involved in shallow donor quantum computation in silicon, taking into account the peculiarities of silicon electronic structure, in particular the six degenerate states at the conduction band edge. We show that quantum interference among these states does not significantly affect operations involving a single donor, but leads to fast oscillations in electron exchange coupling and on tunnel-coupling strength when the donor pair relative position is changed on a lattice-parameter scale. These studies illustrate the considerable potential as well as the tremendous challenges posed by donor spin and charge as candidates for qubits in silicon.Comment: Review paper (invited) - to appear in Annals of the Brazilian Academy of Science

    Hilbert space structure of a solid state quantum computer: two-electron states of a double quantum dot artificial molecule

    Get PDF
    We study theoretically a double quantum dot hydrogen molecule in the GaAs conduction band as the basic elementary gate for a quantum computer with the electron spins in the dots serving as qubits. Such a two-dot system provides the necessary two-qubit entanglement required for quantum computation. We determine the excitation spectrum of two horizontally coupled quantum dots with two confined electrons, and study its dependence on an external magnetic field. In particular, we focus on the splitting of the lowest singlet and triplet states, the double occupation probability of the lowest states, and the relative energy scales of these states. We point out that at zero magnetic field it is difficult to have both a vanishing double occupation probability for a small error rate and a sizable exchange coupling for fast gating. On the other hand, finite magnetic fields may provide finite exchange coupling for quantum computer operations with small errors. We critically discuss the applicability of the envelope function approach in the current scheme and also the merits of various quantum chemical approaches in dealing with few-electron problems in quantum dots, such as the Hartree-Fock self-consistent field method, the molecular orbital method, the Heisenberg model, and the Hubbard model. We also discuss a number of relevant issues in quantum dot quantum computing in the context of our calculations, such as the required design tolerance, spin decoherence, adiabatic transitions, magnetic field control, and error correction.Comment: 22 2-column pages, 11 figures. Published versio

    Detection of exomoons in simulated light curves with a regularized convolutional neural network

    Full text link
    Many moons have been detected around planets in our Solar System, but none has been detected unambiguously around any of the confirmed extrasolar planets. We test the feasibility of a supervised convolutional neural network to classify photometric transit light curves of planet-host stars and identify exomoon transits, while avoiding false positives caused by stellar variability or instrumental noise. Convolutional neural networks are known to have contributed to improving the accuracy of classification tasks. The network optimization is typically performed without studying the effect of noise on the training process. Here we design and optimize a 1D convolutional neural network to classify photometric transit light curves. We regularize the network by the total variation loss in order to remove unwanted variations in the data features. Using numerical experiments, we demonstrate the benefits of our network, which produces results comparable to or better than the standard network solutions. Most importantly, our network clearly outperforms a classical method used in exoplanet science to identify moon-like signals. Thus the proposed network is a promising approach for analyzing real transit light curves in the future
    corecore