4,036 research outputs found

    One-Parameter Bifurcation Analysis of Dynamical Systems using Maple

    Get PDF
    This paper presents two algorithms for one-parameter local bifurcations of equilibrium points of dynamical systems. The algorithms are implemented in the computer algebra system Maple 13 © and designed as a package. Some examples are reported to demonstrate the package’s facilities.* This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02–359/2008

    Accurately model the Kuramoto--Sivashinsky dynamics with holistic discretisation

    Get PDF
    We analyse the nonlinear Kuramoto--Sivashinsky equation to develop accurate discretisations modeling its dynamics on coarse grids. The analysis is based upon centre manifold theory so we are assured that the discretisation accurately models the dynamics and may be constructed systematically. The theory is applied after dividing the physical domain into small elements by introducing isolating internal boundaries which are later removed. Comprehensive numerical solutions and simulations show that the holistic discretisations excellently reproduce the steady states and the dynamics of the Kuramoto--Sivashinsky equation. The Kuramoto--Sivashinsky equation is used as an example to show how holistic discretisation may be successfully applied to fourth order, nonlinear, spatio-temporal dynamical systems. This novel centre manifold approach is holistic in the sense that it treats the dynamical equations as a whole, not just as the sum of separate terms.Comment: Without figures. See http://www.sci.usq.edu.au/staff/aroberts/ksdoc.pdf to download a version with the figure

    A reversible bifurcation analysis of the inverted pendulum

    Get PDF
    The inverted pendulum with a periodic parametric forcing is considered as a bifurcation problem in the reversible setting. Parameters are given by the size of the forcing and the frequency ratio. Normal form theory provides an integrable approximation of the Poincaré map generated by a planar vector field. Genericity of the model is studied by a perturbation analysis, where the spatial symmetry is optional. Here equivariant singularity theory is used.

    Subtropical Real Root Finding

    Get PDF
    We describe a new incomplete but terminating method for real root finding for large multivariate polynomials. We take an abstract view of the polynomial as the set of exponent vectors associated with sign information on the coefficients. Then we employ linear programming to heuristically find roots. There is a specialized variant for roots with exclusively positive coordinates, which is of considerable interest for applications in chemistry and systems biology. An implementation of our method combining the computer algebra system Reduce with the linear programming solver Gurobi has been successfully applied to input data originating from established mathematical models used in these areas. We have solved several hundred problems with up to more than 800000 monomials in up to 10 variables with degrees up to 12. Our method has failed due to its incompleteness in less than 8 percent of the cases

    Resonances in a spring-pendulum: algorithms for equivariant singularity theory

    Get PDF
    A spring-pendulum in resonance is a time-independent Hamiltonian model system for formal reduction to one degree of freedom, where some symmetry (reversibility) is maintained. The reduction is handled by equivariant singularity theory with a distinguished parameter, yielding an integrable approximation of the Poincaré map. This makes a concise description of certain bifurcations possible. The computation of reparametrizations from normal form to the actual system is performed by Gröbner basis techniques.

    Better Answers to Real Questions

    Full text link
    We consider existential problems over the reals. Extended quantifier elimination generalizes the concept of regular quantifier elimination by providing in addition answers, which are descriptions of possible assignments for the quantified variables. Implementations of extended quantifier elimination via virtual substitution have been successfully applied to various problems in science and engineering. So far, the answers produced by these implementations included infinitesimal and infinite numbers, which are hard to interpret in practice. We introduce here a post-processing procedure to convert, for fixed parameters, all answers into standard real numbers. The relevance of our procedure is demonstrated by application of our implementation to various examples from the literature, where it significantly improves the quality of the results

    A robust numerical method to study oscillatory instability of gap solitary waves

    Get PDF
    The spectral problem associated with the linearization about solitary waves of spinor systems or optical coupled mode equations supporting gap solitons is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. These problems may exhibit oscillatory instabilities where eigenvalues detach from the edges of the continuous spectrum, so called edge bifurcations. A numerical framework, based on a fast robust shooting algorithm using exterior algebra is described. The complete algorithm is robust in the sense that it does not produce spurious unstable eigenvalues. The algorithm allows to locate exactly where the unstable discrete eigenvalues detach from the continuous spectrum. Moreover, the algorithm allows for stable shooting along multi-dimensional stable and unstable manifolds. The method is illustrated by computing the stability and instability of gap solitary waves of a coupled mode model.Comment: key words: gap solitary wave, numerical Evans function, edge bifurcation, exterior algebra, oscillatory instability, massive Thirring model. accepted for publication in SIAD
    • 

    corecore