5,741 research outputs found

    IUS/payload communication system simulator configuration definition study

    Get PDF
    The requirements and specifications for a general purpose payload communications system simulator to be used to emulate those communications system portions of NASA and DOD payloads/spacecraft that will in the future be carried into earth orbit by the shuttle are discussed. For the purpose of on-orbit checkout, the shuttle is required to communicate with the payloads while they are physically located within the shuttle bay (attached) and within a range of 20 miles from the shuttle after they have been deployed (detached). Many of the payloads are also under development (and many have yet to be defined), actual payload communication hardware will not be available within the time frame during which the avionic hardware tests will be conducted. Thus, a flexible payload communication system simulator is required

    Run-time power and performance scaling in 28 nm FPGAs

    Get PDF

    Integrated Data and Energy Communication Network: A Comprehensive Survey

    Get PDF
    OAPA In order to satisfy the power thirsty of communication devices in the imminent 5G era, wireless charging techniques have attracted much attention both from the academic and industrial communities. Although the inductive coupling and magnetic resonance based charging techniques are indeed capable of supplying energy in a wireless manner, they tend to restrict the freedom of movement. By contrast, RF signals are capable of supplying energy over distances, which are gradually inclining closer to our ultimate goal – charging anytime and anywhere. Furthermore, transmitters capable of emitting RF signals have been widely deployed, such as TV towers, cellular base stations and Wi-Fi access points. This communication infrastructure may indeed be employed also for wireless energy transfer (WET). Therefore, no extra investment in dedicated WET infrastructure is required. However, allowing RF signal based WET may impair the wireless information transfer (WIT) operating in the same spectrum. Hence, it is crucial to coordinate and balance WET and WIT for simultaneous wireless information and power transfer (SWIPT), which evolves to Integrated Data and Energy communication Networks (IDENs). To this end, a ubiquitous IDEN architecture is introduced by summarising its natural heterogeneity and by synthesising a diverse range of integrated WET and WIT scenarios. Then the inherent relationship between WET and WIT is revealed from an information theoretical perspective, which is followed by the critical appraisal of the hardware enabling techniques extracting energy from RF signals. Furthermore, the transceiver design, resource allocation and user scheduling as well as networking aspects are elaborated on. In a nutshell, this treatise can be used as a handbook for researchers and engineers, who are interested in enriching their knowledge base of IDENs and in putting this vision into practice

    advligorts: The Advanced LIGO Real-Time Digital Control and Data Acquisition System

    Get PDF
    The Advanced LIGO detectors are sophisticated opto-mechanical devices. At the core of their operation is feedback control. The Advanced LIGO project developed a custom digital control and data acquisition system to handle the unique needs of this new breed of astronomical detector. The advligorts is the software component of this system. This highly modular and extensible system has enabled the unprecedented performance of the LIGO instruments, and has been a vital component in the direct detection of gravitational waves

    A Model Checking based Converter Synthesis Approach for Embedded Systems

    Get PDF
    Protocol conversion problem involves identifying whether two or more protocols can be composed with or without an intermediary, referred to as a converter, to obtain a pre-specified desired behavior. We investigate this problem in formal setting and propose, for the first time, a temporal logic based automatic solution to the convertibility verification and synthesis. At its core, our technique is based on local model checking technique and determines the existence of the converter and if a converter exists, it is automatically synthesized. A number of key features of our technique distinguishes it from all existing formal and/or informal techniques. Firstly, we handle both data and control mismatches (for the first time), using a single unifying model checking based solution. Secondly, the proposed approach uses temporal logic for the specification of correct behaviors (unlike earlier automaton based specifications) which is both elegant and natural to express event ordering and data-matching requirements. Finally, we have have experimented extensively with the examples available in the existing literature to evaluate the applicability of our technique in wide range of applications
    corecore