1,323 research outputs found

    Reliable Prediction of Channel Assignment Performance in Wireless Mesh Networks

    Get PDF
    The advancements in wireless mesh networks (WMN), and the surge in multi-radio multi-channel (MRMC) WMN deployments have spawned a multitude of network performance issues. These issues are intricately linked to the adverse impact of endemic interference. Thus, interference mitigation is a primary design objective in WMNs. Interference alleviation is often effected through efficient channel allocation (CA) schemes which fully utilize the potential of MRMC environment and also restrain the detrimental impact of interference. However, numerous CA schemes have been proposed in research literature and there is a lack of CA performance prediction techniques which could assist in choosing a suitable CA for a given WMN. In this work, we propose a reliable interference estimation and CA performance prediction approach. We demonstrate its efficacy by substantiating the CA performance predictions for a given WMN with experimental data obtained through rigorous simulations on an ns-3 802.11g environment.Comment: Accepted in ICACCI-201

    Embedding of Virtual Network Requests over Static Wireless Multihop Networks

    Full text link
    Network virtualization is a technology of running multiple heterogeneous network architecture on a shared substrate network. One of the crucial components in network virtualization is virtual network embedding, which provides a way to allocate physical network resources (CPU and link bandwidth) to virtual network requests. Despite significant research efforts on virtual network embedding in wired and cellular networks, little attention has been paid to that in wireless multi-hop networks, which is becoming more important due to its rapid growth and the need to share these networks among different business sectors and users. In this paper, we first study the root causes of new challenges of virtual network embedding in wireless multi-hop networks, and propose a new embedding algorithm that efficiently uses the resources of the physical substrate network. We examine our algorithm's performance through extensive simulations under various scenarios. Due to lack of competitive algorithms, we compare the proposed algorithm to five other algorithms, mainly borrowed from wired embedding or artificially made by us, partially with or without the key algorithmic ideas to assess their impacts.Comment: 22 page

    Dynamic Time-domain Duplexing for Self-backhauled Millimeter Wave Cellular Networks

    Full text link
    Millimeter wave (mmW) bands between 30 and 300 GHz have attracted considerable attention for next-generation cellular networks due to vast quantities of available spectrum and the possibility of very high-dimensional antenna ar-rays. However, a key issue in these systems is range: mmW signals are extremely vulnerable to shadowing and poor high-frequency propagation. Multi-hop relaying is therefore a natural technology for such systems to improve cell range and cell edge rates without the addition of wired access points. This paper studies the problem of scheduling for a simple infrastructure cellular relay system where communication between wired base stations and User Equipment follow a hierarchical tree structure through fixed relay nodes. Such a systems builds naturally on existing cellular mmW backhaul by adding mmW in the access links. A key feature of the proposed system is that TDD duplexing selections can be made on a link-by-link basis due to directional isolation from other links. We devise an efficient, greedy algorithm for centralized scheduling that maximizes network utility by jointly optimizing the duplexing schedule and resources allocation for dense, relay-enhanced OFDMA/TDD mmW networks. The proposed algorithm can dynamically adapt to loading, channel conditions and traffic demands. Significant throughput gains and improved resource utilization offered by our algorithm over the static, globally-synchronized TDD patterns are demonstrated through simulations based on empirically-derived channel models at 28 GHz.Comment: IEEE Workshop on Next Generation Backhaul/Fronthaul Networks - BackNets 201

    Modified Greedy Physical Link Scheduling Algorithm for Improving Wireless Mesh Network Performance

    Get PDF
    The algorithm to allocate mesh active link to radio resource timeslot in wireless mesh network (WMN) is investigated. This paper proposes the novel method to allocate multiple links in one timeslot for improving the wireless mesh network throughput via spatial time division multiple access (STDMA) protocol. The throughput improvement is obtained by modifying greedy based algorithm that is widely known as a low complexity algorithm. We propose and investigate new parameters in the greedy based algorithm that can be used as scheduling control parameters, i.e. interference weight, scheduling weight, and the sum of link’s degree. Simulation results indicate that this approximation increases network performance in throughput and length of scheduling performance closed to the upper bound performance that is achieved by the algorithm that uses the physical interference model.
    corecore