7 research outputs found

    Computer-Aided Clinical Decision Support Systems for Atrial Fibrillation

    Get PDF
    Clinical decision support systems (clinical DSSs) are widely used today for various clinical applications such as diagnosis, treatment, and recovery. Clinical DSS aims to enhance the end‐to‐end therapy management for the doctors, and also helps to provide improved experience for patients during each phase of the therapy. The goal of this chapter is to provide an insight into the clinical DSS associated with the highly prevalent heart rhythm disorder, atrial fibrillation (AF). The use of clinical DSS in AF management is ubiquitous, starting from detection of AF through sophisticated electrophysiology treatment procedures, all the way to monitoring the patient\u27s health during follow‐ups. Most of the software associated with AF DSS are developed based on signal processing, image processing, and artificial intelligence techniques. The chapter begins with a brief description of DSS in general and then introduces DSS that are used for various clinical applications. The chapter continues with a background on AF and some relevant mechanisms. Finally, a couple of clinical DSS used today in regard with AF are discussed, along with some proposed methods for potential implementation of clinical DSS for detection of AF, prediction of an AF treatment outcome, and localization of AF targets during a treatment procedure

    Personalizing Simulations of the Human Atria : Intracardiac Measurements, Tissue Conductivities, and Cellular Electrophysiology

    Get PDF
    This work addresses major challenges of heart model personalization. Analysis techniques for clinical intracardiac electrograms determine wave direction and conduction velocity from single beats. Electrophysiological measurements are simulated to validate the models. Uncertainties in tissue conductivities impact on simulated ECGs. A minimal model of cardiac myocytes is adapted to the atria. This makes personalized cardiac models a promising technique to improve treatment of atrial arrhythmias

    Multichannel Analysis of Intracardiac Electrograms - Supporting Diagnosis and Treatment of Cardiac Arrhythmias

    Get PDF
    Cardiologists diagnose and treat atrial tachycardias using electroanatomical mapping systems. These can be combined with multipolar catheters to record intracardiac electrograms. Within this thesis, various signal processing techniques were implemented and benchmarked to analyze electrograms. They support the physician in diagnosis and treatment of atrial flutter and atrial fibrillation. The developed methods were assessed using simulated data and demonstrated on clinical cases

    A Computational Based Approach for Non-invasive Localization of Atrial ectopic foci

    Get PDF
    Las arritmias auriculares son las arritmias cardı́acas más comunes, afectan a seis millones de personas en Europa e imponen una enorme carga sanitaria en la sociedad. Las nuevas tecnologı́as médicas están ayudando a los electrofisiólogos a adaptar el tratamiento a cada paciente de diferentes maneras. Por ejemplo, la resonancia magnética (MRI) permite evaluar la distribución espacial de la fibrosis auricular; los mapas electroanatómicos (EAM) permiten obtener una caracterización eléctrica de los tejidos en tiempo real; Las imágenes electrocardiográficas (ECGI) permiten estudiar la actividad eléctrica cardı́aca de forma no invasiva; y la ablación por radiofrecuencia (RFA), permite eliminar el tejido patológico en el corazón que desencadena o mantiene una arritmia. A pesar del acceso a tecnologı́as avanzadas y de la existencia de guı́as clı́nicas bien desarrolladas para el tratamiento de las arritmias auriculares, las tasas de éxito del tratamiento a largo plazo siguen siendo bajas, debido a la complejidad de la enfermedad. Por lo tanto, existe una necesidad imperiosa de mejorar los resultados clı́nicos en beneficio de los pacientes y el sistema de salud. Se podrı́an emplear modelos biofı́sicos detallados de las aurı́culas y el torso para integrar todos los datos del paciente en un solo modelo 3D de referencia capaz de reproducir los complejos patrones de activación eléctrica observados en experimentos y la clı́nica. Sin embargo, existen algunas limitaciones relacionadas con la dificultad de construir tales modelos para cada paciente o realizar un número considerable de simulaciones para planificar la terapia óptima de RFA. Teniendo en cuenta todas esas limitaciones, proponemos utilizar modelos biofı́sicos detallados y simulaciones como una herramienta para entrenar sistemas de aprendizaje automático, para lo cual dispondrı́amos de todos los datos y variables del problema, que serı́an imposibles de obtener en un entorno clı́nico real. Por lo tanto, podemos realizar cientos de simulaciones electrofisiológicas, considerando una variedad de escenarios y patologı́as comunes, y entrenar un sistema que deberı́a ser capaz de reconocerlos a partir de un conjunto limitado de datos no invasivos del paciente, como un electrocardiograma (ECG), o mapa de potencial de superficie corporal (BSPM).Abstract Atrial arrhythmias are the most common cardiac arrhythmia, affecting six million people in Europe and imposing a huge healthcare bur- den on society. New technologies are helping electrophysiologists to tailor the treatment to each patient in different ways. For instance, magnetic resonance imaging (MRI) allows to assess the spatial distribution of atrial fibrosis; electro-anatomical maps (EAM) permit to obtain an electrical char- acterization of tissue in real-time; electrocardiographic imaging (ECGI) al- lows to study cardiac electrical activity non-invasively; and radiofrequency ablation (RFA), allows to eliminate pathological tissue in the heart that is triggering or sustaining an arrhythmia. Despite the access to advanced technologies and well-developed clinical guidelines for the management of atrial arrhythmia, long-term treatment success rates remain low, due to the complexity of the disease. Therefore, there is a compelling need to improve clinical outcomes for the benefit of patients and the healthcare system. Detailed biophysical models of the atria and torso could be employed to integrate all the patient data into a single reference 3D model able to re- produce the complex electrical activation patterns observed in experiments and clinics. However, there are some limitations related to the difficulty of building such models for each patient, or performing a substantial number of simulations to plan the optimal RFA therapy. Considering all those lim- itations, we propose to use detailed biophysical models and simulations as a tool to train machine learning systems, for which we have all the ground- truth data which would be impossible to obtain in a real clinical setting. Therefore, we can perform hundreds of electrophysiology simulations, con- sidering a variety of common scenarios and pathologies, and train a system that should be able to recognize them from a limited set of non-invasive pa- tient data, such as an electrocardiogram (ECG), or a body surface potential map (BSPM)

    Libro de actas. XXXV Congreso Anual de la Sociedad Española de Ingeniería Biomédica

    Get PDF
    596 p.CASEIB2017 vuelve a ser el foro de referencia a nivel nacional para el intercambio científico de conocimiento, experiencias y promoción de la I D i en Ingeniería Biomédica. Un punto de encuentro de científicos, profesionales de la industria, ingenieros biomédicos y profesionales clínicos interesados en las últimas novedades en investigación, educación y aplicación industrial y clínica de la ingeniería biomédica. En la presente edición, más de 160 trabajos de alto nivel científico serán presentados en áreas relevantes de la ingeniería biomédica, tales como: procesado de señal e imagen, instrumentación biomédica, telemedicina, modelado de sistemas biomédicos, sistemas inteligentes y sensores, robótica, planificación y simulación quirúrgica, biofotónica y biomateriales. Cabe destacar las sesiones dedicadas a la competición por el Premio José María Ferrero Corral, y la sesión de competición de alumnos de Grado en Ingeniería biomédica, que persiguen fomentar la participación de jóvenes estudiantes e investigadores
    corecore