5,705 research outputs found

    Min-Max MPC based on a computationally efficient upper bound of the worst case cost

    Get PDF
    Min-Max MPC (MMMPC) controllers [P.J. Campo, M. Morari, Robust model predictive control, in: Proc. American Control Conference, June 10–12, 1987, pp. 1021–1026] suffer from a great computational burden which limits their applicability in the industry. Sometimes upper bounds of the worst possible case of a performance index have been used to reduce the computational burden. This paper proposes a computationally efficient MMMPC control strategy in which the worst case cost is approximated by an upper bound based on a diagonalization scheme. The upper bound can be computed with O(n3) operations and using only simple matrix operations. This implies that the algorithm can be coded easily even in non-mathematical oriented programming languages such as those found in industrial embedded control hardware. A simulation example is given in the paper

    Gaussian process model based predictive control

    Get PDF
    Gaussian process models provide a probabilistic non-parametric modelling approach for black-box identification of non-linear dynamic systems. The Gaussian processes can highlight areas of the input space where prediction quality is poor, due to the lack of data or its complexity, by indicating the higher variance around the predicted mean. Gaussian process models contain noticeably less coefficients to be optimized. This paper illustrates possible application of Gaussian process models within model-based predictive control. The extra information provided within Gaussian process model is used in predictive control, where optimization of control signal takes the variance information into account. The predictive control principle is demonstrated on control of pH process benchmark

    Computational burden reduction in Min-Max MPC

    Get PDF
    Min–max model predictive control (MMMPC) is one of the strategies used to control plants subject to bounded uncertainties. The implementation of MMMPC suffers a large computational burden due to the complex numerical optimization problem that has to be solved at every sampling time. This paper shows how to overcome this by transforming the original problem into a reduced min–max problem whose solution is much simpler. In this way, the range of processes to which MMMPC can be applied is considerably broadened. Proofs based on the properties of the cost function and simulation examples are given in the paper

    Predictive feedback control using a multiple model approach

    Get PDF
    A new method of designing predictive controllers for SISO systems is presented. The controller selects the model used in the design of the control law from a given set of models according to a switching rule based on output prediction errors. The goal is to design, at each sample instant, a feedback control law that ensures robust stability of the closed–loop system and gives better performance for the current operating point. The overall multiple model predictive control scheme quickly identifies the closest linear model to the dynamics of the current operating point, and carries out an automatic reconfiguration of the control system to achieve a better performance. The results are illustrated with simulations of a continuous stirred tank reactor

    Robust predictive feedback control for constrained systems

    Get PDF
    A new method for the design of predictive controllers for SISO systems is presented. The proposed technique allows uncertainties and constraints to be concluded in the design of the control law. The goal is to design, at each sample instant, a predictive feedback control law that minimizes a performance measure and guarantees of constraints are satisfied for a set of models that describes the system to be controlled. The predictive controller consists of a finite horizon parametric-optimization problem with an additional constraint over the manipulated variable behavior. This is an end-constraint based approach that ensures the exponential stability of the closed-loop system. The inclusion of this additional constraint, in the on-line optimization algorithm, enables robust stability properties to be demonstrated for the closed-loop system. This is the case even though constraints and disturbances are present. Finally, simulation results are presented using a nonlinear continuous stirred tank reactor model

    Data-Driven Predictive Control for Multi-Agent Decision Making With Chance Constraints

    Full text link
    In the recent literature, significant and substantial efforts have been dedicated to the important area of multi-agent decision-making problems. Particularly here, the model predictive control (MPC) methodology has demonstrated its effectiveness in various applications, such as mobile robots, unmanned vehicles, and drones. Nevertheless, in many specific scenarios involving the MPC methodology, accurate and effective system identification is a commonly encountered challenge. As a consequence, the overall system performance could be significantly weakened in outcome when the traditional MPC algorithm is adopted under such circumstances. To cater to this rather major shortcoming, this paper investigates an alternate data-driven approach to solve the multi-agent decision-making problem. Utilizing an innovative modified methodology with suitable closed-loop input/output measurements that comply with the appropriate persistency of excitation condition, a non-parametric predictive model is suitably constructed. This non-parametric predictive model approach in the work here attains the key advantage of alleviating the rather heavy computational burden encountered in the optimization procedures typical in alternative methodologies requiring open-loop input/output measurement data collection and parametric system identification. Then with a conservative approximation of probabilistic chance constraints for the MPC problem, a resulting deterministic optimization problem is formulated and solved efficiently and effectively. In the work here, this intuitive data-driven approach is also shown to preserve good robustness properties. Finally, a multi-drone system is used to demonstrate the practical appeal and highly effective outcome of this promising development in achieving very good system performance.Comment: 10 pages, 6 figure
    • …
    corecore