140 research outputs found

    Aspects of guaranteed error control in CPDEs

    Get PDF
    Whenever numerical algorithms are employed for a reliable computational forecast, they need to allow for an error control in the final quantity of interest. The discretisation error control is of some particular importance in computational PDEs (CPDEs) where guaranteed upper error bounds (GUB) are of vital relevance. After a quick overview over energy norm error control in second-order elliptic PDEs, this paper focuses on three particular aspects. First, the variational crimes from a nonconforming finite element discretisation and guaranteed error bounds in the discrete norm with improved postprocessing of the GUB. Second, the reliable approximation of the discretisation error on curved boundaries and, finally, the reliable bounds of the error with respect to some goal-functional, namely, the error in the approximation of the directional derivative at a given point

    Aspects of quaranteed error control in CPDEs

    Get PDF
    Whenever numerical algorithms are employed for a reliable computational forecast, they need to allow for an error control in the final quantity of interest. The discretisation error control is of some particular importance in computational PDEs (CPDEs) where guaranteed upper error bounds (GUB) are of vital relevance. After a quick overview over energy norm error control in second-order elliptic PDEs, this paper focuses on three particular aspects. First, the variational crimes from a nonconforming finite element discretisation and guaranteed error bounds in the discrete norm with improved postprocessing of the GUB. Second, the reliable approximation of the discretisation error on curved boundaries and, finally, the reliable bounds of the error with respect to some goal-functional, namely, the error in the approximation of the directional derivative at a given poin

    Fully computable a posteriori error bounds for hybridizable discontinuous Galerkin finite element approximations

    Get PDF
    We derive a posteriori error estimates for the hybridizable discontinuous Galerkin (HDG) methods, including both the primal and mixed formulations, for the approximation of a linear second-order elliptic problem on conforming simplicial meshes in two and three dimensions. We obtain fully computable, constant free, a posteriori error bounds on the broken energy seminorm and the HDG energy (semi)norm of the error. The estimators are also shown to provide local lower bounds for the HDG energy (semi)norm of the error up to a constant and a higher-order data oscillation term. For the primal HDG methods and mixed HDG methods with an appropriate choice of stabilization parameter, the estimators are also shown to provide a lower bound for the broken energy seminorm of the error up to a constant and a higher-order data oscillation term. Numerical examples are given illustrating the theoretical results

    Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations

    Get PDF
    International audienceWe present equilibrated flux a posteriori error estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed finite element discretizations of the two-dimensional Poisson problem. Relying on the equilibration by mixed finite element solution of patchwise Neumann problems, the estimates are guaranteed, locally computable, locally efficient, and robust with respect to polynomial degree. Maximal local overestimation is guaranteed as well. Numerical experiments suggest asymptotic exactness for the incomplete interior penalty discontinuous Galerkin scheme

    Guaranteed error control for the pseudostress approximation of the Stokes equations

    Get PDF
    The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H(div) and the velocity in L2L^2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g. the Raviart-Thomas discretization which is related to the Crouzeix-Raviart nonconforming finite element scheme in the lowest-order case. The effective and guaranteed a posteriori error control for this nonconforming velocity-oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf-sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy

    Guaranteed energy error estimators for a modified robust Crouzeix--Raviart Stokes element

    Get PDF
    This paper provides guaranteed upper energy error bounds for a modified lowest-order nonconforming Crouzeix--Raviart finite element method for the Stokes equations. The modification from [A. Linke 2014, On the role of the Helmholtz-decomposition in mixed methods for incompressible flows and a new variational crime] is based on the observation that only the divergence-free part of the right-hand side should balance the vector Laplacian. The new method has optimal energy error estimates and can lead to errors that are smaller by several magnitudes, since the estimates are pressure-independent. An efficient a posteriori velocity error estimator for the modified method also should involve only the divergence-free part of the right-hand side. Some designs to approximate the Helmholtz projector are compared and verified by numerical benchmark examples. They show that guaranteed error control for the modified method is possible and almost as sharp as for the unmodified method

    Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods

    Get PDF
    Recent works showed that pressure-robust modifications of mixed finite element methods for the Stokes equations outperform their standard versions in many cases. This is achieved by divergence-free reconstruction operators and results in pressure independent velocity error estimates which are robust with respect to small viscosities. In this paper we develop a posteriori error control which reflects this robustness. The main difficulty lies in the volume contribution of the standard residual-based approach that includes the L2L^2-norm of the right-hand side. However, the velocity is only steered by the divergence-free part of this source term. An efficient error estimator must approximate this divergence-free part in a proper manner, otherwise it can be dominated by the pressure error. To overcome this difficulty a novel approach is suggested that uses arguments from the stream function and vorticity formulation of the Navier--Stokes equations. The novel error estimators only take the curl\mathrm{curl} of the right-hand side into account and so lead to provably reliable, efficient and pressure-independent upper bounds in case of a pressure-robust method in particular in pressure-dominant situations. This is also confirmed by some numerical examples with the novel pressure-robust modifications of the Taylor--Hood and mini finite element methods

    Guaranteed error control for the pseudostress approximation of the Stokes equations

    Get PDF
    The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H (div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g. the Raviart-Thomas discretization which is related to the Crouzeix-Raviart nonconforming finite element scheme in the lowest-order case. The effective and guaranteed a posteriori error control for this nonconforming velocity-oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf-sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy

    Guaranteed energy error estimators for a modified robust Crouzeix-Raviart Stokes element

    Get PDF
    This paper provides guaranteed upper energy error bounds for a modified lowest-order nonconforming Crouzeix-Raviart finite element method for the Stokes equations. The modification from [A. Linke 2014, On the role of the Helmholtz-decomposition in mixed methods for incompressible flows and a new variational crime] is based on the observation that only the divergence-free part of the right-hand side should balance the vector Laplacian. The new method has optimal energy error estimates and can lead to errors that are smaller by several magnitudes, since the estimates are pressure-independent. An efficient a posteriori velocity error estimator for the modified method also should involve only the divergence-free part of the right-hand side. Some designs to approximate the Helmholtz projector are compared and verified by numerical benchmark examples. They show that guaranteed error control for the modified method is possible and almost as sharp as for the unmodified method
    corecore