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Abstract. The pseudostress approximation of the Stokes equations rewrites the stationary Stokes

equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equiv-
alent) mixed scheme based on a stress in Hpdivq and the velocity in L2. Any standard mixed finite

element function space can be utilized for this mixed formulation, e.g. the Raviart-Thomas dis-

cretization which is related to the Crouzeix-Raviart nonconforming finite element scheme in the
lowest-order case. The effective and guaranteed a posteriori error control for this nonconforming

velocity-oriented discretization can be generalized to the error control of some piecewise quadratic

velocity approximation that is related to the discrete pseudostress. The analysis allows for local
inf-sup constants which can be chosen in a global partition to improve the estimation. Numeri-

cal examples provide strong evidence for an effective and guaranteed error control with very small

overestimation factors even for domains with large anisotropy.

1. Introduction

The pseudostress finite element method (PS-FEM) has recently been established in the context of
a least-squares finite element method for the Stokes equations [1, 2, 3]. The adaptive mesh-refinement
leads to optimal convergence rates [4] for the lowest-order case. This and the principle availability
for higher polynomial degrees makes this mixed finite element method highly attractive over the
nonconforming P1 finite element method usually attributed to Crouzeix and Raviart.

The error control for finite element methods in the energy norm with residual-based explicit error
estimators typically leads to unknown or large multiplicative reliability constants and is usually
uncompetitive over refined methodologies like equilibration error estimators that lead to guaranteed
upper bounds, see [5, 6, 7] for recent error estimator competitions. In case of nonconforming finite
element schemes, one residual in the error analysis concerns the geometric condition that one variable
is a distributional gradient of a Sobolev function and thereby involves the design of a particular test-
function v near to the discrete solution uh. For the Stokes problem, the side conditions on this Sobolev
function require the match of the true Dirichlet boundary conditions as well as the incompressibility
condition div v “ 0 a.e. in the domain Ω. The relaxation of this later condition has been suggested
in [8] based on some regular split of a gradient into a gradient of a divergence-free H1 function and
an L2-orthogonal remainder. This leads to the guaranteed upper bound of the energy error

�

�u´ uh
�

�

2

NC
ď η2 `

´

�

�v ´ uh
�

�

NC
`
∥∥div v

∥∥
L2pΩq

{c0

¯2

.

The first quantity η depends only on the right-hand side f , while the second term on the right-hand
side depends on v. Another advantage of the PS-FEM is the appearance of the oscillation of the
right-hand side f in η compared to the L2-norm of the mesh-size times f in the non-conforming case
[9]. The stability constant c0 is an inf-sup constant and difficult to compute, see [10] and [11] for
the corrected results. Moreover, c0 deteriorates for stretched domains with large aspect ratios [12]
and so may crucially worsen the efficiency indices of all error estimators based on designs of non
divergence-free test-functions. Several such designs were proposed and compared in [8, 13, 14] and
mainly stem from popular conforming postprocessings of nonconforming finite element solutions for
the Poisson problem [15, 16, 17, 7].
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The only approach to compute guaranteed error bounds for the backward facing step from Subsec-
tion 5.4 follows the localization technique [9] with a partition Ω1, . . . ,ΩJ of Ω and inf-sup constants
cj of Ωj . When the designed test-function satisfies the additional condition

ż

BΩj

v ¨ νΩj
ds “ 0 for j “ 1, . . . , J,

the guaranteed upper bound only includes the local inf-sup constants of the subdomains Ωj , i.e.,

�

�u´ uh
�

�

2

NC
ď η2 `

J
ÿ

j“1

´∥∥DNCpv ´ uhq
∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj

¯2

.

To mention just two prominent situations, one may think of a decomposition of an L-shaped domain
or a long thin channel into squares. Several strategies of how to satisfy the additional constraint
within the test-function designs from [13] are discussed in Section 4 below.

The resulting error estimators are studied for the lowest-order PS-FEM where uh :“ u2 is some
piecewise quadratic function whose piecewise gradient equals the Raviart-Thomas best-approximation
of the exact pseudostress [4, 18] up to some pressure contribution. The proposed error estimator
designs of the present paper lead to the sharpest guaranteed upper error bounds known for this
scheme, even in the case of challenging domains with very small inf-sup constants.

The remaining parts of this paper are organized as follows. Section 2 recalls the Stokes equations
and describes the nonconforming finite element discretization. Section 3 presents the pseudostress
approximation and states the main result for the guaranteed upper error bound in Theorem 3.1 on
page 5. Section 4 designs different interpolations of the discrete velocity which lead to guaranteed
upper error bounds. It includes the treatment of inhomogeneous Dirichlet boundary conditions.
Finally, Section 5 presents numerical experiments on some benchmark problems.

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper such as HkpΩq,
Hpdiv,Ωq, and L2pΩq and the associated spaces for vector- or matrix-valued functions HkpΩ;R2q,
L2pΩ;R2q, HkpΩ;R2ˆ2q, Hpdiv,Ω;R2ˆ2q, and L2pΩ;R2ˆ2q. Let H1

0 pΩq –
 

v P H1pΩq : v ”

0 on BΩ in the sense of traces
(

be equipped with the energy norm
�

� ¨
�

� –
∣∣ ¨ ∣∣

H1pΩq
“

∥∥D ¨
∥∥
L2pΩq

.

The 2D rotation operators read, for v P H1pΩ;R2q,

Curl v –

ˆ

´Bv1{Bx2 Bv1{Bx1

´Bv2{Bx2 Bv2{Bx1

˙

and curl v – tr Curl v.

The expression A À B abbreviates the relation A ď CB with a generic constant 0 ă C which solely
depends on the interior angles ?T of the underlying triangulation; A « B abbreviates A À B À A.

2. Notation and Preliminaries

2.1. Stokes equations. This paper concerns the 2D Stokes equations: Given a right-hand side
f P L2pΩ;R2q and Dirichlet boundary data uD P H

1pΩ;R2q with
ş

BΩ
uD ¨ ν ds “ 0, seek a pressure

p P L2
0pΩ;R2q :“ tq P L2pΩ;R2q :

ş

Ω
q dx “ 0u and a velocity field u P H1pΩ;R2q with

´∆u`∇p “ f and div u “ 0 in Ω while u “ uD on BΩ.

The error analysis involves (lower bounds of) the inf-sup constant

0 ă c0 :“ inf
qPL2

0pΩqzt0u

sup
vPH1

0 pΩ;R2qzt0u

ż

Ω

q div v dx
M

`
∥∥D v

∥∥
L2pΩq

∥∥q∥∥
L2pΩq

˘

that arises in the Ladyzhenskaya lemma [19, §6. Theorem 6.3] and depends on Ω. Lower bounds for
this constant are in general difficult to compute, see [10] and for corrected results [11]. Moreover, c0
gets smaller for stretched domains with large anisotropy [12]. How to circumvent these problems for
the error analysis is explained in Section 3 based on [9].
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2.2. Nonconforming finite element spaces. Given a regular triangulation T of the bounded
Lipschitz domain Ω Ď R2 into closed triangles in the sense of Ciarlet with the set of edges E , the set
of nodes N , the set of interior edges EpΩq, the set of interior nodes N pΩq, the set EpBΩq of edges along
the boundary BΩ and the set of boundary nodes N pBΩq, define the set midpEq– tmidpEq : E P Eu of
midpoints of all edges and let EpT q be the set of the three edges and let N pT q be the set of the three
vertices of a triangle T P T . Let the set T pzq contain all triangles T P T with vertex z P N pT q for a
node z P N and denote its cardinality with

∣∣T pzq∣∣. The diameter diampT q of T P T is denoted by hT
and hT denotes their piecewise constant values with hT |T – hT – diampT q for all T P T . With the
elementwise polynomials PkpT ;R2q of degree at most k, the nonconforming Crouzeix-Raviart finite
element spaces read

CR1
pT ;R2q– tv P P1pT ;R2q : @E P E , v is continuous at midpEqu,

CR1
0pT ;R2q– tv P CR1

pT ;R2q : @E P EpBΩq, vpmidpEqq “ 0u.

The Crouzeix-Raviart finite element functions form a subspace of the piecewise Sobolev functions

H1pT q– tv P L2pΩq : @T P T , v|T P H1pT q– H1pintpT qqu

with corresponding piecewise differential operators DNC and divNC.
The integral mean of a function f P L2pωq (or any vector f P L2pω;R2q) over some open set ω is

denoted by

fω –

 
ω

f dx–

ż

ω

f dx
M∣∣ω∣∣.

The oscillations of f P L2pΩq (as well as of vectors f P L2pΩ;R2q) read

osc2pf, T q–
ÿ

TPT
osc2pf, T q “

∥∥hT pf ´ fT q∥∥2

L2pΩq
with osc2pf, T q–

∥∥hT pf ´ fT q∥∥2

L2pT q
,

where fT – Πf denotes the L2-orthogonal projection of f onto the piecewise constant functions
P0pT q (respectively P0pT ;R2q).

Finally, define the right-hand side functional for given f P L2pΩ;R2q by

F pvq–

ż

Ω

f ¨ v dx for all v P H1pT ;R2q.(2.1)

2.3. Crouzeix-Raviart FEM for the Stokes equations. The first discrete bilinear form reads

aNCpuCR, vCRq–
ÿ

TPT

ż

T

DuCR : D vCR dx

for all uCR, vCR P CR1
pT ;R2q Ď H1pT ;R2q with A : B –

ř

j,k“1,2AjkBjk for all 2 ˆ 2 matrices

A,B P R2ˆ2. Let L2
0pΩq :“ tq P L2pΩq :

ş

Ω
q dx “ 0u denote the space of L2 functions with zero

integral mean. Then, the second discrete bilinear form reads

bNCpvCR, q0q–

ż

Ω

q0 divNC vCR dx

for all vCR P CR1
0pT ;R2q and q0 P P0pT q X L2

0pΩq. This leads to the discrete counterpart

ZNC – tvCR P CR1
0pT ;R2q : divNC vCR “ 0 a.e. in Ωu

of the set of divergence-free functions

Z – tv P H1
0 pΩ;R2q : div v “ 0 a.e. in Ωu.

The nonconforming representation of the Stokes problem reads: Given f P L2pΩ;R2q and uD P

L2pΩ;R2q with
ş

BΩ
uD ¨ ν ds “ 0, seek uCR P ZNC with

uCRpmidpEqq “
E

uD ds for all E P EpBΩq

and

aNCpuCR, vCRq “ F pvCRq for all vCR P ZNC.
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In other words, up to boundary conditions, uCR is computed from the Riesz representation of a linear
functional (given as right-hand side plus boundary modifications) in the Hilbert space pZNC, aNCq.
The actual implementation uses unconstrained Crouzeix-Raviart elements vCR P CR1

0pT ;R2q as test
functions and enforce the constraint divNC uCR “ 0 a.e. in Ω by piecewise constant Lagrange mul-
tipliers in P0pT q X L2

0pΩq. Hence, uCR from above and some pCR P P0pT q X L2
0pΩq are determined

by

aNCpuCR, vCRq ` bNCpvCR, pCRq “ F pvCRq for all vCR P CR1
0pT ;R2q,

bNCpuCR, qCRq “ 0 for all qCR P P0pT q X L2
0pΩq.

3. Pseudostress Approximation and Error Analysis

A simple postprocessing of the Crouzeix-Raviart nonconforming solution puCR P ZNC and ppCR P

P0pT q X L2
0pΩq for the piecewise constant right-hand side fT (instead of f in (2.1)) leads to the

pseudostress representation

σPS – DNC puCR ´
fT
2
b p‚ ´midpT qq ´ ppCRI2ˆ2 and

uPS – ΠpuCR `
1

4
ΠpdevpfT b p‚ ´midpT qqqp‚ ´midpT qqq,

where midpT q denotes the piecewise constant vector-valued function with midpT q|T :“ midpT q and
devpAq :“ A´ trpAq I2ˆ2{2 denotes the deviatoric part of some matrix-valued function A. Then, the
piecewise quadratic function

u2 – puCR ´
fT
4

´∣∣ ‚ ´midpT q
∣∣2 ´ ∥∥ ‚ ´midpT q

∥∥2

L2pΩq

¯

P P2pT ;R2q

satisfies DNC u2 “ σPS ` ppCRI2ˆ2.
The pair pσPS, uPSq solves the Raviart-Thomas mixed FEM [4, 3] to approximate the exact pseu-

dostress

σ – Du´ pI2ˆ2 P Hpdiv,Ω;R2ˆ2q{R –

"

τ P Hpdiv,Ω;R2ˆ2q :

ż

Ω

tr τ dx “ 0

*

with f ` div σ “ 0 and the exact solution u P H1pΩ;R2q in the discrete spaces

PSpT q– τ P P1pT ;R2ˆ2q XHpdiv,Ω;R2ˆ2q{R : @j “ 1, 2, pτj1, τj2q P RT0pT q
(

and P0pT ;R2q such that div σPS ` fT “ 0 a.e. in Ω. In fact, the following discrete formulation has
the unique solution pσPS, uPSq P PSpT q ˆ P0pT ;R2q,

ż

Ω

dev σPS : τPS dx`

ż

Ω

div τPS ¨ uPS dx “

ż

BΩ

uD ¨ τPSν ds for all τPS P PSpT q,(3.1)

ż

Ω

div σPS ¨ vPS dx “ ´

ż

Ω

f ¨ vPS dx for all vPS P P0pT ;R2q.(3.2)

The following theorem recovers the known results for the Crouzeix-Raviart finite element method
from [13, 8] for the pseudostress-related approximation u2 with the set of admissible test functions
A – tv P H1pΩ;R2q : v “ uD on BΩu. Moreover, a refined guaranteed upper bound that follows an
idea from [9] is introduced. This idea is based on a partition of Ω into J many subdomains Ω1, . . . ,ΩJ
with

ŤJ
j“1 Ωj “ Ω, outer unit normal vectors νΩj

and local inf-sup constants

0 ă cj – inf
qPL2

0pΩjqzt0u

sup
vPH1

0 pΩj ;R2qzt0u

ż

Ωj

q div v dx
M

`
∥∥D v

∥∥
L2pΩjq

∥∥q∥∥
L2pΩjq

˘

for j “ 1, . . . , J.

The set of test functions that are suitable for the refined error control satisfy an additional contraint
and are defined by

(3.3) rA :“

#

v P A :

ż

BΩj

v ¨ νΩj
ds “ 0 for j “ 1, . . . , J

+

.

Moreover, the constant j1,1 ě 3.8317 below denotes the first positive root of the first Bessel function.
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Theorem 3.1. (a) Any v P A satisfies

�

�u´ u2

�

�

2

NC
ď oscpf, T q2{j2

1,1 `

´

�

�v ´ u2

�

�

NC
`
∥∥div v

∥∥
L2pΩq

{c0

¯2

.

(b) Any v P rA from (3.3) satisfies

�

�u´ u2

�

�

2

NC
ď oscpf, T q2{j2

1,1 `

J
ÿ

j“1

´∥∥DNCpv ´ u2q
∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj

¯2

.

Proof of Theorem 3.1 (a). The point of departure is the orthogonal split from [8, Subsection 3.2],

DNCpu´ u2q “ D z ` y(3.4)

into some z P Z with
ż

Ω

D z : D v dx “

ż

Ω

DNCpu´ u2q : D v dx for all v P Z

and the remainder

y P Y :“

"

y P L2pΩ;R2ˆ2q :

ż

Ω

y : D v dx “ 0 for all v P Z

*

.

Since Y is the orthogonal complement of DpZq in L2pΩ;R2ˆ2q, it follows

(3.5)
�

�u´ u2

�

�

2

NC
“
�

�z
�

�

2
`
∥∥y∥∥2

L2pΩq
.

Since z P Z, I2ˆ2 : D z “ div z “ 0 a.e. This, the aforementioned orthogonality, and an integration
by parts show

�

�z
�

�

2
“

ż

Ω

DNCpu´ u2q : D z dx “

ż

Ω

Du : D z dx´

ż

Ω

DNC u2 : D z dx

“

ż

Ω

f ¨ z dx´

ż

Ω

σPS : D z dx “

ż

Ω

f ¨ z dx`

ż

Ω

z ¨ div σPS dx “

ż

Ω

pf ´ fT q ¨ z dx.

Piecewise Poincaré inequalities (with Poincaré constant hT {j1,1 from [20, Corollary 3.4]) then imply
ż

Ω

pf ´ fT q ¨ z dx “

ż

Ω

pf ´ fT q ¨ pz ´ zT qdx ď
ÿ

TPT

∥∥f ´ fT∥∥L2pT q

∥∥z ´ zT∥∥L2pT q

ď
ÿ

TPT
hT {j1,1

∥∥f ´ fT∥∥L2pT q

∥∥D z
∥∥
L2pT q

ď oscpf, T q{j1,1
�

�z
�

�.

Hence,

(3.6)
�

�z
�

� ď oscpf, T q{j1,1.

Recall from [8, Subsection 3.2, Lemma 2] that, for each y P Y , there exists some q P L2
0pΩq with

ż

Ω

y : Dw dx “

ż

Ω

q divw dx for all w P H1
0 pΩ;R2q

and
c0
∥∥q∥∥

L2pΩq
ď

∥∥y∥∥
L2pΩq

.

Hence, any v P A with u´ v “ 0 on BΩ satisfies∥∥y∥∥2

L2pΩq
“

ż

Ω

DNCpu´ u2q : y dx “

ż

Ω

DNCpv ´ u2q : y dx`

ż

Ω

Dpu´ vq : y dx

“

ż

Ω

DNCpv ´ u2q : y dx`

ż

Ω

q divpu´ vqdx

ď

´∥∥DNCpv ´ u2q
∥∥
L2pΩq

`
∥∥div v

∥∥
L2pΩq

{c0

¯∥∥y∥∥
L2pΩq

.

Therefore, ∥∥y∥∥
L2pΩq

ď
∥∥DNCpv ´ u2q

∥∥
L2pΩq

`
∥∥divpvq

∥∥
L2pΩq

{c0.(3.7)
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The combination of (3.5)–(3.7) concludes the proof. �

Proof of Theorem 3.1 (b). The proof follows ideas from [9] for the local versions

Zj – tz P H1
0 pΩj ;R2q : div z “ 0 a.e. in Ωju and

Yj –
!

y P L2pΩj ;R2ˆ2q :

ż

Ωj

y : D z dx “ 0 for all z P Zj

)

of Z and Y from the proof of (a) with Ω replaced by Ωj .

Given v P rA and any j “ 1, . . . , J, the condition
ż

BΩj

v ¨ νjds “ 0

guarantees that the Stokes equations with volume force fT has a unique solution wj P Zj with the
boundary data wj “ v along BΩj , i.e.,

ż

Ωj

Dwj : D ζj dx “

ż

Ωj

fT ¨ ζj dx for all ζj P Zj .(3.8)

Furthermore, there exist zj P Zj and yj P Yj with

DNCpwj ´ u2q “ D zj ` yj on Ωj .

Since Yj is the orthogonal complement of DpZjq in L2pΩj ;R2ˆ2q, it follows

(3.9)
∥∥DNCpwj ´ u2q

∥∥2

L2pΩjq
“

∥∥D zj
∥∥2

L2pΩjq
`
∥∥yj∥∥2

L2pΩjq
.

The combination of the aforementioned orthogonality with (3.8), div zj “ 0 a.e. in Ωj , dev σPS “

dev DNC u2 and fT ` div σPS “ 0 yields∥∥D zj
∥∥2

L2pΩjq
“

ż

Ωj

DNCpwj ´ u2q : D zj dx “

ż

Ωj

Dwj : D zj dx´

ż

Ωj

DNC u2 : D zj dx

“

ż

Ωj

fT ¨ zj dx´

ż

Ωj

σPS : D zj dx “

ż

Ωj

pfT ` div σPSq ¨ zj dx “ 0.(3.10)

Recall from [8, Subsection 3.2, Lemma 2] that, for each yj P Yj , there exists some qj P L
2
0pΩjq with

ż

Ωj

yj : Dϕj dx “

ż

Ωj

qj divϕj dx for all ϕj P H
1
0 pΩj ;R2q

and

cj
∥∥qj∥∥L2pΩjq

ď
∥∥yj∥∥L2pΩjq

.

The combination of this result for the test function ϕj ” wj´v P H
1
0 pΩj ;R2q with the aforementioned

orthogonality and a Cauchy inequality result in∥∥yj∥∥2

L2pΩjq
“

ż

Ωj

yj : DNCpwj ´ u2qdx “

ż

Ωj

yj : DNCpv ´ u2qdx`

ż

Ωj

yj : DNCpwj ´ vqdx

ď

´∥∥DNCpv ´ u2q
∥∥
L2pΩjq

`
∥∥divϕj

∥∥
L2pΩjq

{cj

¯∥∥yj∥∥L2pΩjq
.

This, (3.9), (3.10), and divwj “ 0 a.e. in Ωj imply, for j “ 1, . . . , J ,∥∥DNCpwj ´ u2q
∥∥
L2pΩjq

“
∥∥yj∥∥L2pΩjq

ď
∥∥DNCpv ´ u2q

∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj .(3.11)

The functions wj , zj P H
1
0 pΩj ;R2q can be extended by zero to rwj , rzj P H

1
0 pΩ;R2q (i.e. rwj – wj

and rzj – zj in Ωj and rwj , rzj – 0 in ΩzΩj) and yj P L
2pΩj ;R2ˆ2q can be extended by zero to

ryj P L
2pΩ;R2ˆ2q (i.e. ryj – yj in Ωj and ryj – 0 in ΩzΩj). Then the sums rz – rz1 ` . . . ` rzJ and

rw – rw1 ` . . .` rwJ belong to Z.
Since div rw “ 0 a.e. in Ω, part (a) proves for rw P A that

�

�u´ u2

�

�

2

NC
ď oscpf, T q2{j2

1,1 `
�

�

rw ´ u2

�

�

2

NC
.
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The estimate (3.11) implies

�

�

rw ´ u2

�

�

2

NC
“

J
ÿ

j“1

∥∥DNCpwj ´ u2q
∥∥2

L2pΩjq
ď

J
ÿ

j“1

´∥∥DNCpv ´ u2q
∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj

¯2

.

This concludes the proof of (b). �

4. Proper Interpolation Designs

This section designs functions v P rA with the additional prerequisites

ż

BΩj

v ¨ νΩj
ds “ 0 for j “ 1, . . . , J(4.1)

for Theorem 3.1 (b) by modifications of the designs compared in [13]. All designs satisfy a discrete
Dirichlet boundary condition of the set of admissable functions defined by

ApT q– tv P CpΩ;R2q : vpzq “ uDpzq for all z P N pBΩqu and

rApT q– tv P ApT q : v satisfies (4.1)u.

These functions violate the exact Dirichlet boundary condition, see Subsection 4.4 for a remedy.

Furthermore, EpΓq :“ tE P E : E Ď Γu defines the set of edges along the skeleton Γ –
ŤJ
j“1 BΩj .

4.1. Piecewise quadratic interpolation. A nodal averaging of u2 as in [13] leads to the piece-

wise quadratic and continuous function vAP2 P P2pT ;R2q X rApT q, defined via piecewise quadratic
interpolation of the values at the nodes z P N

vAP2pzq–

#

uDpzq for z P N pBΩq,
ř

TPT pzq u2|T pzq
M∣∣T pzq∣∣ for z P N pΩq,

and in the midpoints of the edges E P E with the two adjacent triangles T pmidpEqq of E P EpΩq and
the two endpoints N pEq

vAP2pmidpEqq–

#

ř

TPT pmidpEqq u2|T pmidpEqq
M∣∣T pmidpEqq

∣∣ for E P EpΩqzEpΓq,
3puCRpmidpEqq{2´

ř

zPN pEq vAP2pzq{4 for E P EpΓq.

Let pϕz : z P N YmidpEqq denote the piecewise quadratic and globally continuous basis functions
of P2pT q X CpΩq. The definition of vAP2 implies

ż

BΩj

vAP2 ¨ ν ds “
ÿ

EPEpBΩjq

ż

E

vAP2 ¨ ν ds

“
ÿ

EPEpBΩjq

´

vAP2pmidpEqq

ż

E

ϕmidpEq ds`
ÿ

zPN pEq

vAP2pzq

ż

E

ϕz ds
¯

¨ νΩj
|E

“
ÿ

EPEpBΩjq

∣∣E∣∣{6 ´

4vAP2pmidpEqq `
ÿ

zPN pEq

vAP2pzq
¯

¨ νΩj
|E

“
ÿ

EPEpBΩjq

∣∣E∣∣
puCRpmidpEqq ¨ νΩj

|E “

ż

BΩj

puCR ¨ νΩj
ds “

ż

Ωj

div puCR dx “ 0.

Hence, v ” vAP2 satisfies condition (4.1).
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4.2. Minimal piecewise quadratic interpolation. A global minimization of the guaranteed upper
bound from Theorem 3.1 (b) leads to

vMP2 – argmin
vPP2pT ;R2qX rApT q

J
ÿ

j“1

´∥∥DNCpv ´ u2q
∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj

¯2

“ argmin
vPP2pT ;R2qX rApT q

J
ÿ

j“1

min
0ăµjă8

´

p1` µjq
∥∥DNCpv ´ u2q

∥∥2

L2pΩjq

` p1` 1{µjq
∥∥div v

∥∥2

L2pΩjq
{c2j

¯

and is realised by the following algorithm.

Algorithm 4.1 (global minimization). Input pu2 P P2pT ;R2q, c1, . . . , cj ,Ω1, . . . ,ΩJ and the number
of iterations K P N.
Initialize µj – 1 for j “ 1, . . . , J .
for k “ 1, . . . ,K do

Compute vMP2pkq –

argmin
vPP2pT ;R2qX rApT q

J
ÿ

j“1

´

p1` µjq
∥∥DNCpv ´ u2q

∥∥2

L2pΩjq
` p1` 1{µjq

∥∥div v
∥∥2

L2pΩjq
{c2j

¯

,

µj –
∥∥div vMP2pkq

∥∥
L2pΩjq

M

`

cj
∥∥DNCpvMP2pkq ´ u2q

∥∥
L2pΩjq

˘

for j “ 1, . . . , J . od

Output vMP2pKq P P2pT ;R2q X rApT q.

The condition (4.1) (involved in rApT q) may be enforced by Lagrange multipliers λ P RJ . The
computation of vMP2pkq requires a solution of a linear system in each step. In order to reduce the
computational costs, we use three iterations of a preconditioned conjugate gradient method for inexact
solve and denote the solution with vMP2CG3pKq. The preconditioner is the diagonal of the system
matrix named after Jacobi. Note that this solution might not satisfy condition (4.1) exactly. For a
remedy, the reader is referred to Subsection 4.5.

Undisplayed numerical experiments show that the values after K “ 3 iterations do not significantly
change anymore.

4.3. Piecewise linear interpolation on red-refinement. This subsection designs piecewise linear

vred P P1predpT q;R2q X rApT q with respect to the uniform red-refinement redpT q of triangulation T
[7, 13]. The nodes of redpT q consists of the nodes N and the edge midpoints midpEq of T . Define

vred P P1predpT q;R2q X rApT q via piecewise linear interpolation of the values, for the node z P N ,

(4.2) vredpzq–

#

uDpzq for z P N pBΩq,
vz for z P N pΩq

with some particular choice of vz P R2, and in the midpoints of the edges E P E ,

(4.3) vredpmidpEqq–

#

puCRpmidpEqq for E P EpΩqzEpΓq,
2puCRpmidpEqq ´

ř

zPN pEq vredpzq{2 for E P EpΓq.
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Define pϕred
z : z P N YmidpEqq as the nodal basis functions in P1predpT qq XCpΩq. The definition

of vred implies

ż

BΩj

vred ¨ ν ds “
ÿ

EPEpBΩjq

ż

E

vred ¨ ν ds

“
ÿ

EPEpBΩjq

´

vredpmidpEqq

ż

E

ϕred
midpEq ds`

ÿ

zPN pEq

vredpzq

ż

E

ϕred
z ds

¯

¨ νΩj
|E

“
ÿ

EPEpBΩjq

∣∣E∣∣{4 ´

2vredpmidpEqq `
ÿ

zPN pEq

vredpzq
¯

¨ νΩj |E

“
ÿ

EPEpBΩjq

∣∣E∣∣
puCRpmidpEqq ¨ νΩj

|E “

ż

BΩj

puCR ¨ νΩj
ds “

ż

Ωj

div puCR dx “ 0.

Hence, v ” vred satisfies condition (4.1).

z

P1 “ P6

P2

P3P4

P5

Q1

Q2

Q3
Q4

Q5

T1

T2

T3

T4

T5

ωred
z

(a) Interior Patch

P1

T1

T2

T4

T3

P2

T1

T2

T4

T3

P3

T1

T2

T4

T3
Q1

T1

T2

T4

T3

Q2

T1

T2

T4

T3

Q3

T1

T2

T4

T3

(b) Central Subtriangle T4 “ convtmidpEpT qqu
in redpT q for T P T .

Figure 4.1. Notation for red-refinements.

interpolation vred is fixed on all central subtriangles as T4 in Figure 4.1(b) and it remains to
determine the values vz at the free nodes z P N pΩq, e.g. by nodal averaging

(4.4) vz –
ÿ

TPT pzq

puCR|T pzq
L
∣∣T pzq∣∣ for all z P N pΩq.

Algorithm 4.2 below suggests the one-dimensional minimization problem around each node patch
ωred
z with respect to the red-refined triangulation as in Figure 4.1(a) under the side condition of the

fixed values at the edge midpoints Qj of the adjacent edges.

Algorithm 4.2 (patchwise minimization). Input puCR P CR
1pT ;R2q, c1, . . . , cJ ,Ω1, . . . ,ΩJ and the

number of iterations K P N.
Initialize vPMred –

ř

EPE puCRpmidpEqqϕred
midpEq and µj :“ 1 for j “ 1, . . . , J .

for k “ 1, . . . ,K do
v0 –

ř

EPE vPMredpmidpEqqϕred
midpEq,
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@z P N pΩq compute

vz – argmin
wPR2

J
ÿ

j“1

´

p1` µjq
∥∥DNCpv0 ` wϕ

red
z ´ u2q

∥∥2

L2pωred
z XΩjq

` p1` 1{µjq{c
2
j

∥∥divpv0 ` wϕ
red
z q

∥∥2

L2pωred
z XΩjq

¯

,

vPMred – v0 `
ř

zPN pΩq vzϕ
red
z ,

@j “ 1, . . . , J compute µj –
∥∥div vPMred

∥∥
L2pΩjq

{
`

cj
∥∥DNCpvPMred ´ u2q

∥∥
L2pΩjq

˘

. od

Output vPMred P P1predpT q;R2q X rApT q.

Undisplayed numerical experiments show that the values after K “ 3 iterations do not significantly
change anymore.

We distinguish between the optimal version vPMred from Algorithm 4.2, and vMAred with the
suboptimal choice vz from (4.4).

4.4. Inhomogeneous Dirichlet boundary conditions. In case of inhomogeneous Dirichlet bound-
ary conditions all designs in Subsections 4.1–4.3 result in some vxyz which does not necessarily belong
to A. To heal this shortcoming, a virtual boundary reconstruction wD P H

1pΩq with wD “ uD´vxyz

along BΩ as in [21, 7, 13] allows v – vxyz ` wD P A and the estimates∥∥DNCpv ´ u2q
∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj ď
∥∥DNCpvxyz ´ u2q

∥∥
L2pΩjq

`
∥∥div vxyz

∥∥
L2pΩjq

{cj

`
∥∥DwD

∥∥
L2pΩjq

`
∥∥divwD

∥∥
L2pΩjq

{cj .

The divergence and energy norm of wD can be estimated by [21, Theorem 4.2]∥∥divwD
∥∥
L2pΩjq

ď
?

2
∥∥DwD

∥∥
L2pΩjq

ď
?

2Cγ
∥∥h3{2

E B2
EpuD ´ vxyzq{Bs

2
∥∥
L2pBΩjXBΩq

.

The construction of wD ensures
ş

E
wD ds “ 0 for all E P EpBΩjq. Hence, v ” vxyz ` wD P rApT q for

any vxyz P rApT q.
For right isosceles triangles, numerical calculations in [7] suggest the constant Cγ “ 0.4980. If

vxyz|E equals uD|E at N pEq and midpEq for all E P EpBΩq, wD can be designed on the red-refined

triangulation with halved edge lengths and accordingly reduced constant Cγ “ 0.4980{23{2 “ 0.1761.

4.5. Projection. This subsection designs a projection operator that projects a given function v P

P2pT ;R2q X ApT q onto a function ṽ P P2pT ;R2q X rApT q. Consider the constrained minimization
problem

min
wPP2pT ;R2qX rApT q

J
ÿ

j“1

´

p1` µjq
∥∥Dpv ´ wq

∥∥2

L2pΩjq
` p1` 1{µjq

∥∥divpv ´ wq
∥∥2

L2pΩjq
{c2j

¯

,

where 0 ă µj ă 8 is chosen as follows

µj –

#∥∥div v
∥∥
L2pΩjq

M

`

cj
∥∥DNCpv ´ u2q

∥∥
L2pΩjq

˘

if v P tvMP2pKq, vMP2CG3pKqu,

1 otherwise.

For a given enumeration N YmidpEq “ tz1, . . . , zMu of the M –
∣∣N ∣∣` ∣∣E∣∣ nodes of the triangu-

lation, define the index set of all nodes on the boundary

M – tm P t1, . . . ,Mu : zm P BΩu.

Let pϕz : z P N YmidpEqq denote the piecewise quadratic and globally continuous basis functions
of P2pT q X CpΩq enumerated according to the nodes of the triangulation, i.e. ϕm – ϕzm for m “

1, . . . ,M . Let x, y P R2M denote the coefficients of the basis representation of w respectively v,

w “
M
ÿ

m“1

xmpϕm, 0q
J ` xM`mp0, ϕmq

J and v “
M
ÿ

m“1

ympϕm, 0q
J ` yM`mp0, ϕmq

J.
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Then, the minimization problem reads

min
xPR2M

py ´ xqJApy ´ xq s.t. pxm, xM`mq
J “ uDpzmq for m PM and Bx “ 0,

where A P R2Mˆ2M is defined via

A`m –

J
ÿ

j“1

´

p1` µjq

ż

Ωj

Dϕ` : Dϕm dx` p1` 1{µjq

ż

Ωj

divϕ` divϕm dx{c2j

¯

for `,m “ 1, . . . , 2M and condition (4.1) is expressed by the rectangular matrix B P RJˆ2M with the
entries

Bjm “

ż

BΩj

ϕm ¨ ν ds for j “ 1, . . . , J and m “ 1, . . . , 2M.

Introduce J many Lagrangian multipliers λ1, . . . , λJ to ensure the side condition (4.1). Minimizing
the Lagrange functional

Lpy;x, λq– py ´ xqJApy ´ xq ` λJBx

leads to the saddle point problem
„

2A BJ

B 0

 „

x
λ



“

„

2Ay
0



.

In order to reduce the computational costs, replace the matrix A by its diagonal Λ – diagpAq.
Finally, define the desired projection

ṽ –

M
ÿ

m“1

xmpϕm, 0q
J ` xM`mp0, ϕmq

J P P2pT ;R2q X rApT q.

5. Numerical Experiments

This section presents some benchmark examples with convergence history plots for the energy
error and history plots of efficiency indices for error estimators as a function of numbers of degrees of
freedom (ndof). The labels of the graphs refer to the subscripts of the estimator term ηxyz as follows,
’AP2’ indicates the piecewise quadratic interpolation vAP2 and ’MP2’ the minimal piecewise quadratic
interpolation vMP2, where the following number in brackets indicates the number of iterations K
in Algorithm 4.1. ’MAred’ and ’PMred’ indicate the two different piecewise linear interpolations
vMAred and vPMred on the red-refined triangulation. The annotation ’(mod)’ indicates the modified
interpolations according to the side condition (4.1) and ’(proj)’ indicates the usage of the projection
from Subsection 4.5. Both allow for the upper bound from Theorem 3.1 (b).

5.1. Adaptive algorithm. The benchmark examples employ the following adaptive algorithm which
includes an equivalent modification of the a posteriori error estimator ηopt from [3].

Algorithm 5.1 (APSFEM). Input Initial regular triangulation T0 with refinement edges of the polyg-
onal domain Ω into triangles and bulk parameter 0 ă θ ď 1.
for any level ` “ 0, 1, 2, . . . do

Solve (3.1)–(3.2) with respect to regular triangulation T` with solution pσ`, u`q.
Compute pη`pT`, T q, T P T`q with

η2
optpT`, T q– osc2pf, T q `

∣∣T ∣∣∥∥ curlpdev σ`q
∥∥2

L2pT q

`
∣∣T ∣∣1{2 ÿ

EPEpT q

∥∥rdevpσ`qτEsE
∥∥2

L2pEq

and

η2
optpT`q–

ÿ

TPT
η2

optpT`, T q.
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Figure 5.1. Convergence history of the energy error for uniform and adaptive mesh
refinement for the problem from Subsection 5.2.

Mark a subset M` of T` of (almost) minimal cardinality
∣∣M`

∣∣ with

θη2
` ď η2

` pM`q–
ÿ

TPM`

η2
` pT q.

Refine. Compute the smallest regular refinement T``1 of T`
with M Ď T`zT``1 by newest vertex bisection. od

Output Sequence of discrete solutions pσ`, u`q`PN0
and meshes pT`q`PN0

.

Recall from [4], that this algorithm leads to quasi-optimal convergence in the notion of approxi-
mation classes.

5.2. Classical example on L-shaped domain. The first benchmark problem employs fpx, yq ” 0
with the exact solution in polar coordinates

upr, ϑq “ rαpp1` αq sinpϑqwpϑq ` cospϑqw1pϑq,´p1` αq cospϑqwpϑq ` sinpϑqw1pϑqqJ,

ppr, ϑq “ ´rα´1pp1` αq2w1pϑq ` w3pϑqq{p1´ αq

on the L-shaped domain Ω “ p´1, 1q2zpp0, 1q ˆ p´1, 0qq, where

wpϑq “ 1{pα` 1q sinppα` 1qϑq cospαωq ´ cosppα` 1qϑq

` 1{pα´ 1q sinppα´ 1qϑq cospαωq ` cosppα´ 1qϑq

for α “ 856399{1572864 and ω “ 3π{2 from [22]. The inhomogeneous Dirichlet boundary data are
prescribed by the exact solution uDpx, yq – upx, yq on BΩ. The L-shaped domain Ω is partitioned
into the three unit squares Ω1 “ p´1, 0q2,Ω2 “ p´1, 0q ˆ p0, 1q and Ω3 “ p0, 1q

2. Due to theoretical
lower bounds by [10, 11], use 0.1601 ď c0 and 0.3826 ď cj for j “ 1, 2, 3.

Figure 5.1 shows the convergence history of the exact energy error for uniform and adaptive mesh
refinement by Algorithm 5.1 with θ “ 0.5. As known for this example, the convergence rate for the
uniform mesh refinement is not optimal, i.e. 0.25 with respect to the number of degrees of freedom

(or 0.5 with respect to the mesh width as h ” ndof´1{2).
Figure 5.2 shows the efficiency indices for all error estimators for uniform mesh refinement. The

main observation is that the efficiency indices for the ’(mod)’ and ’(proj)’ error estimators, that allow
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Figure 5.2. History of efficiency indices ηxyz{~u´uh~ of various a posteriori error
estimators labelled xyz in the figure as functions of the number of unknowns on
uniform meshes for the problem from Subsection 5.2.
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Figure 5.3. History of efficiency indices ηxyz{~u´uh~ of various a posteriori error
estimators labelled xyz in the figure as functions of the number of unknowns for
adaptive mesh refinement for the problem from Subsection 5.2.

for the refined upper bounds with the local inf-sup constant from Theorem 3.1 (b), are dramatically
improved compared to the error estimators that operate with unmodified designs. In other words, the
gain from the change from global to local inf-sup constants is larger than the loss of freedom from the
additional constraints in the designs. As an example the efficiency index for ηAP2 drops from about
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Ω

Ω1 Ω2 Ω3
. . . Ω`

Figure 5.4. Subdivision of the domain Ω in the stretched colliding flow example
from Subsection 5.3.

4.5 to almost 3.0 for ηAP2 (mod) and the efficiency index for ηMAred drops from 4.4 to about 3.5 for
ηMAred (mod). Also the global designs with a truncated minimization benefit from the modifications
and the projection. For example, the efficiency index of ηMP2CG3(3) of about 2.7 is improved to 1.8 by
its modified form ηMP2CG3(3) (proj). The estimator with the least improvement is ηMP2(3) which is due
to the fact that its inf-sup constant dependable part of the error estimator is very small at least on
fine meshes. The variant ηMP2(3) (proj) is slighlty less efficient than the variant ηMP2(3) (mod). Hence,
it seems advisable to add the additonal constraint as a side constraint in the minimization problem.
However, in case of ηAP2, the ’(proj)’ variant is slightly more efficient than the ’(mod)’ variant. The
efficiency indices for adaptive mesh refinement depicted in Figure 5.3 allow similar conclusions with
even more remarkable improvements for the local designs.

5.3. Colliding flow example on stretched domain. Given a ratio ` P N, let Ω – p´1, 2`´ 1q ˆ
p´1, 1q denote a stretched domain. The subdivision Ω1, . . . ,Ω` of Ω consists of the ` squares with
edge length 2 as displayed in Figure 5.4 and lower bounds of the local inf-sup constants 0.3826 ď cj
for j “ 1, . . . , ` from [10, 11]. A computation of a lower bound for the inf-sup constant on star-
shaped domains Ω according to [11, Corollary 7 and Proposition 9 i)] yields the lower bounds of c0
as displayed in Table 1.

The second benchmark problem employs fpx, yq – p240p`´1px ` 1q ´ 1qy2, 240`´3p`´1px ` 1q ´
1q2yqJ with the exact solution which is derived by transformation of the solution from the colliding
flow example to the stretched domain Ω, i.e.,

upx, yq– p20p`´1px` 1q ´ 1qy4 ´ 4p`´1px` 1q ´ 1q5, 20`´1p`´1px` 1q ´ 1q4y ´ 4`´1y5qJ,

ppx, yq– ´20`´1p`´1px` 1q ´ 1q4 ´ 2`´1y4.

Figure 5.5 shows the exact error graphs of the 6 computations with varying parameter ` “
1, 2, 4, 8, 16. The error gets worse for larger domains, but its convergence rates stays optimal.

Table 1 displays the efficiency indices for the computations on a six times red-refined initial tri-
angulation of Ω with ` “ 1, 2, 4, 8, 16. In all cases, the error estimators ηMP2, ηMP2 (mod), ηMP2 (proj),
and ηMP2CG3 (proj) yield the best results with indices between 1 and 2. When the anisotropy of the
domain grows, the global versions of the simple estimators ηAP2, ηMAred, ηPMred get worse. For ` “ 16,
they reveal extremely poor efficiency indices between 15 and 26 (except for ηPMred). However, their
local versions exhibit almost no change for increasing `. Their efficiency indices range from 1.8 to
3.7. This is due to the deterioration of the inf-sup-constant c0 for anisotropic domains, which behaves
asymptotically like Op`´1q [12, Theorem 3].

5.4. Backward facing step example. The third benchmark problem employs fpx, yq ” 0 on the
domain Ω “ pp´2, 8q ˆ p´1, 1qqzpp´2, 0q ˆ p´1, 0qq with Dirichlet boundary data

uDpx, yq “

$

’

&

’

%

p´ypy ´ 1q{10, 0q if x “ ´2,

p´py ` 1qpy ´ 1q{80, 0q if x “ 8,

0 otherwise

with a unique, but unknown, weak solution. Therefore the discrete solution on the twice red-refined
triangulation is used as a reference solution in the computation of the displayed approximations to
the unknown errors. For the refined estimates, the domain Ω is split into six squares as depicted
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Figure 5.5. Convergence history of the exact energy error for uniform and adaptive
mesh refinements for the problem from Subsection 5.3.

` ndof AP2 AP2(mod) MAred MAred(mod) PMred PMred(mod)

1 32,513 2.1455 2.1781 2.7207 2.7610 2.2257 2.2324
2 65,153 3.0522 2.3069 4.3233 3.1558 2.6221 2.1078
4 130,433 4.8789 2.3780 7.5121 3.3666 2.9824 1.9815
8 260,993 8.5031 2.3906 13.6768 3.4124 3.7073 1.9542
16 522,113 15.7631 2.3901 25.9517 3.4199 5.3061 1.9556

` MP2(3) MP2(3)(mod) MP2CG3(3) MP2CG3(3)(proj) c0

1 1.0377 1.0377 1.2131 1.2131 3.8268 ¨ 10´1

2 1.0439 1.0280 1.3304 1.2382 2.2975 ¨ 10´1

4 1.0520 1.0174 1.5122 1.2489 1.2218 ¨ 10´1

8 1.0612 1.0100 1.8327 1.2481 6.2137 ¨ 10´2

16 1.0747 1.0057 2.4606 1.2458 3.1204 ¨ 10´2

Table 1. Efficiency indices for a collection of estimators for the problem from Sub-
section 5.3 with different domains for ` “ 1, 2, 4, 8, 16. The tables show the results
of a computation on the 6 times uniformly red-refined initial triangulation.

in Figure 5.6 with lower bounds of the local inf-sup constants 0.3826 ď cj for j “ 1, . . . , 6 from
[10, 11]. The lower bound of the inf-sup constant 0.049814 ď c0 in this computation is derived from
the formula in [11, Corollary 7]. Up to the authors’ knowledge, the assumption in this corollary is
not satisfied for Ω. In fact, the true inf-sup constant c0 might be smaller.

As seen in the previous examples, the adaptive mesh-refinement results in an optimal convergence
rate of 0.5 (cf. Figure 5.7).

Figures 5.8 and 5.9 present the efficiency indices for the error estimators from Section 4. The
versions with global inf-sup constant exhibit extremely bad efficiency indices in the range of 8 to 22
for ηAP2 and ηMAred. Significantly better, but still worse are the efficiency indices for ηPMred of about
8 to 10 for adaptive mesh refinement. These error estimators are most affected by the very small
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Figure 5.6. Subdivision of the domain Ω in the backward facing step example from
Subsection 5.4.
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Figure 5.7. Convergence history of the energy error with respect to a reference so-
lution on a twice red-refined triangulation for uniform and adaptive mesh refinements
for the problem from Subsection 5.4.

global inf-sup constant of the specific domain Ω. However, the global version of ηMP2 still yields good
efficiency indices close to 1 because the computed test function vMP2 is almost divergence free. Its
computationally much cheaper modification ηMP2CG3 is slightly worse with an index of about 3 for
adaptive mesh refinement.

This benchmark problem once again highlights the exceptional superiority of the proposed designs
based on the division of Ω into subdomains and the computation with local inf-sup constants by
Theorem 3.1 (b) as suggested by [9]. From the very beginning the estimators with local modification
or projection exhibit efficiency indices below 5 in the uniform case and below 4 in the adaptive case.
Even the index of the moderate estimator ηMP2CG3 can be drastically reduced by a factor of at least
2 by using the projected version. It is also remarkable that the computationally cheap but localized
upper bounds ηAP2 (mod), ηAP2(proj), ηMAred (mod), and ηPMred (mod) compare favourably well with the
global estimator ηMP2CG3.
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22. Rüdiger Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989), no. 3, 309–325.


	1. Introduction
	2. Notation and Preliminaries
	2.1. Stokes equations
	2.2. Nonconforming finite element spaces
	2.3. Crouzeix-Raviart FEM for the Stokes equations

	3. Pseudostress Approximation and Error Analysis
	4. Proper Interpolation Designs
	4.1. Piecewise quadratic interpolation
	4.2. Minimal piecewise quadratic interpolation
	4.3. Piecewise linear interpolation on red-refinement
	4.4. Inhomogeneous Dirichlet boundary conditions
	4.5. Projection

	5. Numerical Experiments
	5.1. Adaptive algorithm
	5.2. Classical example on L-shaped domain
	5.3. Colliding flow example on stretched domain
	5.4. Backward facing step example

	References



