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Abstract

Whenever numerical algorithms are employed for a reliable computational forecast, they need to
allow for an error control in the final quantity of interest. The discretisation error control is of some
particular importance in computational PDEs (CPDEs) where guaranteed upper error bounds (GUB)
are of vital relevance. After a quick overview over energy norm error control in second-order elliptic
PDEs, this paper focuses on three particular aspects. First, the variational crimes from a noncon-
forming finite element discretisation and guaranteed error bounds in the discrete norm with improved
postprocessing of the GUB. Second, the reliable approximation of the discretisation error on curved
boundaries and, finally, the reliable bounds of the error with respect to some goal-functional, namely,
the error in the approximation of the directional derivative at a given point.

1 Introduction

A posteriori finite element error control of second-order elliptic boundary value prob-
lems usually involves residuals of the proto-type
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Respvq “
ˆ

Ω
p f v´σh ¨∇vqdx for v PV – H1

0 pΩq (1)

with some given Lebesgue integrable function f and the discrete flux σh [10, 11].
Its dual norm with respect to some energy norm ~¨~ reads

~Res~‹ – sup
vPV

Respvq{~v~ .

For instance, the Poisson model problem seeks u PV with f `∆u“ 0 and leads to
the variational formulation

ˆ
Ω

∇u ¨∇vdx“
ˆ

Ω
f vdx for all v PV.

In this example, the energy norm reads ~¨~ – ‖∇¨‖L2pΩq and σh “ ∇uh might be
the gradient of the piecewise affine conforming finite element solution uh.

Section 2 summarises techniques and recent advances from the ongoing com-
putational surveys [12, 4, 14] to compute guaranteed upper bounds for ~Res~‹, or
error majorants in the sense of Repin [22], via the design of some q P Hpdiv,Ωq
such that, by a triangle inequality,

~Res~‹ ď ~ f `divq~‹`~divpq´σhq~‹ .

While ~ f `divq~‹ may lead to oscillations or other higher-order terms, the second
term is often estimated suboptimally as ~divpq´σhq~‹ ď ‖q´σh‖L2pΩq. A new
generation of equilibration error estimators is based on

~divpq´σhq~‹ “ min
vPH1pΩq

‖q´σh´Curlv‖L2pΩq

and the novel postprocessing from [14] improves the efficiency at almost no extra
costs. Section 2 reports on the superiority of those error estimates with an applica-
tion to the conforming P1 finite element method for the Poisson model problem.

Section 3 examines the nonconforming Crouzeix-Raviart approximations uCR
and its discrete flux σh “ ∇NCuCR for the Poisson model problem. The Helmholtz
decomposition allows a split of the broken energy error norm into

~u´uCR~
2
NC “ ~Res~2

‹`~ResNC~
2
‹ .

The two residuals Res and ResNC allow an estimation via all known a posteriori error
estimators. Furthermore, the special structure of the nonconforming residual ResNC
allows an alternative analysis by the design of conforming companions of uCR [13].
In this paper, we also apply the postprocessed equilibration error estimators to the
first residual for even sharper error control beyond [13].

Section 4 extends guaranteed error control to domains with curved boundaries
and exemplifies the modifications for some sector domain.
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Section 5 establishes guaranteed goal-oriented error estimation where the error
u´ uh between the exact and the discrete P1-FEM solution is not measured in the
energy norm but with respect to some goal functional Q P H1pΩq. Its Riesz repre-
sentation solves some dual problem [5, 3] that links the error Qpeq to the energy
norms of two perturbed Poisson problems [21]. Lower and upper bounds for those
quantities lead to guaranteed bounds for Qpu´uhq.

2 Review of Guaranteed Energy Norm Error Control

This section deals with guaranteed upper bounds for dual norms of residuals by
equilibration error estimators. An application to the P1 conforming finite element
method for the Poisson model problem concludes the section.

2.1 Notation

Consider a regular triangulation T of the simply-connected, polygonal and bounded
Lipschitz domain Ω Ă R2 into triangles with edges E , nodes N , boundary nodes
N pBΩq and free nodes N pΩq– N zN pBΩq. The midpoints of all edges are de-
noted by midpE q– tmidpEq

ˇ

ˇE P E u and the boundary edges along BΩ are denoted
by E pBΩq– tE P E

ˇ

ˇE Ď BΩu while E pΩq– E zE pBΩq denotes the set of interior
edges. The set T pEq – tT P T

ˇ

ˇE Ă BTu contains the neighbouring triangles of
the edge E P E . The open set ωz – tx P Ω

ˇ

ˇϕzpxq ą 0u for the nodal basis function
ϕz is the interior of

Ť

T pzq for the subtriangulation T pzq– tT P T
ˇ

ˇz PN pT qu.
The diameter diampT q of a triangle T is denoted by hT . The red-refinement redpT q
of T is a regular triangulation that refines each triangle T P T into four congruent
sub-triangles by straight lines through the midpoints of the three edges. With the set
PkpT q of elementwise polynomials of total degree ď k, the Raviart-Thomas finite
element space of order m reads

RTmpT q–

!

q P Hpdiv,Ωq
ˇ

ˇ@T PT DaT ,bT ,cT P PmpT q

@x P T, qpxq “ aT x`
`

bT ,cT
˘

)

.

The set C0pΩq contains continuous functions with zero boundary conditions along
BΩ .
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2.2 Equilibration Error Estimators

Consider some residual of the form (1) with source function f P L2pΩq and discrete
flux σh P P0pT ;R2q such that Respϕzq “ 0 for all z PN pΩq. Equilibration error
estimators design some quantity q P Hpdiv,Ωq such that ~ f `divq~‹ is of higher
order and

~Res~‹ ď ~ f `divq~‹`~divpσh´qq~‹ .

Two examples for such a design are given through the Braess equilibration error
estimator [8, 6] and the Luce-Wohlmuth error estimator [18, 14] which solve at
most one-dimensional linear systems of equations around each node z P N and
design some Raviart-Thomas function qB P RT0pT q or qLW P RT0pT

‹q on the dual
triangulation T ‹.

The dual mesh T ‹ divides every triangle T P T into six subtriangles of same
area by connection of the center midpT q with the three vertices and the three edge
midpoints of T . This results in the two guaranteed upper bounds

ηB – ‖hT p f ´ fT q‖L2pΩq { j1,1`‖σh´qB‖L2pΩq , (2)

ηLW – ‖hT p f ´ f ‹q‖L2pΩq { j1,1`‖σh´qLW‖L2pΩq (3)

for the piecewise integral mean fT P P0pT q, i.e., fT |T –
ffl

T f dx for T P T and
f ‹ P P0pT

‹q with f ‹|T‹ – 3
ffl

T f ϕz dx on the two subtriangles T ‹ P T ‹pzq of T P
T pzq. The function f ‹ is our preferred approximation of f in the Luce-Wohlmuth
design [14, 16] that allows this very easy estimation of ~ f ´ f ‹~‹. The number j1,1
is the first positive root of the Bessel function J1 from the Poincaré constant [17].

The definitions (2)-(3) employ the estimate ~divpσh´qq~‹ ď ‖σh´q‖L2pΩq,
which is suboptimal, because of

~divpq´σhq~‹ “ min
γPH1pΩq

‖q´σh´Curlγ‖L2pΩq .

The novel postprocessing from [14] designs some piecewise affine γh that is cheap
to compute and leads to sharper estimates. The computation runs some simple pcg
scheme with k iterations on a refined triangulation redpT q or red2pT q for ηB and
T ‹ for ηLW. In the numerical examples below, the number of cg iterations of the
postprocessing is added to the label in brackets. Every additional ‘r‘ in front of this
number is related to one red-refinement. For example, the error estimator ηBrrp3q is
the postprocessed ηB on two red-refinements with 3 cg iterations. The case k “8
means an exact solve and leads to the best possible γ; further details on the algorithm
are included in [14].
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2.3 Poisson Model Problem with Big Oscillations

The Poisson model problem seeks u P H1
0 pΩq with f `∆u “ 0 for some source

function f P L2pΩq on the unit square Ω – p0,1q2. The conforming FEM seeks
uh PVC – P1pT qXC0pΩq with

ˆ
Ω

∇uh ¨∇vh dx“
ˆ

Ω
f vh dx for all vh PVC.

This leads to the residual (1) with σh “ ∇uh and VC Ď kerRes. Elementary calcula-
tions, e.g., in [9], reveal that ~Res~‹ “ ~u´uh~– ‖∇pu´uhq‖L2pΩq.

The remaining parts of this section concern the benchmark problem with an os-
cillating source term f –´∆u that matches the exact solution

upx,yq “ xpx´1qypy´1qexpp´100px´1{2q2´100py´117{1000q2q P H1
0 pΩq.

Figures 1 and 2 show the efficiency indices ηxyz{~u´uh~ for various GUB ηxyz
after Braess and Luce-Wohlmuth for uniform and adaptive mesh refinement. The
Dörfler marking drives the adaptive mesh-refinement with the refinement indicators

ηpT q2 – |T |‖ f‖2
L2pT q` |T |1{2

ÿ

EPE pT q

‖rσhsE ¨νE‖2
L2pEq . (4)

On coarse triangulations, the oscillations dominate the guaranteed upper bounds
and the postprocessing is almost effectless. However, as the number of degrees of
freedom grows and the oscillations decrease, the efficiency improves and the post-
processing unfolds its full effectivity.

The postprocessing ηBrp1q of ηB based on redpT q and the postprocessing ηLWp1q
of ηLW based on T ‹ reduce the efficiency indices about 20% to values between
1.1 and 1.15, respectively. The optimal postprocessing with k “8 shows only very
little further improvement over the postprocessing with k “ 1. The postprocessing
ηBrrp3q of ηB based on two red-refinements red2pT q and k“ 3 iterations even leads
to striking efficiency indices of about 1.05.

Similar treatment is possible for conforming obstacle problems [15].

3 Guaranteed Error Control for CR-NCFEM

This section develops sharp guaranteed upper bounds for the broken energy norm

~u´uCR~
2
NC –

ÿ

TPT

‖∇pu´uCRq‖2
L2pT q

for the error between the exact solution u and the Crouzeix-Raviart nonconforming
FEM (CR-NCFEM) solution uCR.
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Fig. 1 History of efficiency indices ηxyz{~e~ of the standard and postprocessed Braess and Luce-
Wohlmuth error estimators ηxyz labeled xyz as functions of ndof on uniform meshes in Subsec-
tion 2.3.
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Fig. 2 History of efficiency indices ηxyz{~e~ of the standard and postprocessed Braess and Luce-
Wohlmuth error estimators ηxyz labeled xyz in the figure as functions of ndof on adaptive meshes
in Subsection 2.3.

3.1 Main Result

The CR-NCFEM employs the Crouzeix-Raviart functions

CR1pT q– tv P P1pT q
ˇ

ˇv is continuous at midpE qu,

CR1
0pT q– tv P CR1pT q

ˇ

ˇ@E P E pBΩq, vpmidpEqq “ 0u.
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The nonconforming finite element approximation uCR P CR1
0pT q for the Poisson

model problem with its piecewise gradient ∇NCuCR satisfies
ˆ

Ω
∇NCuCR∇NCvCRdx“

ˆ
Ω

f vCR dx for all vCR P CR1
0pT q.

The main result from [13] for the 2D case with a simply-connected domain Ω and
homogeneous Dirichlet boundary conditions requires the Helmholtz decomposition
of ∇NCpu´uCRq “ ∇α` curlβ for α P H1

0 pΩq and β P H1pΩq. It follows

~u´uCR~
2
NC “ ~α~2

`‖curlβ‖2
L2pΩq “ ~Res~2

‹`~ResNC~
2
‹

with the residuals

Respvq–

ˆ
Ω

f vdx´
ˆ

Ω
∇NCuCR ¨∇vdx for v P H1

0 pΩq,

ResNCpvq–´

ˆ
Ω

curlNC uCR ¨∇vdx for v P H1pΩq.

The dual norm of the second residual allows the alternative characterisation

~ResNC~‹ “min
vPV
~uCR´ v~NC ď ~u´uCR~NC . (5)

3.2 Guaranteed Upper Bounds for ~Res~‹

The dual norm of the first residual is controlled [13, 1] by the explicit bound

~Res~2
‹ ď η2 –

ÿ

TPT

ˆ

hT

j1,1
‖ f ´ fT ‖L2pT q`

fT

2
‖‚´midpT q‖L2pT q

˙2

. (6)

Here, midpT q denotes the triangle center of T P T , and the quantity oscp f ,T q–

‖hT p f ´ fT q‖L2pΩq denotes the oscillations of f . Since VC Ď kerRes, ~Res~‹ can
also be estimated by any other guaranteed error estimator [10], e.g. the equilibration
error estimators from Section 2.

The numerical example from Subsection 2.3 allows for a comparison of the per-
formance of η with that of the Braess and the Luce-Wohlmuth error estimator from
Section 2 for the estimation of ~Res~‹. Table 3.2 shows that there is only small
improvement of up to 8 percent possible compared to η by ηLWp1q, the estimator
ηB is even worse than η . This led to the decision in [13] to employ only η for
the estimation of ~Res~‹ in the error control for the nonconforming FEM for the
Poisson problem. It seems more favorable to spend effort in the sharp estimation of
~ResNC~‹.
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ndof 8 40 176 736 3008 12160 48896

~u´uCR~NC 0.0583 0.0527 0.0287 0.0198 0.0103 0.00517 0.00259
oscp f q 0.223 0.0952 0.0391 0.00938 0.00243 0.000613 0.000154

η 0.233 0.112 0.0521 0.0190 0.00769 0.00336 0.00156
B 0.253 0.140 0.0672 0.0219 0.00835 0.00352 0.00160

LW 0.230 0.116 0.0490 0.0178 0.00737 0.00328 0.00154
Brp1q 0.249 0.133 0.0657 0.0210 0.00796 0.00333 0.00151

Brp8q 0.248 0.131 0.0654 0.0210 0.00795 0.00333 0.00151
LWp1q 0.229 0.113 0.0477 0.0172 0.00705 0.00312 0.00146

LWp8q 0.228 0.112 0.0474 0.0172 0.00704 0.00312 0.00146
Brrp3q 0.247 0.128 0.0645 0.0206 0.00782 0.00327 0.00148

Table 1 Guaranteed upper bounds for ~Res~‹ by η and the equilibration error estimators ηB, ηLW,
and some of their postprocessings for uniform mesh-refinements in the example of Subsection 3.2.
The oscillations oscp f q are displayed to show its declining influence to η .

3.3 Guaranteed Upper Bounds for ~ResNC~‹

Since ResNCpϕzq “ 0 for all z PN , any equilibration error estimator from Section 2
is applicable (with σh “ curluCR and f ” 0 in (1)) and leads, e.g., via qxyz “ qB or
qLW to the upper bounds

~ResNC~‹ ď
∥∥curluCR´qxyz

∥∥
L2pΩq — µxyz.

The second characterisation (5) of ~ResNC~‹ allows an upper bound for ~ResNC~‹
by the design of conforming functions vxyz PV such that

~ResNC~‹ ď
�

�uCR´ vxyz
�

�

NC — µxyz.

Since qxyz – curlvxyz P Hpdiv,Ωq, those can also be seen as equilibration error
estimators and allow the postprocessing of Subsection 2.2. Three designs for some
vxyz from [13, 1] are repeated in the sequel.

Ainsworth [1] designs some piecewise linear vA P P1pT qXC0pΩq by averaging
on node patches T pzq– tT PT

ˇ

ˇz P Tu,

vApzq–

#

0 if z PN zN pΩq,
´

ř

TPT pzq uCR|T pzq
¯

{ |T pzq| if z PN pΩq.

The averaging of the auxiliary function from [23, 2, 7]

v0 – uCR´ fT ψ{2 P P2pT q,

where ψpxq– |x´midpT q|2 {2´
ffl

T |y´midpT q|2 dy for x P T PT , leads to vAP2 P

P2pT qXC0pΩq via
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vAP2pzq–

$

’

’

&

’

’

%

0 if z PN pBΩqYmidpE pBΩqq,
´

ř

TPT pzq v0|T pzq
¯

{ |T pzq| if z PN pΩq,
´

ř

TPT pEq v0|T pzq
¯

{ |T pEq| if z“midpEq,E P E pΩq.

The novel design from [13] employs the red-refined triangulation and defines
vREDpzq P P1predpT qqXC0pΩq via

vREDpzq–

$

’

&

’

%

uCRpzq for z PmidpE pΩqq,
0 for z PN pBΩqYmidpE pBΩqq,
vz for z PN pΩq.

The values vz for z PN pΩq may be chosen by an averaging as above or by patch-
wise minimisation as in [13]; this leads to the two averagings vARED and vPMRED.

3.4 Numerical Experiment with Big Oscillations

This section concludes with the revisit of the example of Subsection 2.3 for the
CR-NCFEM. Figures 3 and 4 display the efficiency indices ηxyz{~e~ for all er-
ror estimators of Subsection 3.3. Under the label B and LW, both residuals were
estimated with the same error estimator, i.e., ~u´uCR~NC is bound by ηB` µB
and ηLW` µLW, respectively. The error estimators based on conforming interpo-
lations xyz P tA,AP2,ARED,PMREDu, involve ~Res~‹ ď η and hence bound
~u´uCR~NC by η ` µxyz. The same holds for their postprocessings. Notice, that
rp3q applied to ARED or PMRED means altogether two red-refinements.

The energy error is estimated very effectively with efficiency indices between 1.5
for unpostprocessed estimators like ηB and ηA and about 1.05 for the postprocessed
estimators ηBrrp3q or ηArrp3q.

4 Guaranteed Error Control for Curved Boundaries

Particular attention requires the inexact approximation of the geometry by the polyg-
onal boundary of a triangulation into triangles. This section is devoted to an exam-
ple for a convex boundary where there is no real need of curved finite elements. The
benchmark problem on the sector domain

Ω “
 

x“ pr cosϕ,r sinϕq
ˇ

ˇ0ă ϕ ă 3π{2, 0ă r ă 1
(

from [1] employs the exact solution upr,ϕq “ pr2{3´ r2qsinp2ϕ{3q with a typical
corner singularity at the reentrant corner.
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Fig. 3 History of efficiency indices ηxyz{~e~ of various error estimators ηxyz labeled xyz as
functions of ndof on uniform meshes in Subsection 3.
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Fig. 4 History of efficiency indices ηxyz{~e~ of various error estimators ηxyz labeled xyz in the
figure as functions of ndof on adaptive meshes in Subsection 3.

Since the domain is not matched exactly,
Ť

T ĂΩ requires extra considerations
for uh extended by zero outside of

Ť

T such that uh P H1
0 pΩq. The reflection of

boundary triangles of Figure 5 yields an extended triangulation xT with Ω Ă
Ť

xT
where the extended source-function f pϕq “ 32sinp2ϕ{3q{9 is well defined. The
new triangles involve only Dirichlet nodes and allow the Braess or Luce-Wohlmuth
design of an equilibration qB or qLW from Section 2.2 on the extended triangulation,
possibly with a postprocessing γh P H1p

Ť

xT q. This results in
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Fig. 5 Triangulation T (left, solid lines) and extended triangulation xT (right, solid lines) with
Ť

T ĎΩ Ď
Ť

xT for the sector domain Ω (dashed lines) from Section 4.

~Res~‹ ď
∥∥h

xT
p f `divpqq

∥∥
L2p

Ť

xT q
{ j1,1`‖pq´σh´Curlγh‖L2pΩq .

The integration of pq´σh´Curlγh over the non-polygonal domain Ω separates into
an exact integration over triangles in T and an integration over intersections T XΩ
of triangles T P xT zT . The latter integration employs polar coordinates and Gauss
quadrature with at least 100 quadrature points.
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Fig. 6 History of efficiency indices ηxyz{~e~ of the standard and postprocessed Braess and Luce-
Wohlmuth error estimators ηxyz labeled xyz in the figure as functions of the number of unknowns
on uniform (solid lines) and adaptive (dashed lines) meshes for the sector example of Section 4.

To consider also the domain approximation error in the adaptive refinement, the
refinement indicators (4) are replaced by

ηpT q2`2widthppT XΩq{π ‖ f‖L2ppTXΩq for T PT with a reflection pT P xT zT .
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Additionally, modified refinement routines shift the midpoints of all bisected edges
along the curved boundary onto the unit circle. For simplicity, the postprocessing
of Section 2.2 is only applied to vertices z PN with pωz ĎΩ where pωz is the patch
with respect to the extended triangulation xT . Undocumented experiments show to
us that otherwise the efficiency becomes worse.

The oscillations in this example are not as large as in the square example from
Subsection 2.3, but the conclusions appear similar. Figure 6 displays the efficiency
indices of the two error estimators ηLW and ηB. The postprocessed equilibration
error estimator ηLWp1q or ηBrrp3q permits efficiency indices around 1.2 while ηBrp1q
leads to 1.3 for adaptive mesh refinement. Due to the simple extension of the solu-
tion from T to xT , there is a large refinement along the circular boundary edges,
but the efficiency is almost as good as in the other examples. As a result, even for
curved boundaries, reliable error control is possible and accurate.

For the nonconforming solution uCR a similar treatment is possible, cf. [13] for
details.

5 Guaranteed Goal-Oriented Error Estimation

This section is devoted to guaranteed error control with respect to some functional
like the derivative ´B{Bx1δx0 evaluated at a point x0 “ pπ{7,49{100q. Subsec-
tion 5.1 describes a way to recast that problem into a computable term plus a linear
and bounded goal functional Q PH´1pΩq which in Subsection 5.2 is controlled via
the parallelogram identity in terms of energy error estimates. Figure 7 displays the
numerical results for a benchmark with an overestimation by a guaranteed bound by
just one order of magnitude.

5.1 Reduction to L2 Functionals

Given some fixed point x0 in the domain Ω “ p0,1q2, this section aims at guaranteed
error bounds of the x1 derivative Bupx0q{Bx1. This point value´Bδx0{Bx1 is not well-
defined for any Sobolev function. This subsection discusses a split of

Bδupx0q{Bx1 “ Qpuq`Mp f q

in a bounded functional Qpuq and an unbounded functional Mp f q independent of
u [19] that can be computed beforehand. The fundamental solution of the Laplace
operator ∆ in 2D is logr{2π in polar coordinates pr,φq at x0, in symbolic notation
2πBδx0 “ ∆ logr. The derivative´2πBδx0{Bx1 “ ∆ cosφ{r leads to the formula (re-
call x“ x0` rpcosφ ,sinφq)
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2π
Bvpx0q

Bx1
“

ˆ
Ω
pcosφ{rq∆vpxqdx for all v PDpΩq. (7)

This identity is the clue to cast the point derivative of the solution of the Laplace
equation as a function of the right-hand side f P L2pΩqX LppUq for some neigh-
bourhood U of x0 and some p ą 2. By local elliptic regularity, u is C1 in a neigh-
bourhood of x0 and ∆v“´ f allows for f {r P L1pUq. Hence, the formula (7) makes
sense for the exact solution u. The boundary conditions, however, do not allow to
utilize the formula directly for v“ u in (7) and so involves some cut-off function χ ,
which is identically one in some neighbourhood of x0 and vanishes outside U .

In the example of this section, the spline function η of order 6 on the interval
p0.1,0.45q with natural boundary conditions has been evaluated with MATLAB by

spapi(6,[0.1*ones(1,5),0.275,0.45*ones(1,5)],[zeros(1,5),1,zeros(1,5)])

to define

1´χpr,φq–

´ r
0 ηpsqds´ 1
0 ηpsqds

for 0ă r ă 1.

With v – χu in (7), ∆u “ f in some neighbourhood of x0 where r “ 0 is some
singularity in the volume integral. The product rule ∆v “ χ f ` 2∇χ ¨∇u` u∆ χ
shows that

Bupx0q

Bx1
“

ˆ
Ω

cosφ
2πr

χpxq f pxqdx`Qpuq. (8)

The point is that the linear functional Qpuq involves smooth functions like ∇χ{r
(which vanishes near x0) as well as u and its derivative ∇u and hence is linear,
bounded and Q P H´1pΩq. Indeed, some further integration by parts reveals that

Qpuq “
ˆ

Ω
gpxqupxqdx for gpxq–´∇χpxq ¨∇p

cosφ
πr

q´
cosφ
2πr

∆ χ. (9)

Recall that χ ” 1 in a neighbourhood of r“ 0 and so g P L2pΩq is smooth. Since the
first integral on the right-hand side of (8) is known and computable, the computation
of the unbounded functional´Bδx0{Bx1 is reduced to that of the bounded functional
Q of the following subsection.

5.2 Guaranteed Bounds for Goal Functionals

Given some L2 function g and the goal-functional Q from (9) the estimation of
Qpu´uhq is driven by g P L2pΩq as the right-hand side, the exact solution z and the
discrete solution zh of the adjoint problem [5, 3]. Then, the parallelogram identity
for any α ‰ 0 yields



14 C. Carstensen, C. Merdon, and J. Neumann

Qpu´uhq “
1
4

�

�

�

�

αpu´uhq`
z´ zh

α

�

�

�

�

2

´
1
4

�

�

�

�

αpu´uhq´
z´ zh

α

�

�

�

�

2

. (10)

As in [21], upper and lower bounds for the energy norm terms imply correspond-
ing bounds for the error Qpu´ uhq. Note, that lower bounds can be designed from
upper bounds and vice versa with the hyper circle identity

‖p´ pRT‖2
L2pΩq`‖p´∇uh‖2

L2pΩq “ ‖pRT´∇uh‖2
L2pΩq`2pu´uh, f ´ fT q

for the Raviart-Thomas solution pRT P RT0pT q [20, 6]. The upper bound

‖p´ pRT‖2
L2pΩq ď

osc2p f ,T q
j2
1,1

`dist2
`

pRT,∇H1
0 pΩq

˘

employs the Helmholtz decomposition p´ pRT “ ∇α `Curlβ with ∇α K Curlβ
and the Poincaré constant from Subsection 2.2. Any v P H1

0 pΩq satisfies

‖p´ pRT‖2
L2pΩq “ ~α~2

`~β~2
“ p∇α, p´ pRTq`pCurlβ , p´ pRTq

“ ´pα,div p´div pRTq`pCurlβ ,∇v´ pRTq

“ pα´αT , f ´ fT q`pCurlβ ,∇v´ pRTq

ď ~α~
oscp f ,T q

j1,1
`~β~dist

`

pRT,∇H1
0 pΩq

˘

ď

ˆ

osc2p f ,T q
j1,1

`dist2
`

pRT,∇H1
0 pΩq

˘

˙1{2
´

~α~2
`~β~2

¯1{2
.

The upper bound ~u´uh~ ď oscp f ,T q{ j1,1`~uM´uh~ incorporates a function
uM similar to v0 from Subsection 3.3, but here uCR is the CR solution for the right-
hand side fT to ensure ∇NCuM “ pRT [23]. This leads to

~u´uh~ “ sup
~v~“1

pFpvq´apuh,vqq “ sup
~v~“1

pp f ´div pRT,vq`ppRT´∇uh,∇vqq

ď
oscp f ,T q

j1,1
` sup
~v~“1

p∇v,∇NCuM´∇uhq.

With the convention scheme u` “ αu` z{α , u´ “ αu´ z{α , f` “ α f `g{α and
f´ “ α f ´ g{α those bounds imply guaranteed upper and lower bounds for (10).
As in Subsection 3.3, an averaging of uM results in a continuous P2pT q function
uA which gives an upper bound for dist

`

pRT,∇H1
0 pΩq

˘

. Altogether, this leads to
guaranteed upper and lower bounds for Qpu´uhq,
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η`A “
1
4

˜

ˆ

oscp f`,T q

j1,1
`
�

�u`M´u`h
�

�

˙2

´
∥∥p´RT´∇u´h

∥∥2
L2pΩq`

3osc2p f´,T q

2 j2
1,1

`
∥∥p´RT´∇uA

∥∥
L2pΩq`2

�

�u´M´u´h
�

�

oscp f´,T q

j1,1

¸

,

η´A “
1
4

˜

∥∥p`RT´∇u`h
∥∥2

L2pΩq´
3osc2p f`,T q

2 j2
1,1

´
∥∥p`RT´∇uA

∥∥
L2pΩq

´2
�

�u`M´u`h
�

�

oscp f`,T q

j1,1
´

ˆ

oscp f´,T q

j1,1
`
�

�u´M´u´h
�

�

˙2
¸

.

Elementary calculations show that αA – p~zM´ zh~{~uM´uh~q
1{2 is the optimal

choice for the parameter α . The same bounds yield an upper bound ηC for the
Cauchy inequality |Qpu´uhq|ď ~u´uh~~z´ zh~ ď ηC.

5.3 Benchmark Example

The function f “ 2x´2x2`2y´2y2 with the analytical solution u“ xp1´xqyp1´
yq and the reduction from Subsection 5.1 leads to some smooth known function g.
Standard quadrature resolves the unbounded functional and adaptive goal oriented
FEM handles the bounded functional Q. The adaptive mesh-refinement algorithm
employs the refinement rules from [19]. They employ Dörfler marking separately
for the primal and the dual problem and choose the smaller set of marked edges for
the final mesh refinement.

Figure 7 displays the error |Qpu´uhq|, ηC, the guaranteed error bound
∣∣η`A ´η´A

∣∣
{2 for

∣∣Qpu´uhq´pη`A `η´A q{2
∣∣ and the L2 norm of the error u´uh in the primal

problem. The a posteriori error control of the L2 error ‖u´uh‖L2pΩq in the primal
problem is possible in this example on a convex domain but significantly harder for
nonconvex polygons. In the general case, the duality argument requires the precise
values for the reduced elliptic regularity to deduce guaranteed error bounds.
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∣∣{2, ηC and ‖u´uh‖L2pΩq.
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